Implementing Flywheel (Isoinertial) Exercise in Strength Training: Current Evidence, Practical Recommendations, and Future Directions

Marco Beato, Antonio Dello Iacono, Marco Beato, Antonio Dello Iacono

No abstract available

Keywords: PAPE; flywheel; performance; strength; training.

Figures

Figure 1
Figure 1
PAPE, post-activation potentiation enhancement; RCT, Randomized controlled trial.

References

    1. Annibalini G., Contarelli S., Lucertini F., Guescini M., Maggio S., Ceccaroli P., et al. . (2019). Muscle and systemic molecular responses to a single flywheel based iso-inertial training session in resistance-trained men. Front. Physiol. 10:554. 10.3389/fphys.2019.00554
    1. Askling C., Karlsson J., Thorstensson A. (2003). Hamstring injury occurrence in elite soccer players after preseason strength training with eccentric overload. Scand. J. Med. Sci. Sport 13, 244–250. 10.1034/j.1600-0838.2003.00312.x
    1. Beato M., Bigby A. E. J., De Keijzer K. L., Nakamura F. Y., Coratella G., McErlain-Naylor S. A. (2019a). Post-activation potentiation effect of eccentric overload and traditional weightlifting exercise on jumping and sprinting performance in male athletes. PLoS ONE 14:e0222466. 10.1371/journal.pone.0222466
    1. Beato M., De Keijzer K. L., Leskauskas Z., Allen W. J., Dello Iacono A., McErlain-Naylor S. A. (2019b). Effect of postactivation potentiation after medium vs. high inertia eccentric overload exercise on standing long jump, countermovement jump, and change of direction performance. J. strength Cond. Res. 10.1519/JSC.0000000000003214. [Epub ahead of print].
    1. Beato M., Madruga-Parera M., Piqueras-Sanchiz F., Moreno-Pérez V., Romero-Rodriguez D. (2019c). Acute effect of eccentric overload exercises on change of direction performance and lower-limb muscle contractile function. J. Strength Cond. Res. 10.1519/JSC.0000000000003359. [Epub ahead of print].
    1. Beato M., McErlain-Naylor S. A., Halperin I., Dello Iacono A. (2020). Current evidence and practical applications of flywheel eccentric overload exercises as postactivation potentiation protocols: a brief review. Int. J. Sports Physiol. Perform. 15, 154–161. 10.1123/ijspp.2019-0476
    1. Beato M., Stiff A., Coratella G. (2019d). Effects of postactivation potentiation after an eccentric overload bout on countermovement jump and lower-limb muscle strength. J. Strength Cond. Res. 10.1519/JSC.0000000000003005. [Epub ahead of print].
    1. Berg H. E., Tesch A. (1994). A gravity-independent ergometer to be used for resistance training in space. Aviat. Space. Environ. Med. 65, 752–6.
    1. Blazevich A. J., Babault N. (2019). Post-activation potentiation versus post-activation performance enhancement in humans: historical perspective, underlying mechanisms, and current issues. Front. Physiol. 10:1359. 10.3389/fphys.2019.01359
    1. Bollinger L. M., Brantley J. T., Tarlton J. K., Baker P. A., Seay R. F., Abel M. G. (2018). Construct validity, test-retest reliability, and repeatability of performance variables using a flywheel resistance training device. J. Strength Cond. Res. 10.1519/JSC.0000000000002647. [Epub ahead of print].
    1. Boullosa D., Del Rosso S., Behm D. G., Foster C. (2018). Post-activation potentiation (PAP) in endurance sports: a review. Eur. J. Sport Sci. 18, 595–610. 10.1080/17461391.2018.1438519
    1. Cermak N. M., Snijders T., McKay B. R., Parise G., Verdijk L. B., Tarnopolsky M. A., et al. . (2013). Eccentric exercise increases satellite cell content in type II muscle fibers. Med. Sci. Sports Exerc. 45, 230–237. 10.1249/MSS.0b013e318272cf47
    1. Colliander E. B., Tesch P. A. (1990). Effects of eccentric and concentric muscle actions in resistance training. Acta Physiol. Scand. 140, 31–39. 10.1111/j.1748-1716.1990.tb08973.x
    1. Coratella A. G., Beato M., Cè E., Scurati R., Milanese C. (2019). Effects of in-season enhanced negative work-based vs traditional weight training on change of direction and hamstrings-to-quadriceps ratio in soccer players. Biol. Sport 36, 241–248. 10.5114/biolsport.2019.87045
    1. Cuenca-Fernández F., López-Contreras G., Arellano R. (2015). Effect on swimming start performance of two types of activation protocols: lunge and YoYo squat. J. strength Cond. Res. 29, 647–655. 10.1519/JSC.0000000000000696
    1. Cuenca-Fernández F., López-Contreras G., Mourão L., de Jesus K., de Jesus K., Zacca R., et al. . (2019). Eccentric flywheel post-activation potentiation influences swimming start performance kinetics. J. Sports Sci. 37, 443–451. 10.1080/02640414.2018.1505183
    1. Cuenca-Fernández F., Ruiz-Teba A., López-Contreras G., Arellano R. (2018). Effects of 2 types of activation protocols based on postactivation potentiation on 50-m freestyle performance. J. strength Cond. Res. 10.1519/JSC.0000000000002698. [Epub ahead of print].
    1. de Hoyo M., de la Torre A., Pradas F., Sañudo B., Carrasco L., Mateo-Cortes J., et al. . (2014). Effects of eccentric overload bout on change of direction and performance in soccer players. Int. J. Sports Med. 36, 308–314. 10.1055/s-0034-1395521
    1. de Hoyo M., Pozzo M., Sañudo B., Carrasco L., Gonzalo-Skok O., Domínguez-Cobo S., et al. . (2015). Effects of a 10-week in-season eccentric-overload training program on muscle-injury prevention and performance in junior elite soccer players. Int. J. Sports Physiol. Perform. 10, 46–52. 10.1123/ijspp.2013-0547
    1. de Keijzer K. L., McErlain-Naylor S. A., Dello Iacono A., Beato M. (2020). Effect of volume on eccentric overload-induced postactivation potentiation of jumps. Int. J. Sports Physiol. Perform. 1–6. 10.1123/ijspp.2019-0411. [Epub ahead of print].
    1. Dello Iacono A., Beato M., Halperin I. (2019). The effects of cluster-set and traditional-set postactivation potentiation protocols on vertical jump performance. Int. J. Sports Physiol. Perform. 1–6. 10.1123/ijspp.2019-0186. [Epub ahead of print].
    1. Douglas J., Pearson S., Ross A., McGuigan M. (2017). Eccentric exercise: physiological characteristics and acute Responses. Sport. Med. 47, 663–675. 10.1007/s40279-016-0624-8
    1. Douglas J., Pearson S., Ross A., McGuigan M. (2018). Effects of accentuated eccentric loading on muscle properties, strength, power, and speed in resistance-trained rugby players. J. Strength Cond. Res. 32, 2750–2761. 10.1519/JSC.0000000000002772
    1. Dudley G. A., Tesch P. A., Miller B. J., Buchanan P. (1991). Importance of eccentric actions in performance adaptations to resistance training. Aviat. Space. Environ. Med. 62, 543–50.
    1. Fernandez-Gonzalo R., Lundberg T. R., Alvarez-Alvarez L., de Paz J. A. (2014). Muscle damage responses and adaptations to eccentric-overload resistance exercise in men and women. Eur. J. Appl. Physiol. 114, 1075–1084. 10.1007/s00421-014-2836-7
    1. Franchi M. V., Maffiuletti N. A. (2019). Distinct modalities of eccentric exercise: different recipes, not the same dish. J. Appl. Physiol. 127, 881–883. 10.1152/japplphysiol.00093.2019
    1. Hody S., Croisier J-L., Bury T., Rogister B., Leprince P. (2019). Eccentric muscle contractions: risks and benefits. Front. Physiol. 10:536. 10.3389/fphys.2019.00536
    1. Illera-Domínguez V., Nuell S., Carmona G., Padullés J. M., Padullés X., Lloret M., et al. . (2018). Early functional and morphological muscle adaptations during short-term inertial-squat training. Front. Physiol. 9:1265. 10.3389/fphys.2018.01265
    1. Maroto-Izquierdo S., Fernandez-Gonzalo R., Magdi H. R., Manzano-Rodriguez S., González-Gallego J., De Paz J., et al. . (2019). Comparison of the musculoskeletal effects of different iso-inertial resistance training modalities: flywheel vs. electric-motor. Eur. J. Sport Sci. 19, 1184–1194. 10.1080/17461391.2019.1588920
    1. Maroto-Izquierdo S., García-López D., Fernandez-Gonzalo R., Moreira O. C., González-Gallego J., de Paz J. A. (2017). Skeletal muscle functional and structural adaptations after eccentric overload flywheel resistance training: a systematic review and meta-analysis. J. Sci. Med. Sport 20, 943–951. 10.1016/j.jsams.2017.03.004
    1. Martinez-Aranda L. M., Fernandez-Gonzalo R. (2017). Effects of inertial setting on power, force, work, and eccentric overload during flywheel resistance exercise in women and men. J. Strength Cond. Res. 31, 1653–1661. 10.1519/JSC.0000000000001635
    1. Moore D. R., Phillips S. M., Babraj J. A., Smith K., Rennie M. J. (2005). Myofibrillar and collagen protein synthesis in human skeletal muscle in young men after maximal shortening and lengthening contractions. Am. J. Physiol. Endocrinol. Metab. 288, E1153–E1159. 10.1152/ajpendo.00387.2004
    1. Norrbrand L., Fluckey J. D., Pozzo M., Tesch P. A. (2008). Resistance training using eccentric overload induces early adaptations in skeletal muscle size. Eur. J. Appl. Physiol. 102, 271–281. 10.1007/s00421-007-0583-8
    1. Nuñez Sanchez F. J., Sáez de Villarreal E. (2017). Does flywheel paradigm training improve muscle volume and force? a meta-analysis. J. Strength Cond. Res. 31, 3177–3186. 10.1519/JSC.0000000000002095
    1. Petré H., Wernstål F., Mattsson C. M. (2018). Effects of flywheel training on strength-related variables: a meta-analysis. Sport. Med. Open 4:55. 10.1186/s40798-018-0169-5
    1. Roig M., O'Brien K., Kirk G., Murray R., McKinnon P., Shadgan B., et al. . (2009). The effects of eccentric versus concentric resistance training on muscle strength and mass in healthy adults: a systematic review with meta-analysis. Br. J. Sports Med. 43, 556–568. 10.1136/bjsm.2008.051417
    1. Sabido R., Hernández-Davó J. L., Pereyra-Gerber G. T. (2018). Influence of different inertial loads on basic training variables during the flywheel squat exercise. Int. J. Sports Physiol. Perform. 13, 482–489. 10.1123/ijspp.2017-0282
    1. Suarez-Arrones L., Saez de Villarreal E., Núñez F. J., Di Salvo V., Petri C., Buccolini A., et al. . (2018). In-season eccentric-overload training in elite soccer players: effects on body composition, strength and sprint performance. PLoS ONE 13:e0205332. 10.1371/journal.pone.0205332
    1. Suchomel T. J., Nimphius S., Bellon C. R., Stone M. H. (2018). The importance of muscular strength: training considerations. Sport Med. 48, 765–785. 10.1007/s40279-018-0862-z
    1. Tesch P. A., Fernandez-Gonzalo R., Lundberg T. R. (2017). Clinical applications of iso-inertial, eccentric-overload (YoYoTM) resistance exercise. Front. Physiol. 8:241. 10.3389/fphys.2017.00241
    1. Tillin N. A., Bishop D. (2009). Factors modulating post-activation potentiation and its effect on performance of subsequent explosive activities. Sports Med. 39, 147–166. 10.2165/00007256-200939020-00004
    1. Toigo M., Boutellier U. (2006). New fundamental resistance exercise determinants of molecular and cellular muscle adaptations. Eur. J. Appl. Physiol. 97, 643–663. 10.1007/s00421-006-0238-1
    1. Tous-Fajardo J., Gonzalo-Skok O., Arjol-Serrano J. L., Tesch P. (2016). Enhancing change-of-direction speed in soccer players by functional inertial eccentric overload and vibration training. Int. J. Sports Physiol. Perform. 11, 66–73. 10.1123/ijspp.2015-0010
    1. Tous-Fajardo J., Maldonado R. A., Quintana J. M., Pozzo M., Tesch P. A. (2006). The flywheel leg-curl machine: offering eccentric overload for hamstring development. Int. J. Sports Physiol. Perform. 1, 293–298. 10.1123/ijspp.1.3.293
    1. Vicens-Bordas J., Esteve E., Fort-Vanmeerhaeghe A., Bandholm T., Thorborg K. (2018). Is inertial flywheel resistance training superior to gravity-dependent resistance training in improving muscle strength? a systematic review with meta-analyses. J. Sci. Med. Sport 21, 75–83. 10.1016/j.jsams.2017.10.006
    1. Wagle J. P., Taber C. B., Cunanan A. J., Bingham G. E., Carroll K. M., DeWeese B. H., et al. . (2017). Accentuated eccentric loading for training and performance: a review. Sports Med. 47, 2473–2495. 10.1007/s40279-017-0755-6
    1. Wallace B. J., Shapiro R., Wallace K. L., Abel M. G., Symons T. B. (2019). Muscular and neural contributions to postactivation potentiation. J. strength Cond. Res. 33, 615–625. 10.1519/JSC.0000000000003011
    1. Weakley J., Fernández-Valdés B., Thomas L., Ramirez-Lopez C., Jones B. (2019). Criterion validity of force and power outputs for a commonly used flywheel resistance training device and bluetooth app. J. Strength Cond. Res. 33, 1180–1184. 10.1519/JSC.0000000000003132
    1. Wernbom M., Augustsson J., Thome R. (2007). The influence of frequency, intensity, volume and mode of strength training on whole muscle cross-sectional area in humans. Sport Med. 37, 225–264. 10.2165/00007256-200737030-00004
    1. Zamparo P., Bolomini F., Nardello F., Beato M. (2015). Energetics (and kinematics) of short shuttle runs. Eur. J. Appl. Physiol. 115, 1985–1994. 10.1007/s00421-015-3180-2

Source: PubMed

3
S'abonner