Modeling outcome trajectories in patients with acquired brain injury using a non-linear dynamic evolution approach

Simona Panunzi, Lucia Francesca Lucca, Antonio De Tanti, Francesca Cava, Annamaria Romoli, Rita Formisano, Federico Scarponi, Anna Estraneo, Diana Frattini, Paolo Tonin, Ilaria Piergentilli, Giovanni Pioggia, Andrea De Gaetano, Antonio Cerasa, Simona Panunzi, Lucia Francesca Lucca, Antonio De Tanti, Francesca Cava, Annamaria Romoli, Rita Formisano, Federico Scarponi, Anna Estraneo, Diana Frattini, Paolo Tonin, Ilaria Piergentilli, Giovanni Pioggia, Andrea De Gaetano, Antonio Cerasa

Abstract

This study describes a dynamic non-linear mathematical approach for modeling the course of disease in acquired brain injury (ABI) patients. Data from a multicentric study were used to evaluate the reliability of the Michaelis-Menten (MM) model applied to well-known clinical variables that assess the outcome of ABI patients. The sample consisted of 156 ABI patients admitted to eight neurorehabilitation subacute units and evaluated at baseline (T0), 4 months after the event (T1) and at discharge (T2). The MM model was used to characterize the trend of the first Principal Component Analysis (PCA) dimension (represented by the variables: feeding modality, RLAS, ERBI-A, Tracheostomy, CRS-r and ERBI-B) in order to predict the most plausible outcome, in terms of positive or negative Glasgow outcome score (GOS) at discharge. Exploring the evolution of the PCA dimension 1 over time, after day 86 the MM model better differentiated between the time course for individuals with a positive and negative GOS (accuracy: 85%; sensitivity: 90.6%; specificity: 62.5%). The non-linear dynamic mathematical model can be used to provide more comprehensive trajectories of the clinical evolution of ABI patients during the rehabilitation period. Our model can be used to address patients for interventions designed for a specific outcome trajectory.

Conflict of interest statement

The authors declare no competing interests.

© 2023. The Author(s).

Figures

Figure 1
Figure 1
Panel (A) Contributions, in percentage terms, of each predictor to the first dimension from the principal component analysis. Panel (B) Plot of the loading vectors (coefficients of the variables on the principal components) for quantitative predictors. Panel (C) Plot of the coefficients of the variables on the principal components for qualitative predictors.
Figure 2
Figure 2
Patients’ scores on the two PCA dimensions at baseline (T0), panel (A); 4 months after the event (T1), panel (B); at discharge (T2), panel (C), for individuals with Positive (blue dots) and Negative (red dots) outcomes.
Figure 3
Figure 3
Time course of PCA Dimension 1 for individuals with Positive GOS (panel A) and for individuals with Negative GOS (panel B) in the Training sample. Dots represent the individual scores (blue dots for Positive GOS group and red dots for Negative GOS group) whereas thick continuous lines are the predictions from the Michaelis Menten model. Panel (C) shows the observed scores and the model fitting along with the corresponding 95% confidence intervals (dashed lines) based on a Monte Carlo approach along with the three thresholds: Threshold 1 (fine red continuous line), Threshold 2 (fine blue continuous line), Threshold 3 (blue two-dashed continuous line).
Figure 4
Figure 4
Time course of PCA Dimension 1 for individuals with Positive GOS and for individuals with Negative GOS in the Validation sample. Dots represent the individual scores (blue dots for Positive GOS group and red dots for Negative GOS group) whereas continuous lines are the predictions from the Michaelis Menten model fitted on the Training sample along with the three thresholds: Threshold 1 (fine red continuous line), Threshold 2 (fine blue continuous line), Threshold 3 (blue two-dashed continuous line).

References

    1. Turner-Stokes L, Pick A, Nair A, Disler PB, Wade T. Multi-disciplinary rehabilitation for acquired brain injury in adults of working age. Cochrane Database Syst. Rev. 2015 doi: 10.1002/14651858.CD004170.pub3.
    1. GBD Traumatic Brain Injury and Spinal Cord Injury Collaborators. Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990–2016: A systematic analysis for the global burden of disease study 2016. Lancet Neurol. 2016;18(1):56–87. doi: 10.1016/S1474-4422(18)30415-0.
    1. GBD Stroke Collaborators. Global, regional, and national burden of stroke, 1990–2016: A systematic analysis for the global burden of disease study 2016. Lancet Neurol. 2016;18(5):439–458. doi: 10.1016/S1474-4422(19)30034-1.
    1. Avesani R, Fedeli M, Ferraro C, Khansefid M. Use of early indicators in rehabilitation process to predict functional outcomes in subjects with acquired brain injury. Eur. J. Phys. Rehabil. Med. 2011;47:203–212.
    1. Steyerberg EW, Mushkudiani N, Perel P, Butcher I, Lu J, McHugh GS, Murray GD, Marmarou A, Roberts I, Habbema JD, Maas AI. Predicting outcome after traumatic brain injury: Development and international validation of prognostic scores based on admission characteristics. PLoS Med. 2008;5(8):e165. doi: 10.1371/journal.pmed.0050165.
    1. Liuzzi P, Magliacano A, De Bellis F, Mannini A, Estraneo A. Predicting outcome of patients with prolonged disorders of consciousness using machine learning models based on medical complexity. Sci. Rep. 2022;12(1):13471. doi: 10.1038/s41598-022-17561-w.
    1. Quinn TP, Jacobs S, Senadeera M, Le V, Coghlan S. The three ghosts of medical AI: Can the black-box present deliver? Artif. Intell. Med. 2022;124:102158. doi: 10.1016/j.artmed.2021.102158.
    1. Cerasa A, Tartarisco G, Bruschetta R, Ciancarelli I, Morone G, Calabrò RS, Pioggia G, Tonin P, Iosa M. Predicting outcome in patients with brain injury: differences between machine learning versus conventional statistics. Biomedicines. 2022;10(9):2267. doi: 10.3390/biomedicines10092267.
    1. Maas AIR, Menon DK, Manley GT, Abrams M, Åkerlund C, Andelic N, Aries M, Bashford T, Bell MJ, Bodien YG, Brett BL, Büki A, Chesnut RM, Citerio G, Clark D, Clasby B, Cooper DJ, Czeiter E, Czosnyka M, Dams-O'Connor K, De Keyser V, Diaz-Arrastia R, Ercole A, van Essen TA, Falvey É, Ferguson AR, Figaji A, Fitzgerald M, Foreman B, Gantner D, Gao G, Giacino J, Gravesteijn B, Guiza F, Gupta D, Gurnell M, Haagsma JA, Hammond FM, Hawryluk G, Hutchinson P, van der Jagt M, Jain S, Jain S, Jiang JY, Kent H, Kolias A, Kompanje EJO, Lecky F, Lingsma HF, Maegele M, Majdan M, Markowitz A, McCrea M, Meyfroidt G, Mikolić A, Mondello S, Mukherjee P, Nelson D, Nelson LD, Newcombe V, Okonkwo D, Orešič M, Peul W, Pisică D, Polinder S, Ponsford J, Puybasset L, Raj R, Robba C, Røe C, Rosand J, Schueler P, Sharp DJ, Smielewski P, Stein MB, von Steinbüchel N, Stewart W, Steyerberg EW, Stocchetti N, Temkin N, Tenovuo O, Theadom A, Thomas I, Espin AT, Turgeon AF, Unterberg A, Van Praag D, van Veen E, Verheyden J, Vyvere TV, Wang KKW, Wiegers EJA, Williams WH, Wilson L, Wisniewski SR, Younsi A, Yue JK, Yuh EL, Zeiler FA, Zeldovich M, Zemek R, InTBIR Participants and Investigators Traumatic brain injury: Progress and challenges in prevention, clinical care, and research. Lancet Neurol. 2022;21(11):1004–1060. doi: 10.1016/S1474-4422(22)00309-X.
    1. Srinivasan US, Muthukumar N, Gajendran R, Kumar MMS. A mathematical model for outcome prediction in severe head injury. In: Nakamura N, Hashimoto T, Yasue M, editors. Recent Advances in Neurotraumatology. Springer; 1993.
    1. Tilling K, Sterne JA, Rudd AG, Glass TA, Wityk RJ, Wolfe CD. A new method for predicting recovery after stroke. Stroke. 2001;32(12):2867–2873. doi: 10.1161/hs1201.099413.
    1. Vaughan LE, Ranganathan PR, Kumar RG, Wagner AK, Rubin JE. A mathematical model of neuroinflammation in severe clinical traumatic brain injury. J. Neuroinflam. 2018;15(1):345. doi: 10.1186/s12974-018-1384-1.
    1. Michaelis L, Menten M. Die kinetik der invertinwirkung. Biochem. Ztg. 1913;49:333–369.
    1. Sheiner LB, Beal SL. Evaluation of methods for estimating population pharmacokinetics parameters. I. Michaelis–Menten model: Routine clinical pharmacokinetic data. J. Pharmacokinet. Biopharm. 1980;8:553–571. doi: 10.1007/BF01060053.
    1. Sørensen A, Ruhé HG, Munkholm K. The relationship between dose and serotonin transporter occupancy of antidepressants-a systematic review. Mol. Psychiatry. 2022;27(1):192–201. doi: 10.1038/s41380-021-01285-w.
    1. McNickle GG, Brown JS. When Michaelis and Menten met Holling: Towards a mechanistic theory of plant nutrient foraging behaviour. AoB Plants. 2014;6:plu066. doi: 10.1093/aobpla/plu066.
    1. Lucca LF, De Tanti A, Cava F, Romoli A, Formisano R, Scarponi F, Estraneo A, Frattini D, Tonin P, Bertolino C, Salucci P, Hakiki B, D’Ippolito M, Zampolini M, Masotta O, Premoselli S, Interlenghi M, Salvatore C, Polidori A, Cerasa A. Predicting outcome of acquired brain injury by the evolution of paroxysmal sympathetic hyperactivity signs. J. Neurotrauma. 2021;38(14):1988–1994. doi: 10.1089/neu.2020.7302.
    1. Campbell, M. Acquired brain injury: Trauma and pathology. In Physical Management in Neurological Rehabilitation (2nd edn), 103–124 (2004).
    1. Formisano R, Azicnuda E, Sefid MK, Zampolini M, Scarponi F, Avesani R. Early rehabilitation: Benefits in patients with severe acquired brain injury. Neurol. Sci. 2017;38(1):181–184. doi: 10.1007/s10072-016-2724-5.
    1. Kwakkel G, Kollen BJ. Predicting activities after stroke: What is clinically relevant? Int. J. Stroke. 2013;8(1):25–32. doi: 10.1111/j.1747-4949.2012.00967.x.
    1. Koyama T, Matsumoto K, Okuno T, Domen K. A new method for predicting functional recovery of stroke patients with hemiplegia: Logarithmic modelling. Clin. Rehabil. 2005;19:779–789. doi: 10.1191/0269215505cr876oa.
    1. Heller A, Wade DT, Wood VA, Sunderland A, Hewer RL, Ward E. Arm function after stroke: Measurement and recovery over the first three months. J. Neurol. Neurosurg. Psychiatry. 1987;50:714–719. doi: 10.1136/jnnp.50.6.714.
    1. Zarahn E, Alon L, Ryan SL, et al. Prediction of motor recovery using initial impairment and fMRI 48 h poststroke. Cereb. Cortex. 2011;21:2712–2721. doi: 10.1093/cercor/bhr047.
    1. van der Vliet R, Selles RW, Andrinopoulou ER, Nijland R, Ribbers GM, Frens MA, Meskers C, Kwakkel G. Predicting upper limb motor impairment recovery after stroke: A mixture model. Ann. Neurol. 2020;87(3):383–393. doi: 10.1002/ana.25679.
    1. Jennett B, Bond M. Assessment of outcome after severe brain damage. Lancet. 1975;305:480–484. doi: 10.1016/S0140-6736(75)92830-5.
    1. Jennett B, Snoek J, Bond MR, Brooks N. Disability after severe head injury: Observations on the use of the Glasgow outcome scale. J. Neurol. Neurosurg. Psychiatry. 1981;44:285–293. doi: 10.1136/jnnp.44.4.285.
    1. Weir J, Steyerberg EW, Butcher I, Lu J, Lingsma HF, McHugh GS, Roozenbeek B, Maas AI, Murray GD. Does the extended Glasgow outcome scale add value to the conventional Glasgow outcome scale? J. Neurotrauma. 2012;29(1):53–58. doi: 10.1089/neu.2011.2137.
    1. Zuckerman DA, Giacino JT, Bodien YG. Traumatic brain injury: What is a favorable outcome? J. Neurotrauma. 2022;39(13–14):1010–1012. doi: 10.1089/neu.2021.0356.
    1. Altman DG, Royston P. The cost of dichotomising continuous variables. BMJ. 2006;332:1080. doi: 10.1136/bmj.332.7549.1080.
    1. Laureys S, Celesia GG, Cohadon F, Lavrijsen J, Leon-Carrion J, Sannita WG, Sazbon L, Schmutzhard E, Von Wild KR, Zeman A, Dolce G. Unresponsive wakefulness syndrome: A new name for the vegetative state or apallic syndrome. BMC Med. 2010;8:68. doi: 10.1186/1741-7015-8-68.
    1. Estraneo A, Moretta P, De Tanti A, Gatta G, Giacino JT, Trojano L, Italian CRS-R Multicentre Validation Group Italian CRS-R Multicentre Validation Group. An Italian multicentre validation study of the coma recovery scale-revised. Eur. J. Phys. Rehabil. Med. 2015;51:627–634.
    1. Hagen C, Malkmus D, Durham P. Levels of Cognitive Functioning. Rancho Los Amigos Hospital; 1972.
    1. Schönle PW. The early rehabilitation Barthel index an early rehabilitation-oriented extension of the Barthel index. Rehabilitation. 1995;34:69–73.
    1. Lucca LF, Pignolo L, Leto E, Ursino M, Rogano S, Cerasa A. Paroxysmal sympathetic hyperactivity rate in vegetative or minimally conscious state after acquired brain injury evaluated by paroxysmal sympathetic hyperactivity assessment measure. J. Neurotrauma. 2019;36(16):2430–2434. doi: 10.1089/neu.2018.5963.
    1. Vedantam A, Robertson CS, Gopinath SP. Clinical characteristics and temporal profile of recovery in patients with favorable outcomes at 6 months after severe traumatic brain injury. J. Neurosurg. 2018;129(1):234–240. doi: 10.3171/2017.3.JNS162720.
    1. McMillan T, Wilson L, Ponsford J, Levin H, Teasdale G, Bond M. The Glasgow outcome scale—40 years of application and refinement. Nat. Rev. Neurol. 2016;12(8):477–485. doi: 10.1038/nrneurol.2016.89.

Source: PubMed

3
S'abonner