Feasibility of selective cardiac ventricular electroporation

Alan Sugrue, Vaibhav R Vaidya, Christopher Livia, Deepak Padmanabhan, Anas Abudan, Ameesh Isath, Tyra Witt, Christopher V DeSimone, Paul Stalboerger, Suraj Kapa, Samuel J Asirvatham, Christopher J McLeod, Alan Sugrue, Vaibhav R Vaidya, Christopher Livia, Deepak Padmanabhan, Anas Abudan, Ameesh Isath, Tyra Witt, Christopher V DeSimone, Paul Stalboerger, Suraj Kapa, Samuel J Asirvatham, Christopher J McLeod

Abstract

Introduction: The application of brief high voltage electrical pulses to tissue can lead to an irreversible or reversible electroporation effect in a cell-specific manner. In the management of ventricular arrhythmias, the ability to target different tissue types, specifically cardiac conduction tissue (His-Purkinje System) vs. cardiac myocardium would be advantageous. We hypothesize that pulsed electric fields (PEFs) can be applied safely to the beating heart through a catheter-based approach, and we tested whether the superficial Purkinje cells can be targeted with PEFs without injury to underlying myocardial tissue.

Methods: In an acute (n = 5) and chronic canine model (n = 6), detailed electroanatomical mapping of the left ventricle identified electrical signals from myocardial and overlying Purkinje tissue. Electroporation was effected via percutaneous catheter-based Intracardiac bipolar current delivery in the anesthetized animal. Repeat Intracardiac electrical mapping of the heart was performed at acute and chronic time points; followed by histological analysis to assess effects.

Results: PEF demonstrated an acute dose-dependent functional effect on Purkinje, with titration of pulse duration and/or voltage associated with successful acute Purkinje damage. Electrical conduction in the insulated bundle of His (n = 2) and anterior fascicle bundle (n = 2), was not affected. At 30 days repeat cardiac mapping demonstrated resilient, normal electrical conduction throughout the targeted area with no significant change in myocardial amplitude (pre 5.9 ± 1.8 mV, 30 days 5.4 ± 1.2 mV, p = 0.92). Histopathological analysis confirmed acute Purkinje fiber targeting, with chronic studies showing normal Purkinje fibers, with minimal subendocardial myocardial fibrosis.

Conclusion: PEF provides a novel, safe method for non-thermal acute modulation of the Purkinje fibers without significant injury to the underlying myocardium. Future optimization of this energy delivery is required to optimize conditions so that selective electroporation can be utilized in humans the treatment of cardiac disease.

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1. Demonstration of location of the…
Fig 1. Demonstration of location of the catheters used for pulsed electric field delivery, with one catheter fixed in the coronary sinus and the other located at a Purkinje potential in the LV.
Fig 2
Fig 2
Two examples (A and B) of loss of Purkinje fiber electrical conduction after PEF delivery. Yellow arrow highlights the Purkinje potential.
Fig 3. Loss of small Purkinje potential,…
Fig 3. Loss of small Purkinje potential, but resistance of the His to PEF.
Fig 4. Reversible loss of a fascicular…
Fig 4. Reversible loss of a fascicular signal from PEF delivery.
Fig 5. Myocardial amplitude change after Pulsed…
Fig 5. Myocardial amplitude change after Pulsed Electric Field (PEF) delivery.
Fig 6. Histopathological slide showing damaged Purkinje…
Fig 6. Histopathological slide showing damaged Purkinje fibers outlines in black and the purple outline demarking an area of acute hemorrhage.

References

    1. Benz R, Zimmermann U. Pulse-length dependence of the electrical breakdown in lipid bilayer membranes. Biochimica et biophysica acta. 1980;597:637–42. 10.1016/0005-2736(80)90236-9
    1. Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH. Gene transfer into mouse lyoma cells by electroporation in high electric fields. The EMBO journal. 1982;1:841–5.
    1. Glaser RW, Leikin SL, Chernomordik LV, Pastushenko VF, Sokirko AI. Reversible electrical breakdown of lipid bilayers: formation and evolution of pores. Biochimica et biophysica acta. 1988;940:275–87. 10.1016/0005-2736(88)90202-7
    1. Chang DC, Reese TS. Changes in membrane structure induced by electroporation as revealed by rapid-freezing electron microscopy. Biophysical Journal. 1990;58:1–12. 10.1016/S0006-3495(90)82348-1
    1. Davalos RV, Mir IL, Rubinsky B. Tissue ablation with irreversible electroporation. Annals of Biomedical Engineering. 2005;33:223–31. 10.1007/s10439-005-8981-8
    1. Hong J, Stewart MT, Cheek DS, Francischelli DE, Kirchhof N. Cardiac ablation via electroporation. Conference proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual Conference. 2009;2009:3381–4.
    1. Wittkampf FH, van Driel VJ, van Wessel H, Neven KG, Gründeman PF, Vink A, et al. Myocardial lesion depth with circular electroporation ablation. Circulation: Arrhythmia and Electrophysiology. 2012:CIRCEP. 111.970079. 10.1161/CIRCEP.112.975888
    1. Wittkampf FH, Van Driel VJ, Van Wessel H, Vink A, Hof IE, Gründeman PF, et al. Feasibility of electroporation for the creation of pulmonary vein ostial lesions. Journal of cardiovascular electrophysiology. 2011;22(3):302–9. 10.1111/j.1540-8167.2010.01863.x
    1. Sugrue A, Maor E, Ivorra A, Vaidya V, Witt C, Kapa S, et al. Irreversible electroporation for the treatment of cardiac arrhythmias. Expert review of cardiovascular therapy. 2018.
    1. Witt CM, Sugrue A, Padmanabhan D, Vaidya V, Gruba S, Rohl J, et al. Intrapulmonary Vein Ablation Without Stenosis: A Novel Balloon-Based Direct Current Electroporation Approach. J Am Heart Assoc. 2018;7(14).
    1. Reddy VY, Neuzil P, Koruth JS, Petru J, Funosako M, Cochet H, et al. Pulsed Field Ablation for Pulmonary Vein Isolation in Atrial Fibrillation. Journal of the American College of Cardiology. 2019.
    1. Stewart MT, Haines DE, Verma A, Kirchhof N, Barka N, Grassl E, et al. Intracardiac pulsed field ablation: proof of feasibility in a chronic porcine model. Heart rhythm. 2019;16(5):754–64. 10.1016/j.hrthm.2018.10.030
    1. Maor E, Ivorra A, Mitchell JJ, Rubinsky B. Vascular smooth muscle cells ablation with endovascular nonthermal irreversible electroporation. Journal of Vascular and Interventional Radiology. 2010;21(11):1708–15. 10.1016/j.jvir.2010.06.024
    1. Maor E, Ivorra A, Rubinsky B. Non thermal irreversible electroporation: novel technology for vascular smooth muscle cells ablation. PloS one. 2009;4(3):e4757 10.1371/journal.pone.0004757
    1. Maor E, Ivorra A, Leor J, Rubinsky B. The effect of irreversible electroporation on blood vessels. Technology in cancer research & treatment. 2007;6(4):307–12.
    1. Maor E, Ivorra A, Leor J, Rubinsky B. Irreversible electroporation attenuates neointimal formation after angioplasty. IEEE Transactions on Biomedical Engineering. 2008;55(9):2268–74. 10.1109/TBME.2008.923909
    1. Boyden PA, Dun W, Robinson RB. Cardiac Purkinje fibers and arrhythmias; The GK Moe Award Lecture 2015. Heart rhythm. 2016;13(5):1172–81. 10.1016/j.hrthm.2016.01.011
    1. Lopera G, Stevenson WG, Soejima K, Maisel WH, Koplan B, Sapp JL, et al. Identification and ablation of three types of ventricular tachycardia involving the his-purkinje system in patients with heart disease. Journal of cardiovascular electrophysiology. 2004;15(1):52–8. 10.1046/j.1540-8167.2004.03189.x
    1. Huang J, Dosdall DJ, Cheng K-A, Li L, Rogers JM, Ideker RE. The importance of Purkinje activation in long duration ventricular fibrillation. Journal of the American Heart Association. 2014;3(1):e000495 10.1161/JAHA.113.000495
    1. Nogami A, Sugiyasu A, Kubota S, Kato K. Mapping and ablation of idiopathic ventricular fibrillation from the Purkinje system. Heart Rhythm. 2005;2(6):646–9. 10.1016/j.hrthm.2005.02.006
    1. Sung RK, Boyden PA, Scheinman M. Cellular Physiology and Clinical Manifestations of Fascicular Arrhythmias in Normal Hearts. JACC Clinical electrophysiology. 2017;3(12):1343–55. 10.1016/j.jacep.2017.07.011
    1. Lang D, Holzem K, Kang C, Xiao M, Hwang HJ, Ewald GA, et al. Arrhythmogenic remodeling of beta2 versus beta1 adrenergic signaling in the human failing heart. Circulation Arrhythmia and electrophysiology. 2015;8(2):409–19. 10.1161/CIRCEP.114.002065
    1. Walton RD, Martinez ME, Bishop MJ, Hocini M, Haissaguerre M, Plank G, et al. Influence of the Purkinje-muscle junction on transmural repolarization heterogeneity. Cardiovascular research. 2014;103(4):629–40. 10.1093/cvr/cvu165
    1. Han W, Zhang L, Schram G, Nattel S. Properties of potassium currents in Purkinje cells of failing human hearts. American journal of physiology Heart and circulatory physiology. 2002;283(6):H2495–503. 10.1152/ajpheart.00389.2002
    1. Han W, Chartier D, Li D, Nattel S. Ionic remodeling of cardiac Purkinje cells by congestive heart failure. Circulation. 2001;104(17):2095–100. 10.1161/hc4201.097134
    1. Dosdall DJ, Tabereaux PB, Kim JJ, Walcott GP, Rogers JM, Killingsworth CR, et al. Chemical ablation of the Purkinje system causes early termination and activation rate slowing of long-duration ventricular fibrillation in dogs. American Journal of Physiology-Heart and Circulatory Physiology. 2008;295(2):H883–H9. 10.1152/ajpheart.00466.2008
    1. Gianni C, Burkhardt JD, Trivedi C, Mohanty S, Natale A. The role of the Purkinje network in premature ventricular complex-triggered ventricular fibrillation. Journal of interventional cardiac electrophysiology: an international journal of arrhythmias and pacing. 2018.
    1. Livia C, Sugrue A, Witt T, Polkinghorne MD, Maor E, Kapa S, et al. Elimination of Purkinje Fibers by Electroporation Reduces Ventricular Fibrillation Vulnerability. Journal of the American Heart Association. 2018;7(15):e009070 10.1161/JAHA.118.009070
    1. Neumann E. Membrane electroporation and direct gene transfer. Bioelectrochemistry and Bioenergetics. 1992;28:247–67.
    1. Rosazza C, Haberl Meglic S, Zumbusch A, Rols M-P, Miklavcic D. Gene electrotransfer: a mechanistic perspective. Current gene therapy. 2016;16(2):98–129. 10.2174/1566523216666160331130040
    1. Okino M, Mohri H. Effects of a high-voltage electrical impulse and an anticancer drug on in vivo growing tumors. Japanese journal of cancer research: Gann. 1987;78(12):1319–21.
    1. Orlowski S, Belehradek J Jr, Paoletti C, Mir LM. Transient electropermeabilization of cells in culture: increase of the cytotoxicity of anticancer drugs. Biochemical pharmacology. 1988;37(24):4727–33. 10.1016/0006-2952(88)90344-9
    1. Serša G, Čemažar M, Miklavčič D. Antitumor effectiveness of electrochemotherapy with cis-diamminedichloroplatinum (II) in mice. Cancer research. 1995;55(15):3450–5.
    1. Mir LM, Belehradek M, Domenge C, Orlowski S, Poddevin B, Belehradek J Jr., et al. [Electrochemotherapy, a new antitumor treatment: first clinical trial]. Comptes rendus de l'Academie des sciences Serie III, Sciences de la vie. 1991;313(13):613–8.
    1. Marty M, Sersa G, Garbay JR, Gehl J, Collins CG, Snoj M, et al. Electrochemotherapy–An easy, highly effective and safe treatment of cutaneous and subcutaneous metastases: Results of ESOPE (European Standard Operating Procedures of Electrochemotherapy) study. European Journal of Cancer Supplements. 2006;4(11):3–13.
    1. Miklavčič D, Mali B, Kos B, Heller R, Serša G. Electrochemotherapy: from the drawing board into medical practice. Biomedical engineering online. 2014;13(1):29 10.1186/1475-925X-13-29
    1. Haissaguerre M, Shah DC, Jais P, Shoda M, Kautzner J, Arentz T, et al. Role of Purkinje conducting system in triggering of idiopathic ventricular fibrillation. Lancet (London, England). 2002;359(9307):677–8.
    1. Kranjc M, Markelc B, Bajd F, Čemažar M, Serša I, Blagus T, et al. In situ monitoring of electric field distribution in mouse tumor during electroporation. Radiology. 2014;274(1):115–23. 10.1148/radiol.14140311
    1. Schoellnast H, Monette S, Ezell PC, Deodhar A, Maybody M, Erinjeri JP, et al. Acute and subacute effects of irreversible electroporation on nerves: experimental study in a pig model. Radiology. 2011;260(2):421–7. 10.1148/radiol.11103505
    1. Li W, Fan Q, Ji Z, Qiu X, Li Z. The effects of irreversible electroporation (IRE) on nerves. PloS one. 2011;6(4):e18831 10.1371/journal.pone.0018831
    1. Ben Caref E, Boutjdir M, Himel HD, El-Sherif N. Role of subendocardial Purkinje network in triggering torsade de pointes arrhythmia in experimental long QT syndrome. Europace. 2008;10(10):1218–23. 10.1093/europace/eun248
    1. Thomson KR, Cheung W, Ellis SJ, Federman D, Kavnoudias H, Loader-Oliver D, et al. Investigation of the safety of irreversible electroporation in humans. Journal of vascular and interventional radiology: JVIR. 2011;22(5):611–21. 10.1016/j.jvir.2010.12.014
    1. Charpentier KP, Wolf F, Noble L, Winn B, Resnick M, Dupuy DE. Irreversible electroporation of the liver and liver hilum in swine. HPB: the official journal of the International Hepato Pancreato Biliary Association. 2011;13(3):168–73.
    1. Cannon R, Ellis S, Hayes D, Narayanan G, Martin RC 2nd, Safety and early efficacy of irreversible electroporation for hepatic tumors in proximity to vital structures. Journal of surgical oncology. 2013;107(5):544–9. 10.1002/jso.23280
    1. Mali B, Gorjup V, Edhemovic I, Brecelj E, Cemazar M, Sersa G, et al. Electrochemotherapy of colorectal liver metastases-an observational study of its effects on the electrocardiogram. Biomedical engineering online. 2015;14(3):S5.
    1. Bertacchini C, Margotti PM, Bergamini E, Lodi A, Ronchetti M, Cadossi R. Design of an irreversible electroporation system for clinical use. Technology in cancer research & treatment. 2007;6(4):313–20.
    1. Wojtaszczyk A, Caluori G, Pešl M, Melajova K, Stárek Z. Irreversible electroporation ablation for atrial fibrillation. Journal of cardiovascular electrophysiology. 2018;29(4):643–51. 10.1111/jce.13454
    1. Wittkampf FH, van Es R, Neven K. Electroporation and its relevance for cardiac catheter ablation. JACC: Clinical Electrophysiology. 2018.
    1. van Driel VJ, Neven KG, van Wessel H, Bastiaan C, Vink A, Doevendans PA, et al. Pulmonary vein stenosis after catheter ablation: electroporation versus radiofrequency. Circulation: Arrhythmia and Electrophysiology. 2014:CIRCEP. 113.001111.
    1. Reddy VY, Koruth J, Jais P, Petru J, Timko F, Skalsky I, et al. Ablation of Atrial Fibrillation With Pulsed Electric Fields. An Ultra-Rapid, Tissue-Selective Modality for Cardiac Ablation. 2018.
    1. James TN, Sherf L. Fine structure of the His bundle. Circulation. 1971;44(1):9–28. 10.1161/01.cir.44.1.9
    1. Agarwal A, Zudans I, Weber EA, Olofsson J, Orwar O, Weber SG. Effect of cell size and shape on single-cell electroporation. Analytical chemistry. 2007;79(10):3589–96. 10.1021/ac062049e
    1. Kaminska I, Kotulska M, Stecka A, Saczko J, Drag-Zalesinska M, Wysocka T, et al. Electroporation-induced changes in normal immature rat myoblasts (H9C2). Gen Physiol Biophys. 2012;31(1):19–25. 10.4149/gpb_2012_003
    1. Golberg A, Bruinsma BG, Uygun BE, Yarmush ML. Tissue heterogeneity in structure and conductivity contribute to cell survival during irreversible electroporation ablation by “electric field sinks”. Scientific reports. 2015;5:8485 10.1038/srep08485
    1. Kos B, Voigt P, Miklavcic D, Moche M. Careful treatment planning enables safe ablation of liver tumors adjacent to major blood vessels by percutaneous irreversible electroporation (IRE). Radiology and oncology. 2015;49(3):234–41. 10.1515/raon-2015-0031
    1. Corovic S, Lackovic I, Sustaric P, Sustar T, Rodic T, Miklavcic D. Modeling of electric field distribution in tissues during electroporation. Biomedical engineering online. 2013;12(1):16.

Source: PubMed

3
S'abonner