Combination of triheptanoin with the ketogenic diet in Glucose transporter type 1 deficiency (G1D)

Adrian Avila, Ignacio Málaga, Deepa Sirsi, Saima Kayani, Sharon Primeaux, Gauri A Kathote, Vikram Jakkamsetti, Raja Reddy Kallem, William C Putnam, Jason Y Park, Shlomo Shinnar, Juan M Pascual, Adrian Avila, Ignacio Málaga, Deepa Sirsi, Saima Kayani, Sharon Primeaux, Gauri A Kathote, Vikram Jakkamsetti, Raja Reddy Kallem, William C Putnam, Jason Y Park, Shlomo Shinnar, Juan M Pascual

Abstract

Fuel influx and metabolism replenish carbon lost during normal neural activity. Ketogenic diets studied in epilepsy, dementia and other disorders do not sustain such replenishment because their ketone body derivatives contain four carbon atoms and are thus devoid of this anaplerotic or net carbon donor capacity. Yet, in these diseases carbon depletion is often inferred from cerebral fluorodeoxyglucose-positron emission tomography. Further, ketogenic diets may prove incompletely therapeutic. These deficiencies provide the motivation for complementation with anaplerotic fuel. However, there are few anaplerotic precursors consumable in clinically sufficient quantities besides those that supply glucose. Five-carbon ketones, stemming from metabolism of the food supplement triheptanoin, are anaplerotic. Triheptanoin can favorably affect Glucose transporter type 1 deficiency (G1D), a carbon-deficiency encephalopathy. However, the triheptanoin constituent heptanoate can compete with ketogenic diet-derived octanoate for metabolism in animals. It can also fuel neoglucogenesis, thus preempting ketosis. These uncertainties can be further accentuated by individual variability in ketogenesis. Therefore, human investigation is essential. Consequently, we examined the compatibility of triheptanoin at maximum tolerable dose with the ketogenic diet in 10 G1D individuals using clinical and electroencephalographic analyses, glycemia, and four- and five-carbon ketosis. 4 of 8 of subjects with pre-triheptanoin beta-hydroxybutyrate levels greater than 2 mM demonstrated a significant reduction in ketosis after triheptanoin. Changes in this and the other measures allowed us to deem the two treatments compatible in the same number of individuals, or 50% of persons in significant beta-hydroxybutyrate ketosis. These results inform the development of individualized anaplerotic modifications to the ketogenic diet.ClinicalTrials.gov registration NCT03301532, first registration: 04/10/2017.

Conflict of interest statement

The authors declare no competing interests.

© 2023. The Author(s).

Figures

Figure 1
Figure 1
Study procedures. BHB beta-hydroxybutyric acid, Glu glucose.
Figure 2
Figure 2
Beta-hydroxybutyrate levels independent of, before, during and after C7 ingestion. Left panel: Non C7: Percent change in 224 beta-hydroxybutyrate levels from 20 G1D individuals not receiving C7 and not treated in this study; C7 Compatible: change in G1D individuals that exhibited beta-hydroxybutyrate values indicative of compatibility with C7. C7 Non compatible: change in G1D individuals where the ketogenic diet was estimated non compatible with C7; The variability in sample-to-sample change for non-C7 treated subjects was not significantly different from the variability in G1D patients who received C7 in whom C7 was compatible with the ketogenic diet. Welch's ANOVA (for unequal variances) with Dunnett's correction for multiple comparisons. *p 

Figure 3

C5 ketonemia in select subjects…

Figure 3

C5 ketonemia in select subjects before and after C7 administration. Left panel: Beta-hydroxy…

Figure 3
C5 ketonemia in select subjects before and after C7 administration. Left panel: Beta-hydroxy pentanoate values in relation to C7 administration times (4 doses, administered on day 2). Right panel: values for beta-keto pentanoate.
Figure 3
Figure 3
C5 ketonemia in select subjects before and after C7 administration. Left panel: Beta-hydroxy pentanoate values in relation to C7 administration times (4 doses, administered on day 2). Right panel: values for beta-keto pentanoate.

References

    1. Sacktor B, Wilson JE, Tiekert CG. Regulation of glycolysis in brain, in situ, during convulsions. J. Biol. Chem. 1966;241:5071–5075. doi: 10.1016/S0021-9258(18)99671-7.
    1. Alavi A, et al. Regional cerebral glucose metabolism in aging and senile dementia as determined by 18F-deoxyglucose and positron emission tomography. Exp. Brain Res. Suppl. 1982;5:187–195. doi: 10.1007/978-3-642-68507-1_26.
    1. Langfitt TW, et al. Computerized tomography, magnetic resonance imaging, and positron emission tomography in the study of brain trauma. Preliminary observations. J. Neurosurg. 1986;64:760–767. doi: 10.3171/jns.1986.64.5.0760.
    1. Stafstrom CE, Rho JM. The ketogenic diet as a treatment paradigm for diverse neurological disorders. Front. Pharmacol. 2012;3:59. doi: 10.3389/fphar.2012.00059.
    1. Guelpa G, Marie P. A lutte contre l'epilepsie par la desintoxication et par la reeducation alimentaire. Revue de Therapie Medico Chirurgicale. 1911;78:8–13.
    1. Cervenka M, et al. Metabolism-based therapies for epilepsy: New directions for future cures. Ann. Clin. Transl. Neurol. 2021;8:1730–1737. doi: 10.1002/acn3.51423.
    1. Marin-Valencia I, Roe CR, Pascual JM. Pyruvate carboxylase deficiency: Mechanisms, mimics and anaplerosis. Mol. Genet. Metab. 2010;101:9–17. doi: 10.1016/j.ymgme.2010.05.004.
    1. Pascual, J. M. in Rudolph's pediatrics (ed. Mark W. Kline) (McGraw-Hill In press).
    1. Pascual JM, et al. Triheptanoin for glucose transporter type I deficiency (G1D): modulation of human ictogenesis, cerebral metabolic rate, and cognitive indices by a food supplement. JAMA Neurol. 2014;71:1255–1265. doi: 10.1001/jamaneurol.2014.1584.
    1. Rajasekaran K, et al. Metabolic modulation of synaptic failure and thalamocortical hypersynchronization with preserved consciousness in Glut1 deficiency. Sci. Transl. Med. 2022;14:eabn2956. doi: 10.1126/scitranslmed.abn2956.
    1. Pascual JM, Van Heertum RL, Wang D, Engelstad K, De Vivo DC. Imaging the metabolic footprint of Glut1 deficiency on the brain. Ann. Neurol. 2002;52:458–464. doi: 10.1002/ana.10311.
    1. Pascual JM, Ronen GM. Glucose transporter type I deficiency (G1D) at 25 (1990–2015): presumptions, facts, and the lives of persons with this rare disease. Pediatr. Neurol. 2015;53:379–393. doi: 10.1016/j.pediatrneurol.2015.08.001.
    1. Hao J, Kelly DI, Su J, Pascual JM. Clinical aspects of glucose transporter type 1 deficiency: Information from a global registry. JAMA Neurol. 2017;74:727–732. doi: 10.1001/jamaneurol.2017.0298.
    1. Deng S, Zhang GF, Kasumov T, Roe CR, Brunengraber H. Interrelations between C4 ketogenesis, C5 ketogenesis, and anaplerosis in the perfused rat liver. J. Biol. Chem. 2009;284:27799–27807. doi: 10.1074/jbc.M109.048744.
    1. Newsholme EA. Carbohydrate metabolism in vivo: Regulation of the blood glucose level. Clin. Endocrinol. Metab. 1976;5:543–578. doi: 10.1016/S0300-595X(76)80040-0.
    1. Marin-Valencia I, Good LB, Ma Q, Malloy CR, Pascual JM. Heptanoate as a neural fuel: Energetic and neurotransmitter precursors in normal and glucose transporter I-deficient (G1D) brain. J. Cereb. Blood Flow Metab. 2013;33:175–182. doi: 10.1038/jcbfm.2012.151.
    1. Marin-Valencia I, et al. High-resolution detection of (1)(3)C multiplets from the conscious mouse brain by ex vivo NMR spectroscopy. J. Neurosci. Methods. 2012;203:50–55. doi: 10.1016/j.jneumeth.2011.09.006.
    1. Marin-Valencia I, et al. Cortical metabolism in pyruvate dehydrogenase deficiency revealed by ex vivo multiplet (13)C NMR of the adult mouse brain. Neurochem. Int. 2012;61:1036–1043. doi: 10.1016/j.neuint.2012.07.020.
    1. Marin-Valencia I, et al. Glucose metabolism via the pentose phosphate pathway, glycolysis and Krebs cycle in an orthotopic mouse model of human brain tumors. NMR Biomed. 2012;25:1177–1186. doi: 10.1002/nbm.2787.
    1. Maher EA, et al. Metabolism of [U-13 C]glucose in human brain tumors in vivo. NMR Biomed. 2012;25:1234–1244. doi: 10.1002/nbm.2794.
    1. Malaga I, et al. Maximum dose, safety, tolerability and ketonemia after triheptanoin in glucose transporter type 1 deficiency (G1D) Sci. Rep. 2023;13:3465. doi: 10.1038/s41598-023-30578-z.
    1. Striano P, et al. A randomized, double-blind trial of triheptanoin for drug-resistant epilepsy in glucose transporter 1 deficiency syndrome. Epilepsia. 2022;63:1748–1760. doi: 10.1111/epi.17263.
    1. SoRelle JA, Pascual JM, Gotway G, Park JY. Assessment of interlaboratory variation in the interpretation of genomic test results in patients with epilepsy. JAMA Netw. Open. 2020;3:e203812. doi: 10.1001/jamanetworkopen.2020.3812.
    1. Pascual JM, et al. Structural signatures and membrane helix 4 in GLUT1: Inferences from human blood-brain glucose transport mutants. J. Biol. Chem. 2008;283:16732–16742. doi: 10.1074/jbc.M801403200.
    1. Carpay JA, et al. Parent-reported subjective complaints in children using antiepileptic drugs: What do they mean? Epilepsy Behav. 2002;3:322–329. doi: 10.1016/s1525-5050(02)00047-1.
    1. Guy, W. ECDEU Assessment Manual for Psychopharmacology. (US Department of Health, Education, and Welfare, Public Health Service, 1976).
    1. Kallem RR, Primeaux S, Avila A, Pascual JM, Putnam WC. Development and validation of a LC-MS/MS method for quantitation of 3-hydroxypentanoic acid and 3-oxopentanoic acid in human plasma and its application to a clinical study of glucose transporter type I deficiency (G1D) syndrome. J. Pharm. Biomed. Anal. 2021;205:114335. doi: 10.1016/j.jpba.2021.114335.
    1. Saudubray JM, et al. Variation in plasma ketone bodies during a 24-hour fast in normal and in hypoglycemic children: Relationship to age. J. Pediatr. 1981;98:904–908. doi: 10.1016/s0022-3476(81)80583-5.
    1. Gilbert DL, Pyzik PL, Freeman JM. The ketogenic diet: Seizure control correlates better with serum beta-hydroxybutyrate than with urine ketones. J. Child Neurol. 2000;15:787–790. doi: 10.1177/088307380001501203.
    1. SuntrupIii DJ, Ratto TV, Ratto M, McCarter JP. Characterization of a high-resolution breath acetone meter for ketosis monitoring. PeerJ. 2020;8:e9969. doi: 10.7717/peerj.9969.
    1. Marin-Valencia I, et al. Glut1 deficiency (G1D): Epilepsy and metabolic dysfunction in a mouse model of the most common human phenotype. Neurobiol. Dis. 2012;48:92–101. doi: 10.1016/j.nbd.2012.04.011.
    1. Marin-Valencia I, et al. High-resolution detection of (13)C multiplets from the conscious mouse brain by ex vivo NMR spectroscopy. J. Neurosci. Methods. 2011 doi: 10.1016/j.jneumeth.2011.09.006.
    1. Jeffrey FM, et al. Modeling of brain metabolism and pyruvate compartmentation using (13)C NMR in vivo: Caution required. J. Cereb. Blood Flow Metab. 2013;33:1160–1167. doi: 10.1038/jcbfm.2013.67.
    1. Roe CR, Brunengraber H. Anaplerotic treatment of long-chain fat oxidation disorders with triheptanoin: Review of 15 years experience. Mol. Genet. Metab. 2015;116:260–268. doi: 10.1016/j.ymgme.2015.10.005.
    1. Williamson DH, Bates MW, Page MA, Krebs HA. Activities of enzymes involved in acetoacetate utilization in adult mammalian tissues. Biochem. J. 1971;121:41–47. doi: 10.1042/bj1210041.
    1. Fukao T, et al. Enzymes of ketone body utilization in human tissues: Protein and messenger RNA levels of succinyl-coenzyme A (CoA):3-ketoacid CoA transferase and mitochondrial and cytosolic acetoacetyl-CoA thiolases. Pediatr. Res. 1997;42:498–502. doi: 10.1203/00006450-199710000-00013.
    1. Leclerc J, et al. Metabolism of R-beta-hydroxypentanoate and of beta-ketopentanoate in conscious dogs. Am. J. Physiol. 1995;268:E446–452. doi: 10.1152/ajpendo.1995.268.3.E446.
    1. Klepper J, et al. Seizure control and acceptance of the ketogenic diet in GLUT1 deficiency syndrome: A 2- to 5-year follow-up of 15 children enrolled prospectively. Neuropediatrics. 2005;36:302–308. doi: 10.1055/s-2005-872843.
    1. Stewart WA, Gordon K, Camfield P. Acute pancreatitis causing death in a child on the ketogenic diet. J. Child Neurol. 2001;16:682. doi: 10.1177/088307380101600910.
    1. Berry-Kravis E, Booth G, Taylor A, Valentino LA. Bruising and the ketogenic diet: Evidence for diet-induced changes in platelet function. Ann. Neurol. 2001;49:98–103. doi: 10.1002/1531-8249(200101)49:1<98::AID-ANA13>;2-2.
    1. Kielb S, Koo HP, Bloom DA, Faerber GJ. Nephrolithiasis associated with the ketogenic diet. J. Urol. 2000;164:464–466. doi: 10.1016/S0022-5347(05)67400-9.
    1. Best TH, Franz DN, Gilbert DL, Nelson DP, Epstein MR. Cardiac complications in pediatric patients on the ketogenic diet. Neurology. 2000;54:2328–2330. doi: 10.1212/WNL.54.12.2328.
    1. Brunengraber H, Roe CR. Anaplerotic molecules: Current and future. J. Inherit. Metab. Dis. 2006;29:327–331. doi: 10.1007/s10545-006-0320-1.
    1. Borges, K. in Ketogenic Diet and Metabolic Therapies: Expanded Roles in Health and Disease (ed. Susan Masino) 336–345 (Oxford University Press, 2016).
    1. Wang D, et al. Glut-1 deficiency syndrome: Clinical, genetic, and therapeutic aspects. Ann. Neurol. 2005;57:111–118. doi: 10.1002/ana.20331.
    1. Klepper J, et al. Introduction of a ketogenic diet in young infants. J. Inherit. Metab. Dis. 2002;25:449–460. doi: 10.1023/A:1021238900470.
    1. Settergren G, Lindblad BS, Persson B. Cerebral blood flow and exchange of oxygen, glucose, ketone bodies, lactate, pyruvate and amino acids in infants. Acta Paediatr. Scand. 1976;65:343–353. doi: 10.1111/j.1651-2227.1976.tb04896.x.

Source: PubMed

3
S'abonner