A Comparative Analysis of 2D and 3D Tasks for Virtual Reality Therapies Based on Robotic-Assisted Neurorehabilitation for Post-stroke Patients

Luis D Lledó, Jorge A Díez, Arturo Bertomeu-Motos, Santiago Ezquerro, Francisco J Badesa, José M Sabater-Navarro, Nicolás García-Aracil, Luis D Lledó, Jorge A Díez, Arturo Bertomeu-Motos, Santiago Ezquerro, Francisco J Badesa, José M Sabater-Navarro, Nicolás García-Aracil

Abstract

Post-stroke neurorehabilitation based on virtual therapies are performed completing repetitive exercises shown in visual electronic devices, whose content represents imaginary or daily life tasks. Currently, there are two ways of visualization of these task. 3D virtual environments are used to get a three dimensional space that represents the real world with a high level of detail, whose realism is determinated by the resolucion and fidelity of the objects of the task. Furthermore, 2D virtual environments are used to represent the tasks with a low degree of realism using techniques of bidimensional graphics. However, the type of visualization can influence the quality of perception of the task, affecting the patient's sensorimotor performance. The purpose of this paper was to evaluate if there were differences in patterns of kinematic movements when post-stroke patients performed a reach task viewing a virtual therapeutic game with two different type of visualization of virtual environment: 2D and 3D. Nine post-stroke patients have participated in the study receiving a virtual therapy assisted by PUPArm rehabilitation robot. Horizontal movements of the upper limb were performed to complete the aim of the tasks, which consist in reaching peripheral or perspective targets depending on the virtual environment shown. Various parameter types such as the maximum speed, reaction time, path length, or initial movement are analyzed from the data acquired objectively by the robotic device to evaluate the influence of the task visualization. At the end of the study, a usability survey was provided to each patient to analysis his/her satisfaction level. For all patients, the movement trajectories were enhanced when they completed the therapy. This fact suggests that patient's motor recovery was increased. Despite of the similarity in majority of the kinematic parameters, differences in reaction time and path length were higher using the 3D task. Regarding the success rates were very similar. In conclusion, the using of 2D environments in virtual therapy may be a more appropriate and comfortable way to perform tasks for upper limb rehabilitation of post-stroke patients, in terms of accuracy in order to effectuate optimal kinematic trajectories.

Keywords: post-stroke; rehabilitation robotics; sensorimotor function; upper extremity; virtual reality.

Figures

Figure 1
Figure 1
Neurorehabilitation system based in PUPArm robot.
Figure 2
Figure 2
Targets and visual feedback of the 2D task.
Figure 3
Figure 3
Targets and visual feedback of the 3D task.
Figure 4
Figure 4
Structural correlation between 2D Roulette and 3D Roulette (zenithal view).
Figure 5
Figure 5
Workflow to complete one trial.
Figure 6
Figure 6
Statistical analysis of the data acquired by the robotic device, represented in box plots.
Figure 7
Figure 7
Movement trajectories to reach the targets by one patient. Sensorimotor function assessment for two tasks. In the left are shown trajectories performed in 2D task during the first and the last session. In the right side are shown the trajectories performed in 3D task.
Figure 8
Figure 8
Average of the survey patient responses.
Figure 9
Figure 9
Score contribution from each aspect of the survey.
Figure 10
Figure 10
Dispersion diagram with the most significant variables that affect the initial deviation of the trajectories.
Figure 11
Figure 11
Dispersion diagram between Path Length and Time parameters.
Figure 12
Figure 12
Dispersion diagrams with the significative correlation of speed maximum.

References

    1. Badesa F. J., Llinares A., Morales R., Garcia-Aracil N., Sabater J. M., Perez-Vidal C. (2014a). Pneumatic planar rehabilitation robot for post-stroke patients. Biomed. Eng. Appl. Basis Commun. 26:1450025 10.4015/S1016237214500252
    1. Badesa F. J., Morales R., Garcia-Aracil N., Alfaro A., Bernabeu A., Fernandez E., et al. (2014b). Robot-assisted rehabilitation treatment of a 65-year old woman with alien hand syndrome, in 2014 5th IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics (São Paulo: IEEE; ), 398–402.
    1. Badesa F. J., Morales R., Garcia-Aracil N., Sabater J., Casals A., Zollo L. (2014c). Auto-adaptive robot-aided therapy using machine learning techniques. Comput. Methods Programs Biomed. 116, 123–130. 10.1016/j.cmpb.2013.09.011
    1. Badesa F. J., Morales R., Garcia-Aracil N., Sabater J. M., Perez-Vidal C., Fernandez E. (2012). Multimodal interfaces to improve therapeutic outcomes in robot-assisted rehabilitation. IEEE Trans. Syst. Man Cybern. C Appl. Rev. 42, 1152–1158. 10.1109/TSMCC.2012.2201938
    1. Bertomeu-Motos A., Lledó L. D., Díez J. A., Catalan J. M., Ezquerro S., Badesa F. J., et al. . (2015). Estimation of human arm joints using two wireless sensors in robotic rehabilitation tasks. Sensors 15, 30571–30583. 10.3390/s151229818
    1. Bohannon R. W., Smith M. B. (1987). Interrater reliability of a modified ashworth scale of muscle spasticity. Phys. Ther. 67, 206–207.
    1. Brooke J. (1996). SUS: A “quick and dirty” usability scale, in Usability Evaluation in Industry, eds Jordan P. W., Thomas B., Weerdmeester B. A., McClealland I. L. (London: Taylor and Francis; ), 189–194.
    1. Burdea G. (2002). Keynote address: virtual rehabilitation-benefits and challenges, in 1st International Workshop on Virtual Reality Rehabilitation (Mental Health, Neurological, Physical, Vocational) VRMHR (Lausanne: ), 1–11.
    1. Collin C., Wade D. (1990). Assessing motor impairment after stroke: a pilot reliability study. J. Neurol. Neurosurg. Psychiatry 53, 576–579.
    1. Crosbie J., Lennon S., Basford J., McDonough S. (2007). Virtual reality in stroke rehabilitation: still more virtual than real. Disabil. Rehabil. 29, 1139–1146. 10.1080/096382806009609090
    1. Doyon J., Benali H. (2005). Reorganization and plasticity in the adult brain during learning of motor skills. Curr. Opin. Neurobiol. 15, 161–167.
    1. Einav O., Geva D., Yoeli D., Kerzhner M., Mauritz K.-H. (2011). Development and validation of the first robotic scale for the clinical assessment of upper extremity motor impairments in stroke patients. Top. Stroke Rehabil. 18(Suppl. 1), 587–598. 10.1310/tsr18s01-587
    1. Fluet G. G., Deutsch J. E. (2013). Virtual reality for sensorimotor rehabilitation post-stroke: the promise and current state of the field. Curr. Phys. Med. Rehabil. Rep. 1, 9–20. 10.1007/s40141-013-0005-2
    1. Garcia N., Sabater-Navarro J. M., Gugliemeli E., Casals A. (2011). Trends in rehabilitation robotics. Med. Biol. Eng. Comput. 49, 1089–1091. 10.1007/s11517-011-0836-x
    1. García-Betances R. I., Waldmeyer M. T. A., Fico G., Cabrera-Umpiérrez M. F. (2015). A succinct overview of virtual reality technology use in alzheimer's disease. Front. Aging Neurosci. 7:80. 10.3389/fnagi.2015.00235
    1. González J. C., Pulido J. C., Fernández F., Suárez-Mejías C. (2015). Planning, execution and monitoring of physical rehabilitation therapies with a robotic architecture. Stud. Health Technol. Inform. 210, 339–343. 10.3233/978-1-61499-512-8-339
    1. Henderson A., Korner-Bitensky N., Levin M. (2007). Virtual reality in stroke rehabilitation: a systematic review of its effectiveness for upper limb motor recovery. Top. Stroke Rehabil. 14, 52–61. 10.1310/tsr1402-52
    1. Jack D., Boian R., Merians A. S., Tremaine M., Burdea G. C., Adamovich S. V., et al. . (2001). Virtual reality-enhanced stroke rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 9, 308–318. 10.1109/7333.948460
    1. Jebara N., Orriols E., Zaoui M., Berthoz A., Piolino P. (2014). Effects of enactment in episodic memory: a pilot virtual reality study with young and elderly adults. Front. Aging Neurosci. 6:338. 10.3389/fnagi.2014.00338
    1. Kleim J. A., Jones T. A. (2008). Principles of experience-dependent neural plasticity: implications for rehabilitation after brain damage. J. Speech Lang. Hear. Res. 51, S225–S239. 10.1044/1092-4388(2008/018)
    1. Krebs H. I., Hogan N., Aisen M. L., Volpe B. T. (1998). Robot-aided neurorehabilitation. IEEE Trans. Rehabil. Eng. 6, 75–87.
    1. Laver K. E., George S., Thomas S., Deutsch J. E., Crotty M. (2012). Virtual reality for stroke rehabilitation. Stroke 43, e20–e21. 10.1161/STROKEAHA.111.642439
    1. Likert R. (1974). A method of constructing an attitude scale, in Scaling: A Sourcebook for Behavioral Scientists, ed Maranell G. M. (Chicago, IL: Aldine Publishing; ), 233–243.
    1. Lledó L. D., Badesa F. J., Almonacid M., Cano-Izquierdo J. M., Sabater-Navarro J. M., Fernández E., et al. . (2015a). Supervised and dynamic neuro-fuzzy systems to classify physiological responses in robot-assisted neurorehabilitation. PLoS ONE 10:e0127777. 10.1371/journal.pone.0127777
    1. Lledó L. D., Bertomeu A., Díez J., Badesa F., Morales R., Sabater J., et al. (2015b). Auto-adaptative robot-aided therapy based in 3d virtual tasks controlled by a supervised and dynamic neuro-fuzzy system. Int. J. Artif. Intell. Interact. Multimed. 3, 63–68. 10.9781/ijimai.2015.328
    1. LLinares A., Badesa F. J., Morales R., Garcia-Aracil N., Sabater J., Fernandez E. (2013). Robotic assessment of the influence of age on upper-limb sensorimotor function. Clin. Interv. Aging 8:879. 10.2147/CIA.S45900
    1. Maciejasz P., Eschweiler J., Gerlach-Hahn K., Jansen-Troy A., Leonhardt S. (2014). A survey on robotic devices for upper limb rehabilitation. J. Neuroeng. Rehabil. 11, 3. 10.1186/1743-0003-11-3
    1. Merians A. S., Poizner H., Boian R., Burdea G., Adamovich S. (2006). Sensorimotor training in a virtual reality environment: does it improve functional recovery poststroke? Neurorehabil. Neural Repair 20, 252–267. 10.1177/1545968306286914
    1. Morales R., Badesa F. J., Garcia-Aracil N., Perez-Vidal C., Sabater J. M., Papaleo E., et al. (2014). Patient-tailored assistance: a new concept of assistive robotic device that adapts to individual users. IEEE Rob. Autom. Mag. 21, 123–133. 10.1109/MRA.2014.2304051
    1. Mottura S., Fontana L., Arlati S., Zangiacomi A., Redaelli C., Sacco M. (2015). A virtual reality system for strengthening awareness and participation in rehabilitation for post-stroke patients. J. Multimodal User Interfaces 9, 341–351. 10.1007/s12193-015-0184-5
    1. Norouzi-Gheidari N., Archambault P. S., Fung J. (2012). Effects of robot-assisted therapy on stroke rehabilitation in upper limbs: systematic review and meta-analysis of the literature. J. Rehabil. Res. Dev. 49, 479–496. 10.1682/JRRD.2010.10.0210
    1. Nvidia D. Z. (2011). Physx sdk. Available online at:
    1. Papaleo E., Zollo L., Garcia-Aracil N., Badesa F. J., Morales R., Mazzoleni S., et al. . (2015). Upper-limb kinematic reconstruction during stroke robot-aided therapy. Med. Biol. Eng. Comput. 53, 815–828. 10.1007/s11517-015-1276-9
    1. Pollock A., Farmer S. E., Brady M. C., Langhorne P., Mead G. E., Mehrholz J., et al. . (2014). Interventions for improving upper limb function after stroke. Cochrane Database Syst. Rev. 11:CD010820. 10.1002/14651858.CD010820.pub2
    1. Rand D., Kizony R., Feintuch U., Katz N., Josman N., Weiss P. L. T., et al. (2005). Comparison of two VR platforms for rehabilitation: video capture versus HMD. Presence Teleoperat. Virtual Environ. 14, 147–160. 10.1162/1054746053967012
    1. Rose F. D., Brooks B. M., Rizzo A. A. (2005). Virtual reality in brain damage rehabilitation: review. CyberPsychol. Behav. 8, 241–262. 10.1089/cpb.2005.8.241
    1. Saposnik G. (2016). Virtual reality in stroke rehabilitation, in Ischemic Stroke Therapeutics, ed Ovbiagele B. (Cham: Springer; ), 225–233.
    1. Steve S. (2013). Ogre3d: The Object-Oriented Graphics Rendering Engine. Available online at:
    1. Subramanian S. K., Levin M. F. (2011). Viewing medium affects arm motor performance in 3d virtual environments. J. Neuroeng. Rehabil. 8:36. 10.1186/1743-0003-8-36
    1. Turolla A., Dam M., Ventura L., Tonin P., Agostini M., Zucconi C., et al. . (2013). Virtual reality for the rehabilitation of the upper limb motor function after stroke: a prospective controlled trial. J. Neuroeng. Rehabil. 10:85. 10.1186/1743-0003-10-85
    1. Volpe B. T., Huerta P. T., Zipse J. L., Rykman A., Edwards D., Dipietro L., et al. . (2009). Robotic devices as therapeutic and diagnostic tools for stroke recovery. Arch. Neurol. 66, 1086–1090. 10.1001/archneurol.2009.182

Source: PubMed

3
S'abonner