Resting-state EEG power and coherence vary between migraine phases

Zehong Cao, Chin-Teng Lin, Chun-Hsiang Chuang, Kuan-Lin Lai, Albert C Yang, Jong-Ling Fuh, Shuu-Jiun Wang, Zehong Cao, Chin-Teng Lin, Chun-Hsiang Chuang, Kuan-Lin Lai, Albert C Yang, Jong-Ling Fuh, Shuu-Jiun Wang

Abstract

Background: Migraine is characterized by a series of phases (inter-ictal, pre-ictal, ictal, and post-ictal). It is of great interest whether resting-state electroencephalography (EEG) is differentiable between these phases.

Methods: We compared resting-state EEG energy intensity and effective connectivity in different migraine phases using EEG power and coherence analyses in patients with migraine without aura as compared with healthy controls (HCs). EEG power and isolated effective coherence of delta (1-3.5 Hz), theta (4-7.5 Hz), alpha (8-12.5 Hz), and beta (13-30 Hz) bands were calculated in the frontal, central, temporal, parietal, and occipital regions.

Results: Fifty patients with episodic migraine (1-5 headache days/month) and 20 HCs completed the study. Patients were classified into inter-ictal, pre-ictal, ictal, and post-ictal phases (n = 22, 12, 8, 8, respectively), using 36-h criteria. Compared to HCs, inter-ictal and ictal patients, but not pre- or post-ictal patients, had lower EEG power and coherence, except for a higher effective connectivity in fronto-occipital network in inter-ictal patients (p < .05). Compared to data obtained from the inter-ictal group, EEG power and coherence were increased in the pre-ictal group, with the exception of a lower effective connectivity in fronto-occipital network (p < .05). Inter-ictal and ictal patients had decreased EEG power and coherence relative to HCs, which were "normalized" in the pre-ictal or post-ictal groups.

Conclusion: Resting-state EEG power density and effective connectivity differ between migraine phases and provide an insight into the complex neurophysiology of migraine.

Keywords: EEG; Isolated effective coherence; Migraine without aura; Power; Resting-state.

Figures

Fig. 1
Fig. 1
Analytical procedures. a: Migraine cycle; b: Resting-state EEG recording; c: EEG signal processing
Fig. 2
Fig. 2
Topographical comparison of significant EEG power differences (p < .05) between migraine patients in different migraine phases and HCs during eyes-open recording. Color intensity indicates the magnitude of the power difference (red for increased power, blue for decreased power) in each channel
Fig. 3
Fig. 3
Topographical comparisons of significant EEG power differences (p < .05) between patients in each of the four migraine phases during eyes-open recording. Color intensity indicates the magnitude of the power difference (red for increased power, blue for decreased power) in each channel
Fig. 4
Fig. 4
Topographical comparisons of significant EEG coherence differences (p < .05) between patients in different migraine phases and HCs during eyes-open recording. Line sizes and colors reflect the magnitude of the difference in coherence intensity between electrode pairs, with red indicating positive differences (more coherent) and blue indicating negative differences (more independent). The directions of arrows represent the direct paths of inter-channel coupling
Fig. 5
Fig. 5
Topographical comparisons of significant EEG coherence differences (p < .05) between migraine patients in each of the four phases of the migraine cycle during eyes-open recording. Line sizes and colors reflect the magnitude of the difference in coherence intensity between electrode pairs, with red indicating positive differences (more coherent) and blue indicating negative differences (more independent). The directions of arrows represent the direct paths of inter-channel coupling

References

    1. Stovner LJ, Hagen K, Jensen R, Katsarava Z, Lipton RB, Scher AI, Steiner TJ, Zwart JA. The global burden of headache: a documentation of headache prevalence and disability worldwide. Cephalalgia. 2007;27:193–210. doi: 10.1111/j.1468-2982.2007.01288.x.
    1. Wang SJ, Fuh JL, Young YH, Lu SR, Shia BC. Prevalence of migraine in Taipei, Taiwan: a population‐based survey. Cephalalgia. 2000;20:566–72. doi: 10.1046/j.1468-2982.2000.00085.x.
    1. Goadsby PJ, Lipton RB, Ferrari MD. Migraine--current understanding and treatment. N Engl J Med. 2002;346:257–70. doi: 10.1056/NEJMra010917.
    1. Bigal ME, Liberman JN, Lipton RB. Obesity and migraine: a population study. Neurology. 2006;66:545–50. doi: 10.1212/01.wnl.0000197218.05284.82.
    1. Queiroz LP, Rapoport AM, Weeks RE, Sheftell FD, Siegel SE, Baskin SM. Characteristics of migraine visual aura. Headache. 1997;37:137–41. doi: 10.1046/j.1526-4610.1997.3703137.x.
    1. Cady RK, Sheftell F, Lipton RB, O’Quinn S, Jones M, Putnam DG, Crisp A, Metz A, McNeal S. Effect of early intervention with sumatriptan on migraine pain: retrospective analyses of data from three clinical trials. Clin Ther. 2000;22:1035–48. doi: 10.1016/S0149-2918(00)80083-1.
    1. Aurora S, Wilkinson F. The brain is hyperexcitable in migraine. Cephalalgia. 2007;27:1442–53. doi: 10.1111/j.1468-2982.2007.01502.x.
    1. Cosentino G, Fierro B, Brighina F. From different neurophysiological methods to conflicting pathophysiological views in migraine: a critical review of literature. Clin Neurophysiol. 2014;125:1721–30. doi: 10.1016/j.clinph.2014.05.005.
    1. Coppola G, Pierelli F, Schoenen J. Is the cerebral cortex hyperexcitable or hyperresponsive in migraine? Cephalalgia. 2007;27:1427–39. doi: 10.1111/j.1468-2982.2007.01500.x.
    1. Khedr EM, Ahmed MA, Mohamed KA. Motor and visual cortical excitability in migraineurs patients with or without aura: transcranial magnetic stimulation. Neurophysiol Clin. 2006;36:13–8. doi: 10.1016/j.neucli.2006.01.007.
    1. De Tommaso M, Stramaglia S, Marinazzo D, Trotta G, Pellicoro M. Functional and effective connectivity in EEG alpha and beta bands during intermittent flash stimulation in migraine with and without aura. Cephalalgia. 2013;33:938–47. doi: 10.1177/0333102413477741.
    1. De Tommaso M, Trotta G, Vecchio E, Ricci K, Van de Steen F, Montemurno A, Lorenzo M, Marinazzo D, Bellotti R, Stramaglia S. Functional connectivity of EEG signals under laser stimulation in migraine. Front Hum Neurosci. 2015;9:640.
    1. Judit A, Sandor PS, Schoenen J. Habituation of visual and intensity dependence of auditory evoked cortical potentials tends to normalize just before and during the migraine attack. Cephalalgia. 2000;20:714–9. doi: 10.1111/j.1468-2982.2000.00122.x.
    1. Bruni O, Russo PM, Violani C, Guidetti V. Sleep and migraine: an actigraphic study. Cephalalgia. 2004;24:134–9. doi: 10.1111/j.1468-2982.2004.00657.x.
    1. Bjork M, Sand T. Quantitative EEG power and asymmetry increase 36 h before a migraine attack. Cephalalgia. 2008;28:960–8. doi: 10.1111/j.1468-2982.2008.01638.x.
    1. Bjork MH, Stovner LJ, Engstrom M, Stjern M, Hagen K, Sand T. Interictal quantitative EEG in migraine: a blinded controlled study. J Headache Pain. 2009;10:331–9. doi: 10.1007/s10194-009-0140-4.
    1. Van Diessen E, Numan T, Van Dellen E, van der Kooi AW, Boersma M, Hofman D, van Lutterveld R, van Dijk BW, van Straaten EC, Hillebrand A, Stam CJ. Opportunities and methodological challenges in EEG and MEG resting state functional brain network research. Clin Neurophysiol. 2015;126:1468–81. doi: 10.1016/j.clinph.2014.11.018.
    1. Schoenen J. Neurophysiological features of the migrainous brain. Neurol Sci. 2006;27(Suppl 2):S77–81. doi: 10.1007/s10072-006-0575-1.
    1. Sakkalis V. Review of advanced techniques for the estimation of brain connectivity measured with EEG/MEG. Comput Biol Med. 2011;41(12):1110–7. doi: 10.1016/j.compbiomed.2011.06.020.
    1. Russo A, Tessitore A, Giordano A, Corbo D, Marcuccio L, De Stefano M, Salemi F, Conforti R, Esposito F, Tedeschi G. Executive resting-state network connectivity in migraine without aura. Cephalalgia. 2012;32:1041–8. doi: 10.1177/0333102412457089.
    1. Schwedt TJ, Larson-Prior L, Coalson RS, Nolan T, Mar S, Ances BM, Benzinger T, Schlaggar BL. Allodynia and descending pain modulation in migraine: a resting state functional connectivity analysis. Pain Med. 2014;15:154–65. doi: 10.1111/pme.12267.
    1. Pascual-Marqui RD, Biscay RJ, Bosch-Bayard J, Lehmann D, Kochi K, Kinoshita T, et al. Assessing direct paths of intracortical causal information flow of oscillatory activity with the isolated effective coherence (iCoh) Front Hum Neurosci. 2014;8:448. doi: 10.3389/fnhum.2014.00448.
    1. The International Classification of Headache Disorders: 2nd edition (2004). Cephalalgia 24 (Suppl 1): 9–160
    1. Klem GH, Lüders HO, Jasper H, Elger C. The ten-twenty electrode system of the International Federation. Electroencephalogr Clin Neurophysiol. 1999;52:3–6.
    1. American Clinical Neurophysiology Society Guideline 6: A proposal for standard montages to be used in clinical EEG. J Clin Neurophysiol. 2006;23:111–7. doi: 10.1097/00004691-200604000-00007.
    1. Delorme A, Makeig S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods. 2004;134:9–21. doi: 10.1016/j.jneumeth.2003.10.009.
    1. Delorme A, Mullen T, Kothe C, Akalin Acar Z, Bigdely-Shamlo N, Vankov A, et al. EEGLAB, SIFT, NFT, BCILAB, and ERICA: new tools for advanced EEG processing. Comput Intell Neurosci. 2011;2011:1–12. doi: 10.1155/2011/130714.
    1. Aurora SK, Ahmad BK, Welch KM, Bhardhwaj P, Ramadan NM. Transcranial magnetic stimulation confirms hyperexcitability of occipital cortex in migraine. Neurology. 1998;50:1111–4. doi: 10.1212/WNL.50.4.1111.
    1. Gusnard DA, Raichle ME. Searching for a baseline: functional imaging and the resting human brain. Nat Rev Neurosci. 2001;2(10):685–94. doi: 10.1038/35094500.
    1. Sand T, Zhitniy N, White LR, Stovner LJ. Visual evoked potential latency, amplitude and habituation in migraine: a longitudinal study. Clin Neurophysiol. 2008;119:1020–7. doi: 10.1016/j.clinph.2008.01.009.
    1. De Tommaso M, Ambrosini A, Brighina F, Coppola G, Perrotta A, Pierelli F, Sandrini G, Valeriani M, Marinazzo D, Stramaglia S, Schoenen J. Altered processing of sensory stimuli in patients with migraine. Nat Rev Neurol. 2014;10:144–55. doi: 10.1038/nrneurol.2014.14.
    1. Clemens B, Bank J, Piros P, Bessenyei M, Veto S, Toth M, Kondakor I. Three-dimensional localization of abnormal EEG activity in migraine: a low resolution electromagnetic tomography (LORETA) study of migraine patients in the pain-free interval. Brain Topogr. 2008;21:36–42. doi: 10.1007/s10548-008-0061-6.
    1. Coppola G, Pierelli F, Schoenen J. Habituation and migraine. Neurobiol Learn Mem. 2009;92:249–59. doi: 10.1016/j.nlm.2008.07.006.
    1. Sand T. EEG in migraine: a review of the literature. Funct Neurol. 1991;6:7–22.
    1. Siniatchkin M, Gerber WD, Kropp P, Vein A. How the brain anticipates an attack: a study of neurophysiological periodicity in migraine. Funct Neurol. 1999;14:69–77.
    1. Sand T, Vingen JV. Visual, long-latency auditory and brainstem auditory evoked potentials in migraine: relation to pattern size, stimulus intensity, sound and light discomfort thresholds and pre-attack state. Cephalalgia. 2000;20:804–20. doi: 10.1046/j.1468-2982.2000.00098.x.
    1. Chen WT, Wang SJ, Fuh JL, Lin CP, Ko YC, Lin YY. Peri-ictal normalization of visual cortex excitability in migraine: an MEG study. Cephalalgia. 2009;29:1202–11. doi: 10.1111/j.1468-2982.2009.01857.x.
    1. Sakai Y, Dobson C, Diksic M, Aubé M, Hamel E. Sumatriptan normalizes the migraine attack-related increase in brain serotonin synthesis. Neurology. 2008;70:431–9. doi: 10.1212/01.wnl.0000299095.65331.6f.
    1. Maniyar FH, Sprenger T, Monteith T, Schankin CJ, Goadsby PJ. The premonitory phase of migraine–what Can We learn from It? Headache. 2015;55:609–20. doi: 10.1111/head.12572.
    1. Barry R, Clarke A. Resting state brain oscillations and symptom profiles in attention deficit/hyperactivity disorder. Suppl Clin Neurophysiol. 2012;62:275–87. doi: 10.1016/B978-0-7020-5307-8.00017-X.
    1. Tas C, Cebi M, Tan O, Hızlı-Sayar G, Tarhan N, Brown EC. EEG power, cordance and coherence differences between unipolar and bipolar depression. J Affect Disord. 2015;172:184–90. doi: 10.1016/j.jad.2014.10.001.

Source: PubMed

3
S'abonner