High-frequency irreversible electroporation for cardiac ablation using an asymmetrical waveform

René van Es, Maurits K Konings, Bastiaan C Du Pré, Kars Neven, Harry van Wessel, Vincent J H M van Driel, Albert H Westra, Pieter A F Doevendans, Fred H M Wittkampf, René van Es, Maurits K Konings, Bastiaan C Du Pré, Kars Neven, Harry van Wessel, Vincent J H M van Driel, Albert H Westra, Pieter A F Doevendans, Fred H M Wittkampf

Abstract

Background: Irreversible electroporation (IRE) using direct current (DC) is an effective method for the ablation of cardiac tissue. A major drawback of the use of DC-IRE, however, are two problems: requirement of general anesthesia due to severe muscle contractions and the formation of bubbles containing gaseous products from electrolysis. The use of high-frequency alternating current (HF-IRE) is expected to solve both problems, because HF-IRE produces little to no muscle spasms and does not cause electrolysis.

Methods: In the present study, we introduce a novel asymmetric, high-frequency (aHF) waveform for HF-IRE and present the results of a first, small, animal study to test its efficacy.

Results: The data of the experiments suggest that the aHF waveform creates significantly deeper lesions than a symmetric HF waveform of the same energy and frequency (p = 0.003).

Conclusion: We therefore conclude that the use of the aHF enhances the feasibility of the HF-IRE method.

Conflict of interest statement

The authors declare that they have no competing interests. Part of this research has been funded by Abbott Laboratories, Abbott Park, Illinois, USA. A patent concerning the asymmetric waveform has been filed (ownership: Abbott, Illinois, USA. Inventor: Maurits K Konings).

Figures

Fig. 1
Fig. 1
Schematics, showing a single wave period of a symmetric and an asymmetric waveform, having the same energy and the same time duration T of a single wave period. a Single wave period of a “symmetric waveform”. b Single wave period showing an adapted waveform in which the negative phase is flattened and spread out, while the positive phase is narrowed and higher (“asymmetric waveform”). The parameter β indicates the ratio of the duration of the long phase to the duration of the short phase
Fig. 2
Fig. 2
a The used suction cup electrode showing the 42 × 7 mm suction cup (I) connected to a vacuum system (II), containing a 35 × 6 mm stainless steel electrode (III) that is connected to the HF generator by a cable (IV). b Placement of the suction cup electrode on the right ventricle. LV left ventricle, RV right ventricle
Fig. 3
Fig. 3
Current strength (in amperes) produced in the experiments of model M, as function of time in microseconds. a Symmetrical waveform. b Asymmetrical waveform
Fig. 4
Fig. 4
Lesion depth of the symmetrical and asymmetrical HF ablations in model M (n = 5). The black lines indicate the paired measurements; red lines indicate the mean and standard deviation per group
Fig. 5
Fig. 5
Graphical rendering of the role of the parameters β and G in the asymmetrical waveform
Fig. 6
Fig. 6
Plot of Qa/Qs as function of β. For all values of β > 1, the ratio Qa/Qs < 1, which implies that Qa will always be smaller than Qs if β ≠ 1

References

    1. Muthalaly RG, John RM, Schaeffer B, Tanigawa S, Nakamura T, Kapur S, Zei PC, Epstein LM, Tedrow UB, Michaud GF, Stevenson WG, Koplan BA. Temporal trends in safety and complication rates of catheter ablation for atrial fibrillation. J Cardiovasc Electrophysiol. 2018;29:854–860. doi: 10.1111/jce.13484.
    1. Wittkampf FH, van Es R, Neven K. Electroporation and its relevance for cardiac catheter ablation. JACC Clin Electrophysiol. 2018;4:977–986. doi: 10.1016/j.jacep.2018.06.005.
    1. Wittkampf FH, Van Driel VJ, Van Wessel H, et al. Feasibility of electroporation for the creation of pulmonary vein ostial lesions. J Cardiovasc Electrophysiol. 2011;22(3):302–309. doi: 10.1111/j.1540-8167.2010.01863.x.
    1. Wittkampf FH, Van Driel VJ, Van Wessel H, et al. Myocardial lesion depth with circular electroporation ablation. Circ Arrhythmia Electrophysiol. 2012;5(3):581–586. doi: 10.1161/CIRCEP.111.970079.
    1. van Driel VJ, Neven K, van Wessel H, Vink A, Doevendans PAFM, Wittkampf FHM. Low vulnerability of the right phrenic nerve to electroporation ablation. Heart Rhythm. 2015;12(8):1838–1844. doi: 10.1016/j.hrthm.2015.05.012.
    1. Van Driel VJ, Neven KGEJ, Van Wessel H, et al. Pulmonary vein stenosis after catheter ablation electroporation versus radiofrequency. Circ Arrhythmia Electrophysiol. 2014;7(4):734–738. doi: 10.1161/CIRCEP.113.001111.
    1. Neven K, van Driel V, van Wessel H, van Es R, Doevendans PA, Wittkampf F. Myocardial lesion size after epicardial electroporation catheter ablation after subxiphoid puncture. Circ Arrhythmia Electrophysiol. 2014;7(4):728–733. doi: 10.1161/CIRCEP.114.001659.
    1. Du Pré BC, Van Driel VJ, Van Wessel H, et al. Minimal coronary artery damage by myocardial electroporation ablation. Europace. 2013;15(1):144–149. doi: 10.1093/europace/eus171.
    1. Chang DC, Reese TS. Changes in membrane structure induced by electroporation as revealed by rapid-freezing electron microscopy. Biophys J. 1990;58(1):1–12. doi: 10.1016/S0006-3495(90)82348-1.
    1. Neven K, Van Driel V, Van Wessel H, Van Es R, Doevendans PA, Wittkampf F. Epicardial linear electroporation ablation and lesion size. Heart Rhythm. 2014;11(8):1465–1470. doi: 10.1016/j.hrthm.2014.04.031.
    1. Neven K, Van Es R, Van Driel V, Van Wessel H, Fidder H, Vink A, Doevendans P, Wittkampf F. Acute and long-term effects of full-power electroporation ablation directly on the porcine esophagus. Circ Arrhythmia Electrophysiol. 2017;10:1–8. doi: 10.1161/CIRCEP.116.004672.
    1. Krassowska W, Filev PD. Modeling electroporation in a single cell. Biophys J. 2007;92:404–417. doi: 10.1529/biophysj.106.094235.
    1. Arena CB, Sano MB, Rossmeisl JH, Caldwell JL, Garcia PA, Rylander MN, Davalos RV. High-frequency irreversible electroporation (H-FIRE) for non-thermal ablation without muscle contraction. Biomed Eng Online. 2011;10:102. doi: 10.1186/1475-925X-10-102.
    1. Konings MK. Asymmetric balanced waveform for AC cardiac irreversible electroporation. US Patent Application WO2016180934.
    1. Prado LN, Goulart JT, Zoccoler M, Oliveira PX. Ventricular myocyte injury by high- intensity electric field: effect of pulse duration. Gen Physiol Biophys. 2016;35:121–130. doi: 10.4149/gpb_2015047.
    1. Bronzino JD. The biomedical engineering handbook. 2. Boca Raton: CRC Press; 2000.
    1. Golberg A, Yarmush ML. Nonthermal irreversible electroporation: fundamentals, applications, and challenges. IEEE Trans Biomed Eng. 2013;60(3):707–712. doi: 10.1109/TBME.2013.2238672.
    1. Son RS, Smith KC, Gowrishankar TR, Vernier PT, Weaver JC. Basic features of a cell electroporation model: illustrative behavior for two very different pulses. J Membr Biol. 2014;247:1209–1228. doi: 10.1007/s00232-014-9699-z.
    1. Loh KP, van Es R, Groen MH, Neven K, van Driel VJ, van Wessel H, Doevendans PA, Wittkampf FH. Pulmonary vein isolation by irreversible electroporation: first-in-human experience (abstr). Heart Rhythm; 2019:S-AB26-02.
    1. Stewart MT, Haines DE, Verma A, Kirchhof N, Barka N, Grassl E, Howard B. Intracardiac pulsed field ablation: proof of feasibility in a chronic porcine model. Heart Rhythm. 2019;16(5):754–764. doi: 10.1016/j.hrthm.2018.10.030.

Source: PubMed

3
S'abonner