Xanthohumol from Hop: Hope for cancer prevention and treatment

Sosmitha Girisa, Queen Saikia, Devivasha Bordoloi, Kishore Banik, Javadi Monisha, Uzini Devi Daimary, Elika Verma, Kwang Seok Ahn, Ajaikumar B Kunnumakkara, Sosmitha Girisa, Queen Saikia, Devivasha Bordoloi, Kishore Banik, Javadi Monisha, Uzini Devi Daimary, Elika Verma, Kwang Seok Ahn, Ajaikumar B Kunnumakkara

Abstract

Cancer is a major public health concern due to high mortality and poor quality of life of patients. Despite the availability of advanced therapeutic interventions, most treatment modalities are not efficacious, very expensive, and cause several adverse side effects. The factors such as drug resistance, lack of specificity, and low efficacy of the cancer drugs necessitate developing alternative strategies for the prevention and treatment of this disease. Xanthohumol (XN), a prenylated chalcone present in Hop (Humulus lupulus), has been found to possess prominent activities against aging, diabetes, inflammation, microbial infection, and cancer. Thus, this manuscript thoroughly reviews the literature on the anti-cancer properties of XN and its various molecular targets. XN was found to exert its inhibitory effect on the growth and proliferation of cancer cells via modulation of multiple signaling pathways such as Akt, AMPK, ERK, IGFBP2, NF-κB, and STAT3, and also modulates various proteins such as Notch1, caspases, MMPs, Bcl-2, cyclin D1, oxidative stress markers, tumor-suppressor proteins, and miRNAs. Thus, these reports suggest that XN possesses enormous therapeutic potential against various cancers and could be potentially used as a multi-targeted anti-cancer agent with minimal adverse effects.

Keywords: cancer; chalcone; inflammation; multi-targeted; signaling pathways; xanthohumol.

© 2021 International Union of Biochemistry and Molecular Biology.

References

REFERENCES

    1. Banik K, Harsha C, Bordoloi D, et al. Therapeutic potential of gambogic acid, a caged xanthone, to target cancer. Cancer Lett. 2018;416:75-86.
    1. Henamayee S, Banik K, Sailo BL, et al. Therapeutic emergence of rhein as a potential anticancer drug: A review of its molecular targets and anticancer properties. Molecules. 2020;25:2278.
    1. Merarchi M, Sethi G, Shanmugam MK, Fan L, Arfuso F, Ahn KS. Role of natural products in modulating histone deacetylases in cancer. Molecules. 2019;24:1047.
    1. Padmavathi G, Rathnakaram SR, Monisha J, Bordoloi D, Roy NK, Kunnumakkara AB. Potential of butein, a tetrahydroxychalcone to obliterate cancer. Phytomedicine. 2015;22:1163-1171.
    1. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209-249.
    1. Bordoloi D, Banik K, Shabnam B, et al. TIPE family of proteins and its implications in different chronic diseases. Int J Mol Sci. 2018;19:2974.
    1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin. 2021;71:7-33.
    1. Kalia M. Biomarkers for personalized oncology: Recent advances and future challenges. Metabolism. 2015;64:S16-S21.
    1. Ranaware AM, Banik K, Deshpande V, et al. Magnolol: A Neolignan from the Magnolia family for the prevention and treatment of cancer. Int J Mol Sci. 2018;19:2362.
    1. Ahmed SA, Parama D, Daimari E, et al. Rationalizing the therapeutic potential of apigenin against cancer. Life Sci. 2021;267:118814.
    1. Bordoloi D, Banik K, Vikkurthi R, et al. Inflection of Akt/mTOR/STAT-3 cascade in TNF-alpha induced protein 8 mediated human lung carcinogenesis. Life Sci. 2020;262:118475.
    1. Harsha C, Banik K, Ang HL, et al. Targeting AKT/mTOR in oral cancer: Mechanisms and advances in clinical trials. Int J Mol Sci. 2020;21:3285.
    1. Khatoon E, Banik K, Harsha C, et al. Phytochemicals in cancer cell chemosensitization: Current knowledge and future perspectives. Semin Cancer Biol. 2020.
    1. Manu KA, Shanmugam MK, Li F, et al. Simvastatin sensitizes human gastric cancer xenograft in nude mice to capecitabine by suppressing nuclear factor-kappa B-regulated gene products. J Mol Med (Berl). 2014;92:267-276.
    1. Manu KA, Shanmugam MK, Ramachandran L, et al. Isorhamnetin augments the anti-tumor effect of capecitabine through the negative regulation of NF-kappaB signaling cascade in gastric cancer. Cancer Lett. 2015;363:28-36.
    1. Monisha J, Padmavathi G, Roy NK, et al. NF-kappaB blockers gifted by mother nature: Prospectives in cancer cell chemosensitization. Curr Pharm Des. 2016;22:4173-4200.
    1. Parama D, Boruah M, Yachna K, et al. Diosgenin, a steroidal saponin, and its analogs: Effective therapies against different chronic diseases. Life Sci. 2020;260:118182.
    1. Buckingham R, Fitt J, Sitziaz J. Patients' experiences of chemotherapy: Side-effects of carboplatin in the treatment of carcinoma of the ovary. Eur J Cancer Care. 1997;6:59-71.
    1. Drott J, Starkhammar H, Kjellgren K, Berterö C. The trajectory of neurotoxic side effects' impact on daily life: A qualitative study. Support Care Cancer. 2016;24:3455-3461.
    1. Pabla N, Dong Z. Curtailing side effects in chemotherapy: A tale of PKCδ in cisplatin treatment. Oncotarget. 2012;3:107-111.
    1. Robinson AM, Stojanovska V, Rahman AA, McQuade RM, Senior PV, Nurgali K. Effects of oxaliplatin treatment on the enteric glial cells and neurons in the mouse ileum. J Histochem Cytochem. 2016;64:530-545.
    1. Khwairakpam AD, Shyamananda MS, Sailo BL, et al. ATP citrate lyase (ACLY): A promising target for cancer prevention and treatment. Curr Drug Targets. 2015;16:156-163.
    1. Sailo BL, Banik K, Girisa S, et al. FBXW7 in cancer: What has been unraveled thus far? Cancer. 2019;11:246.
    1. Shabnam B, Padmavathi G, Banik K, et al. Sorcin a potential molecular target for cancer therapy. Transl Oncol. 2018;11:1379-1389.
    1. Tewari D, Nabavi SF, Nabavi SM, et al. Targeting activator protein 1 signaling pathway by bioactive natural agents: Possible therapeutic strategy for cancer prevention and intervention. Pharmacol Res. 2018;128:366-375.
    1. Banik K, Ranaware AM, Deshpande V, et al. Honokiol for cancer therapeutics: A traditional medicine that can modulate multiple oncogenic targets. Pharmacol Res. 2019;144:192-209.
    1. Deng S, Shanmugam MK, Kumar AP, Yap CT, Sethi G, Bishayee A. Targeting autophagy using natural compounds for cancer prevention and therapy. Cancer. 2019;125:1228-1246.
    1. Devi KA, Monisha J, Roy NK, et al. Vietnamese coriander inhibits cell proliferation, survival and migration via suppression of Akt/mTOR pathway in oral squamous cell carcinoma. J Basic Clin Physiol Pharmacol. 2019;31.
    1. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57-70.
    1. Lee JH, Kim C, Kim SH, Sethi G, Ahn KS. Farnesol inhibits tumor growth and enhances the anticancer effects of bortezomib in multiple myeloma xenograft mouse model through the modulation of STAT3 signaling pathway. Cancer Lett. 2015;360:280-293.
    1. Loh CY, Arya A, Naema AF, Wong WF, Sethi G, Looi CY. Signal transducer and activator of transcription (STATs) proteins in cancer and inflammation: Functions and therapeutic implication. Front Oncol. 2019;9:48.
    1. Buhrmann C, Popper B, Kunnumakkara AB, Aggarwal BB, Shakibaei M. Evidence that Calebin A, a component of Curcuma longa suppresses NF-B mediated proliferation, invasion and metastasis of human colorectal cancer induced by TNF-beta (Lymphotoxin). Nutrients. 2019;11:2904.
    1. Kunnumakkara AB, Sailo BL, Banik K, et al. Chronic diseases, inflammation, and spices: How are they linked? J Transl Med. 2018;16:1-25.
    1. Li F, Shanmugam MK, Chen L, et al. Garcinol, a polyisoprenylated benzophenone modulates multiple proinflammatory signaling cascades leading to the suppression of growth and survival of head and neck carcinoma. Cancer Prev Res (Phila). 2013;6:843-854.
    1. Puar YR, Shanmugam MK, Fan L, Arfuso F, Sethi G, Tergaonkar V. Evidence for the involvement of the master transcription factor NF-kappaB in cancer initiation and progression. Biomedicine. 2018;6:82.
    1. Anand P, Sundaram C, Jhurani S, Kunnumakkara AB, Aggarwal BB. Curcumin and cancer: An “old-age” disease with an “age-old” solution. Cancer Lett. 2008;267:133-164.
    1. Bordoloi D, Roy N, Monisha J, Padmavathi G, Kunnumakkara A. Multi-targeted agents in cancer cell chemosensitization: What we learnt from curcumin thus far. Recent Pat Anticancer Drug Discov. 2016;11:67-97.
    1. Bordoloi D, Monisha J, Roy NK, et al. An investigation on the therapeutic potential of Butein, a tretrahydroxychalcone against human oral squamous cell carcinoma. Asian Pac J Cancer Prev. 2019;20:3437-3446.
    1. Buhrmann C, Yazdi M, Popper B, Kunnumakkara AB, Aggarwal BB, Shakibaei M. Induction of the epithelial-to-mesenchymal transition of human colorectal cancer by human TNF-beta (Lymphotoxin) and its reversal by resveratrol. Nutrients. 2019;11:704.
    1. Daimary UD, Parama D, Rana V, et al. Emerging roles of cardamonin, a multitargeted nutraceutical in the prevention and treatment of chronic diseases. Curr Res Pharmacol Drug Discov. 2020;2:100008.
    1. Girisa S, Kumar A, Rana V, et al. From simple mouth cavities to complex oral mucosal disorders-Curcuminoids as a promising therapeutic approach. ACS Pharmacol Transl Sci. 2021;4:647-665.
    1. Girisa S, Shabnam B, Monisha J, et al. Potential of zerumbone as an anti-cancer agent. Molecules. 2019;24:734.
    1. Kunnumakkara AB, Bordoloi D, Harsha C, Banik K, Gupta SC, Aggarwal BB. Curcumin mediates anticancer effects by modulating multiple cell signaling pathways. Clin Sci (Lond). 2017;131:1781-1799.
    1. Kunnumakkara AB, Koca C, Dey S, et al. Traditional uses of spices: An overview. Molecular targets and therapeutic uses of spices: Modern uses for ancient medicine, New Jersey: World Scientific; 2009; pp. 1-24.
    1. Roy NK, Deka A, Bordoloi D, et al. The potential role of boswellic acids in cancer prevention and treatment. Cancer Lett. 2016;377:74-86.
    1. Sailo BL, Banik K, Padmavathi G, Javadi M, Bordoloi D, Kunnumakkara AB. Tocotrienols: The promising analogues of vitamin E for cancer therapeutics. Pharmacol Res. 2018;130:259-272.
    1. Balunas MJ, Kinghorn AD. Drug discovery from medicinal plants. Life Sci. 2005;78:431-441.
    1. Choudhury B, Kandimalla R, Bharali R, et al. Anticancer activity of Garcinia morella on T-cell murine lymphoma via apoptotic induction. Front Pharmacol. 2016;7:3.
    1. Clardy J, Walsh C. Lessons from natural molecules. Nature. 2004;432:829-837.
    1. Goel A, Kunnumakkara AB, Aggarwal BB. Curcumin as "Curecumin": From kitchen to clinic. Biochem Pharmacol. 2008;75:787-809.
    1. Kim C, Cho SK, Kapoor S, et al. Beta-caryophyllene oxide inhibits constitutive and inducible STAT3 signaling pathway through induction of the SHP-1 protein tyrosine phosphatase. Mol Carcinog. 2014;53:793-806.
    1. Kim SM, Lee JH, Sethi G, et al. Bergamottin, a natural furanocoumarin obtained from grapefruit juice induces chemosensitization and apoptosis through the inhibition of STAT3 signaling pathway in tumor cells. Cancer Lett. 2014;354:153-163.
    1. Kunnumakkara AB, Banik K, Bordoloi D, et al. Googling the Guggul (Commiphora and Boswellia) for prevention of chronic diseases. Front Pharmacol. 2018;9:686.
    1. Kunnumakkara AB, Harsha C, Banik K, et al. Is curcumin bioavailability a problem in humans: Lessons from clinical trials. Expert Opin Drug Metab Toxicol. 2019;15:705-733.
    1. Orlikova B, Diederich M. Power from the garden: Plant compounds as inhibitors of the hallmarks of cancer. Curr Med Chem. 2012;19:2061-2087.
    1. Roy NK, Parama D, Banik K, et al. An update on pharmacological potential of boswellic acids against chronic diseases. Int J Mol Sci. 2019;20:4101.
    1. Thomas D, Govindhan S, Baiju EC, Padmavathi G, Kunnumakkara AB, Padikkala J. Cyperus rotundus L. prevents non-steroidal anti-inflammatory drug-induced gastric mucosal damage by inhibiting oxidative stress. J Basic Clin Physiol Pharmacol. 2015;26:485-490.
    1. Zhang B, Duan D, Ge C, et al. Synthesis of xanthohumol analogues and discovery of potent thioredoxin reductase inhibitor as potential anticancer agent. J Med Chem. 2015;58:1795-1805.
    1. Bai F, Zhang B, Hou Y, et al. Xanthohumol analogues as potent Nrf2 activators against oxidative stress mediated damages of PC12 cells. ACS Chem Nerosci. 2019;10:2956-2966.
    1. Stompor M, Zarowska B. Antimicrobial activity of xanthohumol and its selected structural analogues. Molecules. 2016;21:608.
    1. Nuti E, Bassani B, Camodeca C, et al. Synthesis and antiangiogenic activity study of new hop chalcone xanthohumol analogues. Eur J Med Chem. 2017;138:890-899.
    1. Stompor M, Świtalska M, Wietrzyk J. The influence of a single and double biotinylation of xanthohumol on its anticancer activity. Acta Biochim Pol. 2019;66:559-565.
    1. Liu M, Hansen PE, Wang G, et al. Pharmacological profile of xanthohumol, a prenylated flavonoid from hops (Humulus lupulus). Molecules. 2015;20:754-779.
    1. Seitz T, Hackl C, Freese K, et al. Xanthohumol, a prenylated chalcone derived from hops, inhibits growth and metastasis of melanoma cells. Cancers (Basel). 2021;13:511.
    1. Shiwakoti S, Adhikari D, Lee JP, et al. Prevention of fine dust-induced vascular senescence by Humulus lupulus extract and its major bioactive compounds. Antioxidants (Basel). 2020;9:1243.
    1. Stevens JF, Page JE. Xanthohumol and related prenylflavonoids from hops and beer: To your good health! Phytochemistry. 2004;65:1317-1330.
    1. Murakami A, Darby P, Javornik B, et al. Molecular phylogeny of wild hops, Humulus lupulus L. Heredity. 2006;97:66-74.
    1. Riccioni C, Belfiori B, Sileoni V, et al. High genetic and chemical diversity of wild hop populations from Central Italy with signals of a genetic structure influenced by both sexual and asexual reproduction. Plant Sci. 2021;304:110794.
    1. Small E. A numerical and nomenclatural analysis of morpho-geographic taxa of Humulus. Syst Bot. 1978;3:37-76.
    1. Chen Q-H, Fu M-L, Chen M-M, et al. Preparative isolation and purification of xanthohumol from hops (Humulus lupulus L.) by high-speed counter-current chromatography. Food Chem. 2012;132:619-623.
    1. Carvalho DO, Freitas J, Nogueira P, et al. Xanthohumol inhibits cell proliferation and induces apoptosis in human thyroid cells. Food Chem Toxicol. 2018;121:450-457.
    1. Stevens JF, Taylor AW, Deinzer ML. Quantitative analysis of xanthohumol and related prenylflavonoids in hops and beer by liquid chromatography-tandem mass spectrometry. J Chromatogr A. 1999;832:97-107.
    1. Schmidt R, Schulmeyr J, Gehrig M. Production of xanthohumol enriched hop extract using carbon dioxide as solvent at pressures up to 1000 bars. Proceedings of the Scientific Commission of the International Hop Growers Convention, South Africa; 2005, Volume 57.
    1. Magalhaes PJ, Guido LF, Cruz JM, Barros AA. Analysis of xanthohumol and isoxanthohumol in different hop products by liquid chromatography-diode array detection-electrospray ionization tandem mass spectrometry. J Chromatogr A. 2007;1150:295-301.
    1. Grudniewska A, Popłoński J. Simple and green method for the extraction of xanthohumol from spent hops using deep eutectic solvents. Sep Purif Technol. 2020;250:117196.
    1. Jiang C, Xie N, Sun T, Ma W, Zhang B, Li W. Xanthohumol inhibits TGF-beta1-induced cardiac fibroblasts activation via mediating PTEN/Akt/mTOR signaling pathway. Drug Des Devel Ther. 2020;14:5431-5439.
    1. Gao F, Li M, Zhou L, Liu W, Zuo H, Li W. Xanthohumol targets the ERK1/2Fra1 signaling axis to reduce cyclin D1 expression and inhibit nonsmall cell lung cancer. Oncol Rep. 2020;44:1365-1374.
    1. Liu X, An LJ, Li Y, et al. Xanthohumol chalcone acts as a powerful inhibitor of carcinogenesis in drug-resistant human colon carcinoma and these effects are mediated via G2/M phase cell cycle arrest, activation of apoptotic pathways, caspase activation and targeting Ras /MEK/ERK pathway. J BUON. 2019;24:2442-2447.
    1. Rudzitis-Auth J, Körbel C, Scheuer C, Menger M, Laschke M. Xanthohumol inhibits growth and vascularization of developing endometriotic lesions. Hum Reprod. 2012;27:1735-1744.
    1. Van Eck NJ, Waltman L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics. 2010;84:523-538.
    1. Team RC A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria; 2020. Google Scholar.
    1. Moir M. Hops-A millennium review. J Am Soc Brew Chem. 2000;58:131-146.
    1. Zanoli P, Zavatti M. Pharmacognostic and pharmacological profile of Humulus lupulus L. J Ethnopharmacol. 2008;116:383-396.
    1. Zanoli P, Zavatti M, Rivasi M, Benelli A, Avallone R, Baraldi M. Experimental evidence of the anaphrodisiac activity of Humulus lupulus L. in naïve male rats. J Ethnopharmacol. 2009;125:36-40.
    1. Krause E, Yuan Y, Hajirahimkhan A, et al. Biological and chemical standardization of a hop (Humulus lupulus) botanical dietary supplement. Biomed Chromatogr. 2014;28:729-734.
    1. Bolton JL, Dunlap TL, Hajirahimkhan A, et al. The multiple biological targets of hops and bioactive compounds. Chem Res Toxicol. 2019;32:222-233.
    1. Paventi G, de Acutis L, De Cristofaro A, Pistillo M, Germinara GS, Rotundo G. Biological activity of Humulus lupulus (L.) essential oil and its main components against Sitophilus granarius (L.). Biomolecules. 2020;10:1108.
    1. Di Lodovico S, Menghini L, Ferrante C, et al. Hop extract: An efficacious antimicrobial and anti-biofilm agent against multidrug-resistant staphylococci strains and Cutibacterium acnes. Front Microbiol. 2020;11:1852.
    1. Van Cleemput M, Cattoor K, De Bosscher K, Haegeman G, De Keukeleire D, Heyerick A. Hop (Humulus lupulus)-derived bitter acids as multipotent bioactive compounds. J Nat Prod. 2009;72:1220-1230.
    1. Bocquet L, Sahpaz S, Hilbert J-L, Rambaud C, Rivière C. Humulus lupulus L., a very popular beer ingredient and medicinal plant: Overview of its phytochemistry, its bioactivity, and its biotechnology. Phytochem Rev. 2018;17:1047-1090.
    1. Knez HM, Španinger E, Košir IJ, Knez Ž, Bren U. Hop compounds: Extraction techniques, chemical analyses, antioxidative, antimicrobial, and anticarcinogenic effects. Nutrients. 2019;11:257.
    1. Sastre-Serra J, Ahmiane Y, Roca P, Oliver J, Pons DG. Xanthohumol, a hop-derived prenylflavonoid present in beer, impairs mitochondrial functionality of SW620 colon cancer cells. Int J Food Sci Nutr. 2019;70:396-404.
    1. Aydin T, Bayrak N, Baran E, Cakir A. Insecticidal effects of extracts of Humulus lupulus (hops) L. cones and its principal component, xanthohumol. Bull Entomol Res. 2017;107:543-549.
    1. Harish V, Haque E, Śmiech M, et al. Xanthohumol for human malignancies: Chemistry, pharmacokinetics and molecular targets. Int J Mol Sci. 2021;22:4478.
    1. Pafiti KS, Vlasiou MC. Evaluation of xanthohumol as a potent drug from nature: Synthesis, isolation and anticancer activity. SCIREA J Chem. 2019;4.
    1. Tronina T, Bartmańska A, Popłoński J, Huszcza E. Transformation of xanthohumol by Aspergillus ochraceus. J Basic Microbiol. 2014;54:66-71.
    1. Kiyofuji A, Yui K, Takahashi K, Osada K. Effects of xanthohumol-rich hop extract on the differentiation of preadipocytes. J Oleo Sci. 2014;63:593-597.
    1. Mendes V, Monteiro R, Pestana D, Teixeira D, Calhau C, Azevedo I. Xanthohumol influences preadipocyte differentiation: Implication of antiproliferative and apoptotic effects. J Agric Food Chem. 2008;56:11631-11637.
    1. Yang JY, Della-Fera MA, Rayalam S, Baile CA. Effect of xanthohumol and isoxanthohumol on 3T3-L1 cell apoptosis and adipogenesis. Apoptosis. 2007;12:1953-1963.
    1. Costa R, Rodrigues I, Guardão L, et al. Xanthohumol and 8-prenylnaringenin ameliorate diabetic-related metabolic dysfunctions in mice. J Nutr Biochem. 2017;45:39-47.
    1. Nozawa H. Xanthohumol, the chalcone from beer hops (Humulus lupulus L.), is the ligand for farnesoid X receptor and ameliorates lipid and glucose metabolism in KK-Ay mice. Biochem Biophys Res Commun. 2005;336:754-761.
    1. Chen W, Becker T, Qian F, Ring J. Beer and beer compounds: Physiological effects on skin health. J Eur Acad Dermatol Venereol. 2014;28:142-150.
    1. Cho Y-C, You S-K, Kim HJ, Cho C-W, Lee I-S, Kang BY. Xanthohumol inhibits IL-12 production and reduces chronic allergic contact dermatitis. Int Immunopharmacol. 2010;10:556-561.
    1. Drenzek JG, Seiler NL, Jaskula-Sztul R, Rausch MM, Rose SL. Xanthohumol decreases Notch1 expression and cell growth by cell cycle arrest and induction of apoptosis in epithelial ovarian cancer cell lines. Gynecol Oncol. 2011;122:396-401.
    1. Saito K, Matsuo Y, Imafuji H, et al. Xanthohumol inhibits angiogenesis by suppressing nuclear factor-kappaB activation in pancreatic cancer. Cancer Sci. 2018;109:132-140.
    1. Yong WK, Abd Malek SN. Xanthohumol induces growth inhibition and apoptosis in Ca Ski human cervical cancer cells. Evid Based Complement Alternat Med. 2015;2015:921306.
    1. Albini A, Dell'Eva R, Vené R, et al. Mechanisms of the antiangiogenic activity by the hop flavonoid xanthohumol: NF-κB and Akt as targets. FASEB J. 2006;20:527-529.
    1. Benelli R, Venè R, Ciarlo M, Carlone S, Barbieri O, Ferrari N. The AKT/NF-κB inhibitor xanthohumol is a potent anti-lymphocytic leukemia drug overcoming chemoresistance and cell infiltration. Biochem Pharmacol. 2012;83:1634-1642.
    1. Dorn C, Weiss TS, Heilmann J, Hellerbrand C. Xanthohumol, a prenylated chalcone derived from hops, inhibits proliferation, migration and interleukin-8 expression of hepatocellular carcinoma cells. Int J Oncol. 2010;36:435-441.
    1. Roehrer S, Stork V, Ludwig C, Minceva M, Behr J. Analyzing bioactive effects of the minor hop compound xanthohumol C on human breast cancer cells using quantitative proteomics. PLoS one. 2019;14:e0213469.
    1. Harikumar KB, Kunnumakkara AB, Ahn KS, et al. Modification of the cysteine residues in IkappaBalpha kinase and NF-kappaB (p65) by xanthohumol leads to suppression of NF-kappaB-regulated gene products and potentiation of apoptosis in leukemia cells. Blood. 2009;113:2003-2013.
    1. Kim SY, Lee IS, Moon A. 2-Hydroxychalcone and xanthohumol inhibit invasion of triple negative breast cancer cells. Chem Biol Interact. 2013;203:565-572.
    1. Slawinska-Brych A, Zdzisinska B, Dmoszynska-Graniczka M, et al. Xanthohumol inhibits the extracellular signal regulated kinase (ERK) signalling pathway and suppresses cell growth of lung adenocarcinoma cells. Toxicology. 2016;357-358:65-73.
    1. Engelsgjerd S, Kunnimalaiyaan S, Kandil E, Gamblin TC, Kunnimalaiyaan M. Xanthohumol increases death receptor 5 expression and enhances apoptosis with the TNF-related apoptosis-inducing ligand in neuroblastoma cell lines. PLoS One. 2019;14:e0213776.
    1. Gallo C, Dallaglio K, Bassani B, et al. Hop derived flavonoid xanthohumol inhibits endothelial cell functions via AMPK activation. Oncotarget. 2016;7:59917-59931.
    1. Dell'Eva R, Ambrosini C, Vannini N, Piaggio G, Albini A, Ferrari N. AKT/NF-kappaB inhibitor xanthohumol targets cell growth and angiogenesis in hematologic malignancies. Cancer. 2007;110:2007-2011.
    1. Poplonski J, Turlej E, Sordon S, et al. Synthesis and antiproliferative activity of minor hops prenylflavonoids and new insights on prenyl group cyclization. Molecules. 2018;23:776.
    1. Sławińska-Brych A, Zdzisińska B, Czerwonka A, et al. Xanthohumol exhibits anti-myeloma activity in vitro through inhibition of cell proliferation, induction of apoptosis via the ERK and JNK-dependent mechanism, and suppression of sIL-6R and VEGF production. Biochim Biophys Acta (BBA). 2019;1863:129408.
    1. Viola K, Kopf S, Rarova L, et al. Xanthohumol attenuates tumour cell-mediated breaching of the lymphendothelial barrier and prevents intravasation and metastasis. Arch Toxicol. 2013;87:1301-1312.116.
    1. Wang Y, Chen Y, Wang J, et al. Xanthohumol, a prenylated chalcone derived from hops, suppresses cancer cell invasion through inhibiting the expression of CXCR4 chemokine receptor. Curr Mol Med. 2012;12:153-162.
    1. Lee JH, Kim C, Lee SG, Sethi G, Ahn KS. Ophiopogonin D, a steroidal glycoside abrogates STAT3 signaling cascade and exhibits anti-cancer activity by causing GSH/GSSG imbalance in lung carcinoma. Cancers (Basel). 2018;10:427.
    1. Ong PS, Wang LZ, Dai X, Tseng SH, Loo SJ, Sethi G. Judicious toggling of mTOR activity to combat insulin resistance and cancer: Current evidence and perspectives. Front Pharmacol. 2016;7:395.
    1. Sethi G, Ahn KS, Sung B, Kunnumakkara AB, Chaturvedi MM, Aggarwal BB. SH-5, an AKT inhibitor potentiates apoptosis and inhibits invasion through the suppression of anti-apoptotic, proliferative and metastatic gene products regulated by IkappaBalpha kinase activation. Biochem Pharmacol. 2008;76(11):1404-1416.
    1. Singh AK, Roy NK, Bordoloi D, et al. Orai-1 and Orai-2 regulate oral cancer cell migration and colonisation by suppressing Akt/mTOR/NF-κB signalling. Life Sci. 2020;261:118372.
    1. Dokduang H, Yongvanit P, Namwat N, et al. Xanthohumol inhibits STAT3 activation pathway leading to growth suppression and apoptosis induction in human cholangiocarcinoma cells. Oncol Rep. 2016;35:2065-2072.
    1. Monteiro R, Calhau C, Silva AO, et al. Xanthohumol inhibits inflammatory factor production and angiogenesis in breast cancer xenografts. J Cell Biochem. 2008;104:1699-1707.
    1. Vanhoecke B, Derycke L, Van Marck V, Depypere H, De Keukeleire D, Bracke M. Antiinvasive effect of xanthohumol, a prenylated chalcone present in hops (Humulus lupulus L.) and beer. Int J Cancer. 2005;117:889-895.
    1. Liu W, Li W, Liu H, Yu X. Xanthohumol inhibits colorectal cancer cells via downregulation of hexokinases II-mediated glycolysis. Int J Biol Sci. 2019;15:2497-2508.
    1. Chen PH, Chang CK, Shih CM, et al. The miR-204-3p-targeted IGFBP2 pathway is involved in xanthohumol-induced glioma cell apoptotic death. Neuropharmacology. 2016;110:362-375.
    1. Festa M, Capasso A, D'Acunto CW, et al. Xanthohumol induces apoptosis in human malignant glioblastoma cells by increasing reactive oxygen species and activating MAPK pathways. J Nat Prod. 2011;74(12):2505-2513.
    1. Lust S, Vanhoecke B, van Gele M, et al. Xanthohumol activates the proapoptotic arm of the unfolded protein response in chronic lymphocytic leukemia. Anticancer Res. 2009;29:3797-3805.
    1. Cook MR, Luo J, Ndiaye M, Chen H, Kunnimalaiyaan M. Xanthohumol inhibits the neuroendocrine transcription factor achaete-scute complex-like 1, suppresses proliferation, and induces phosphorylated ERK1/2 in medullary thyroid cancer. Am J Surg. 2010;199:315-318. discussion 318.
    1. Slawinska-Brych A, Krol SK, Dmoszynska-Graniczka M, Zdzisinska B, Stepulak A, Gagos M. Xanthohumol inhibits cell cycle progression and proliferation of larynx cancer cells in vitro. Chem Biol Interact. 2015;240:110-118.
    1. Li M, Gao F, Yu X, et al. Promotion of ubiquitination-dependent survivin destruction contributes to xanthohumol-mediated tumor suppression and overcomes radioresistance in human oral squamous cell carcinoma. J Exp Clin Cancer Res. 2020;39:88.
    1. Koo JH, Kim HT, Yoon HY, et al. Effect of xanthohumol on melanogenesis in B16 melanoma cells. Exp Mol Med. 2008;40:313-319.
    1. Ashrafizadeh M, Hushmandi K, Hashemi M, et al. Role of microRNA/epithelial-to-mesenchymal transition axis in the metastasis of bladder cancer. Biomolecules. 2020;10:1159.
    1. Ashrafizadeh M, Zarrabi A, Hushmandi K, et al. Association of the epithelial-mesenchymal transition (EMT) with cisplatin resistance. Int J Mol Sci. 2020;21:4002.
    1. Rishabh K, Khadilkar S, Kumar A, Kalra I, Kumar AP, Kunnumakkara AB. MicroRNAs as modulators of oral tumorigenesis-A focused review. Int J Mol Sci. 2021;22:2561.
    1. Ho KH, Chang CK, Chen PH, Wang YJ, Chang WC, Chen KC. miR-4725-3p targeting stromal interacting molecule 1 signaling is involved in xanthohumol inhibition of glioma cell invasion. J Neurochem. 2018;146:269-288.
    1. Miranda C, Stevens J, Helmrich A, et al. Antiproliferative and cytotoxic effects of prenylated flavonoids from hops (Humulus lupulus) in human cancer cell lines. Food Chem Toxicol. 1999;37:271-285.
    1. Zajc I, Filipič M, Lah T. Xanthohumol induces different cytotoxicity and apoptotic pathways in malignant and normal astrocytes. Phytother Res. 2012;26:1709-1713.
    1. Monteiro R, Faria A, Azevedo I, Calhau C. Modulation of breast cancer cell survival by aromatase inhibiting hop (Humulus lupulus L.) flavonoids. J Steroid Biochem Mol Biol. 2007;105:124-130.
    1. Guerreiro S, Monteiro R, Martins MJ, Calhau C, Azevedo I, Soares R. Distinct modulation of alkaline phosphatase isoenzymes by 17beta-estradiol and xanthohumol in breast cancer MCF-7 cells. Clin Biochem. 2007;40:268-273.
    1. Scagliarini A, Mathey A, Aires V, Delmas D. Xanthohumol, a prenylated flavonoid from hops, induces DNA damages in colorectal cancer cells and sensitizes SW480 cells to the SN38 chemotherapeutic agent. Cell. 2020;9:932.
    1. Blanquer-Rosselló MM, Oliver J, Valle A, Roca P. Effect of xanthohumol and 8-prenylnaringenin on MCF-7 breast cancer cells oxidative stress and mitochondrial complexes expression. J Cell Biochem. 2013;114:2785-2794.
    1. Yoshimaru T, Komatsu M, Tashiro E, et al. Xanthohumol suppresses oestrogen-signalling in breast cancer through the inhibition of BIG3-PHB2 interactions. Sci Rep. 2014;4:7355.
    1. Yoo YB, Park KS, Kim JB, et al. Xanthohumol inhibits cellular proliferation in a breast cancer cell line (MDA-MB231) through an intrinsic mitochondrial-dependent pathway. Indian J Cancer. 2014;51:518-523.
    1. Liu M, Yin H, Qian X, Dong J, Qian Z, Miao J. Xanthohumol, a prenylated chalcone from hops, inhibits the viability and stemness of doxorubicin-resistant MCF-7/ADR cells. Molecules. 2016;22:36.
    1. Sun Z, Zhou C, Liu F, et al. Inhibition of breast cancer cell survival by xanthohumol via modulation of the notch signaling pathway in vivo and in vitro. Oncol Lett. 2018;15:908-916.
    1. Zhang W, Pan Y, Gou P, et al. Effect of xanthohumol on Th1/Th2 balance in a breast cancer mouse model. Oncol Rep. 2018;39:280-288.
    1. Zhang B, Chu W, Wei P, Liu Y, Wei T. Xanthohumol induces generation of reactive oxygen species and triggers apoptosis through inhibition of mitochondrial electron transfer chain complex I. Free Radic Biol Med. 2015;89:486-497.
    1. Walden D, Kunnimalaiyaan S, Sokolowski K, Clark TG, Kunnimalaiyaan M. Antiproliferative and apoptotic effects of xanthohumol in cholangiocarcinoma. Oncotarget. 2017;8:88069-88078.
    1. Pan L, Becker H, Gerhauser C. Xanthohumol induces apoptosis in cultured 40-16 human colon cancer cells by activation of the death receptor- and mitochondrial pathway. Mol Nutr Food Res. 2005;49:837-843.
    1. Lee SH, Kim HJ, Lee JS, Lee IS, Kang BY. Inhibition of topoisomerase I activity and efflux drug transporters' expression by xanthohumol. From hops. Arch Pharm Res. 2007;30:1435-1439.
    1. Liu H, Zhang L, Li G, Gao Z. Xanthohumol protects against azoxymethane-induced colorectal cancer in Sprague-Dawley rats. Environ Toxicol. 2020;35:136-144.
    1. Liu X, Song M, Wang P, et al. Targeted therapy of the AKT kinase inhibits esophageal squamous cell carcinoma growth in vitro and in vivo. Int J Cancer. 2019;145:1007-1019.
    1. Kunnimalaiyaan S, Sokolowski KM, Balamurugan M, Gamblin TC, Kunnimalaiyaan M. Xanthohumol inhibits notch signaling and induces apoptosis in hepatocellular carcinoma. PLoS one. 2015;10:e0127464.
    1. Swamy SG, Kameshwar VH, Shubha PB, et al. Targeting multiple oncogenic pathways for the treatment of hepatocellular carcinoma. Target Oncol. 2017;12:1-10.
    1. Mohan CD, Bharathkumar H, Bulusu KC, et al. Development of a novel azaspirane that targets the Janus kinase-signal transducer and activator of transcription (STAT) pathway in hepatocellular carcinoma in vitro and in vivo. J Biol Chem. 2014;289:34296-34307.
    1. Lust S, Vanhoecke B, Janssens A, Philippe J, Bracke M, Offner F. Xanthohumol kills B-chronic lymphocytic leukemia cells by an apoptotic mechanism. Mol Nutr Food Res. 2005;49:844-850.
    1. Monteghirfo S, Tosetti F, Ambrosini C, et al. Antileukemia effects of xanthohumol in Bcr/Abl-transformed cells involve nuclear factor-kappaB and p53 modulation. Mol Cancer Ther. 2008;7:2692-2702.
    1. Yong WK, Ho YF, Abd Malek SN. Xanthohumol induces apoptosis and S phase cell cycle arrest in A549 non-small cell lung cancer cells. Pharmacogn Mag. 2015;11:S275.
    1. Jiang W, Zhao S, Xu L, et al. The inhibitory effects of xanthohumol, a prenylated chalcone derived from hops, on cell growth and tumorigenesis in human pancreatic cancer. Biomed Pharmacother. 2015;73:40-47.
    1. Kunnimalaiyaan S, Trevino J, Tsai S, Gamblin TC, Kunnimalaiyaan M. Xanthohumol-mediated suppression of notch1 signaling is associated with antitumor activity in human pancreatic cancer cells. Mol Cancer Ther. 2015;14:1395-1403.
    1. Colgate EC, Miranda CL, Stevens JF, Bray TM, Ho E. Xanthohumol, a prenylflavonoid derived from hops induces apoptosis and inhibits NF-kappaB activation in prostate epithelial cells. Cancer Lett. 2007;246:201-209.
    1. Delmulle L, Vanden BT, Keukeleire DD, Vandenabeele P. Treatment of PC-3 and DU145 prostate cancer cells by prenylflavonoids from hop (Humulus lupulus L.) induces a caspase-independent form of cell death. Phytother Res. 2008;22:197-203.
    1. Szliszka E, Czuba ZP, Mazur B, Sedek L, Paradysz A, Krol W. Chalcones enhance TRAIL-induced apoptosis in prostate cancer cells. Int J Mol Sci. 2009;11:1-13.
    1. Deeb D, Gao X, Jiang H, Arbab AS, Dulchavsky SA, Gautam SC. Growth inhibitory and apoptosis-inducing effects of xanthohumol, a prenylated chalone present in hops, in human prostate cancer cells. Anticancer Res. 2010;30:3333-3339.
    1. Vene R, Benelli R, Minghelli S, Astigiano S, Tosetti F, Ferrari N. Xanthohumol impairs human prostate cancer cell growth and invasion and diminishes the incidence and progression of advanced tumors in TRAMP mice. Mol Med. 2012;18:1292-1302.
    1. Klosek M, Mertas A, Krol W, Jaworska D, Szymszal J, Szliszka E. Tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in prostate cancer cells after treatment with xanthohumol-A natural compound present in Humulus lupulus L. Int J Mol Sci. 2016;17:837.
    1. Goto K, Asai T, Hara S, et al. Enhanced antitumor activity of xanthohumol, a diacylglycerol acyltransferase inhibitor, under hypoxia. Cancer Lett. 2005;219:215-222.
    1. Girisa S, Dey P, Choudhary H, Banik K, Kunnumakkara A. Potential of guggulsterone, a farnesoid X receptor antagonist, in the prevention and treatment of cancer. Explor Target Antitumor Ther. 2020;1:313-342.
    1. Tiwari A, Srivastava S, Pant M. Brain tumor segmentation and classification from magnetic resonance images: Review of selected methods from 2014 to 2019. Pattern Recognit Lett. 2020;131:244-260.
    1. Bhuvanalakshmi G, Gamit N, Patil M, et al. Stemness, pluripotentiality, and Wnt antagonism: sFRP4, a Wnt antagonist mediates pluripotency and stemness in glioblastoma. Cancers (Basel). 2018;11:25.
    1. Festa M, Caputo M, Cipolla C, et al. The involvement of xanthohumol in the expression of annexin in human malignant glioblastoma cells. Open Biochem J. 2013;7:1-10.
    1. Thakur KK, Bordoloi D, Kunnumakkara AB. Alarming burden of triple-negative breast cancer in India. Clin Breast Cancer. 2018;18:e393-e399.
    1. Wang C, Kar S, Lai X, et al. Triple negative breast cancer in Asia: An insider's view. Cancer Treat Rev. 2018;62:29-38.
    1. Monteiro R, Becker H, Azevedo I, Calhau C. Effect of hop (Humulus lupulus L.) flavonoids on aromatase (estrogen synthase) activity. J Agric Food Chem. 2006;54:2938-2943.
    1. Heymach JV, Shackleford TJ, Tran HT, et al. Effect of low-fat diets on plasma levels of NF-kappaB-regulated inflammatory cytokines and angiogenic factors in men with prostate cancer. Cancer Prev Res (Phila). 2011;4:1590-1598.
    1. Kunnumakkara AB, Shabnam B, Girisa S, et al. Inflammation, NF-κB, and chronic diseases: How are they linked? Crit Rev Immunol. 2020;40:1-39.
    1. Li F, Shanmugam MK, Siveen KS, et al. Garcinol sensitizes human head and neck carcinoma to cisplatin in a xenograft mouse model despite downregulation of proliferative biomarkers. Oncotarget. 2015;6:5147-5163.
    1. Morgan D, Garg M, Tergaonkar V, Tan SY, Sethi G. Pharmacological significance of the non-canonical NF-kappaB pathway in tumorigenesis. Biochim Biophys Acta Rev Cancer. 1874;2020:188449.
    1. Tan KW, Cooney J, Jensen D, et al. Hop-derived prenylflavonoids are substrates and inhibitors of the efflux transporter breast cancer resistance protein (BCRP/ABCG 2). Mol Nutr Food Res. 2014;58:2099-2110.
    1. Avula M, Lakkakula NP, Raja MP. Bone cancer detection from mri scan imagery using mean pixel intensity. Paper presented at: 8th Asia Modelling Symposium, IEEE; 2014; p. 141-146.
    1. Padmavathi G, Bordoloi D, Banik K, Javadi M, Singh AK, Kunnumakkara AB. Mechanism of chemoresistance in bone cancer and different chemosensitization approaches. Cancer cell chemoresistance and chemosensitization. Singapore: World Scientific, 2018; p. 81-106.
    1. Cohen PA, Jhingran A, Oaknin A, Denny L. Cervical cancer. Lancet. 2019;393:169-182.
    1. Garg AK, Jhingran A, Klopp AH, et al. Expression of nuclear transcription factor kappa B in locally advanced human cervical cancer treated with definitive chemoradiation. Int J Radiat Oncol Biol Phys. 2010;78:1331-1336.
    1. Ningegowda R, Shivananju NS, Rajendran P, et al. A novel 4,6-disubstituted-1,2,4-triazolo-1,3,4-thiadiazole derivative inhibits tumor cell invasion and potentiates the apoptotic effect of TNFalpha by abrogating NF-kappaB activation cascade. Apoptosis. 2017;22:145-157.
    1. Gomez DT, Santos JL. Human papillomavirus infection and cervical cancer: Pathogenesis and epidemiology. Communicating current research and educational topics and trends in applied microbiology. Volume 1, 2007; p. 680-688.
    1. Li M, Wang J, Song J, et al. Preoperative ICG test to predict posthepatectomy liver failure and postoperative outcomes in hilar cholangiocarcinoma. Biomed Res Int. 2021;2021:8298737.
    1. Buhrmann C, Kunnumakkara AB, Popper B, Majeed M, Aggarwal BB, Shakibaei M. Calebin A potentiates the effect of 5-FU and TNF-β (Lymphotoxin α) against human colorectal cancer cells: Potential role of NF-κB. Int J Mol Sci. 2020;21:2393.
    1. Siegel RL, Miller KD, Goding SA, et al. Colorectal cancer statistics, 2020. CA Cancer J Clin. 2020;70:145-164.
    1. De Angulo G, Yuen C, Palla SL, Anderson PM, Zweidler-McKay PA. Absolute lymphocyte count is a novel prognostic indicator in ALL and AML: Implications for risk stratification and future studies. Cancer. 2008;112:407-415.
    1. Kirtonia A, Pandya G, Sethi G, Pandey AK, Das BC, Garg M. A comprehensive review of genetic alterations and molecular targeted therapies for the implementation of personalized medicine in acute myeloid leukemia. J Mol Med (Berl). 2020;98:1069-1091.
    1. Mi X, Wang C, Sun C, et al. Xanthohumol induces paraptosis of leukemia cells through p38 mitogen activated protein kinase signaling pathway. Oncotarget. 2017;8:31297-31304.
    1. Ferk F, Mišík M, Nersesyan A, et al. Impact of xanthohumol (a prenylated flavonoid from hops) on DNA stability and other health-related biochemical parameters: Results of human intervention trials. Mol Nutr Food Res. 2016;60:773-786.
    1. Pichler C, Ferk F, Al-Serori H, et al. Xanthohumol prevents DNA damage by dietary carcinogens: Results of a human intervention trial. Cancer Prev Res. 2017;10:153-160.
    1. Plazar J, Filipič M, Groothuis GM. Antigenotoxic effect of xanthohumol in rat liver slices. Toxicol In Vitro. 2008;22:318-327.
    1. Anwanwan D, Singh SK, Singh S, Saikam V, Singh R. Challenges in liver cancer and possible treatment approaches. Biochim Biophys Acta Rev Cancer. 2020;1873:188314.
    1. Zhao X, Jiang K, Liang B, Huang X. Anticancer effect of xanthohumol induces growth inhibition and apoptosis of human liver cancer through NF-κB/p53-apoptosis signaling pathway. Oncol Rep. 2016;35:669-675.
    1. Ho YC, Liu CH, Chen CN, Duan KJ, Lin MT. Inhibitory effects of xanthohumol from hops (Humulus lupulus L.) on human hepatocellular carcinoma cell lines. Phytother Res. 2008;22:1465-1468.
    1. Bordoloi D, Banik K, Padmavathi G, et al. TIPE2 induced the proliferation, survival, and migration of lung cancer cells through modulation of Akt/mTOR/NF-kappaB signaling cascade. Biomolecules. 2019;9(12):836.
    1. Nanavaty P, Alvarez MS, Alberts WM. Lung cancer screening: Advantages, controversies, and applications. Cancer Control. 2014;21:9-14.
    1. Wang L, Syn NL, Subhash VV, et al. Pan-HDAC inhibition by panobinostat mediates chemosensitization to carboplatin in non-small cell lung cancer via attenuation of EGFR signaling. Cancer Lett. 2018;417:152-160.
    1. Dhillon N, Aggarwal BB, Newman RA, et al. Phase II trial of curcumin in patients with advanced pancreatic cancer. Clin Cancer Res. 2008;14:4491-4499.
    1. Kunnumakkara AB, Sung B, Ravindran J, et al. Zyflamend suppresses growth and sensitizes human pancreatic tumors to gemcitabine in an orthotopic mouse model through modulation of multiple targets. Int J Cancer. 2012;131:E292-E303.
    1. Mizrahi JD, Surana R, Valle JW, Shroff RT. Pancreatic cancer. Lancet. 2020;395:2008-2020.
    1. Pandya G, Kirtonia A, Sethi G, Pandey AK, Garg M. The implication of long non-coding RNAs in the diagnosis, pathogenesis and drug resistance of pancreatic ductal adenocarcinoma and their possible therapeutic potential. Biochim Biophys Acta Rev Cancer. 1874;2020:188423.
    1. Zhang J, Ahn KS, Kim C, et al. Nimbolide-induced oxidative stress abrogates STAT3 signaling cascade and inhibits tumor growth in transgenic adenocarcinoma of mouse prostate model. Antioxid Redox Signal. 2016;24:575-589.
    1. Lee JH, Kim C, Baek SH, et al. Capsazepine inhibits JAK/STAT3 signaling, tumor growth, and cell survival in prostate cancer. Oncotarget. 2017;8:17700-17711.
    1. Muralimanoharan SB, Kunnumakkara AB, Shylesh B, et al. Butanol fraction containing berberine or related compound from nexrutine inhibits NFkappaB signaling and induces apoptosis in prostate cancer cells. Prostate. 2009;69:494-504.
    1. Shanmugam MK, Ong TH, Kumar AP, et al. Ursolic acid inhibits the initiation, progression of prostate cancer and prolongs the survival of TRAMP mice by modulating pro-inflammatory pathways. PLoS One. 2012;7:e32476.
    1. Strathmann J, Klimo K, Sauer SW, Okun JG, Prehn JH, Gerhäuser C. Xanthohumol-induced transient superoxide anion radical formation triggers cancer cells into apoptosis via a mitochondria-mediated mechanism. FASEB J. 2010;24:2938-2950.
    1. Rycaj K, Tang DG. Cancer stem cells and radioresistance. Int J Radiat Biol. 2014;90:615-621.
    1. Kunnumakkara AB, Diagaradjane P, Guha S, et al. Curcumin sensitizes human colorectal cancer xenografts in nude mice to gamma-radiation by targeting nuclear factor-kappaB-regulated gene products. Clin Cancer Res. 2008;14:2128-2136.
    1. Kang Y, Park M-A, Heo S-W, et al. The radio-sensitizing effect of xanthohumol is mediated by STAT3 and EGFR suppression in doxorubicin-resistant MCF-7 human breast cancer cells. Biochim Biophys Acta. 2013;1830:2638-2648.
    1. Yilmazer M, Stevens JF, Deinzer ML, Buhler DR. In vitro biotransformation of xanthohumol, a flavonoid from hops (Humulus lupulus), by rat liver microsomes. Drug Metab Dispos. 2001;29:223-231.
    1. Herath WH, Ferreira D, Khan IA. Microbial transformation of xanthohumol. Phytochemistry. 2003;62:673-677.
    1. Nookandeh A, Frank N, Steiner F, et al. Xanthohumol metabolites in faeces of rats. Phytochemistry. 2004;65:561-570.
    1. Avula B, Ganzera M, Warnick JE, Feltenstein MW, Sufka KJ, Khan IA. High-performance liquid chromatographic determination of xanthohumol in rat plasma, urine, and fecal samples. J Chromatogr Sci. 2004;42:378-382.
    1. Ruefer CE, Gerhauser C, Frank N, Becker H, Kulling SE. In vitro phase II metabolism of xanthohumol by human UDP-glucuronosyltransferases and sulfotransferases. Mol Nutr Food Res. 2005;49:851-856.
    1. Jirasko R, Holcapek M, Vrublova E, Ulrichova J, Simanek V. Identification of new phase II metabolites of xanthohumol in rat in vivo biotransformation of hop extracts using high-performance liquid chromatography electrospray ionization tandem mass spectrometry. J Chromatogr A. 2010;1217:4100-4108.
    1. Pang Y, Nikolic D, Zhu D, et al. Binding of the hop (Humulus lupulus L.) chalcone xanthohumol to cytosolic proteins in Caco-2 intestinal epithelial cells. Mol Nutr Food Res. 2007;51:872-879.
    1. Wolff H, Motyl M, Hellerbrand C, Heilmann J, Kraus B. Xanthohumol uptake and intracellular kinetics in hepatocytes, hepatic stellate cells, and intestinal cells. J Agric Food Chem. 2011;59:12893-12901.
    1. Legette LL, Reed RL, Murty L, Maier CS, Stevens JF. Application of paper strip extraction in combination with LC-MS-MS in pharmacokinetics. Spectroscopy (Springf). 2013;39:s18-s25.
    1. Legette L, Karnpracha C, Reed RL, et al. Human pharmacokinetics of xanthohumol, an antihyperglycemic flavonoid from hops. Mol Nutr Food Res. 2014;58:248-255.
    1. van Breemen RB, Yuan Y, Banuvar S, et al. Pharmacokinetics of prenylated hop phenols in women following oral administration of a standardized extract of hops. Mol Nutr Food Res. 2014;58:1962-1969.
    1. Legette L, Ma L, Reed RL, et al. Pharmacokinetics of xanthohumol and metabolites in rats after oral and intravenous administration. Mol Nutr Food Res. 2012;56:466-474.
    1. Hanske L, Loh G, Sczesny S, Blaut M, Braune A. Recovery and metabolism of xanthohumol in germ-free and human microbiota-associated rats. Mol Nutr Food Res. 2010;54:1405-1413.
    1. Nowak B, Pozniak B, Poplonski J, et al. Pharmacokinetics of xanthohumol in rats of both sexes after oral and intravenous administration of pure xanthohumol and prenylflavonoid extract. Adv Clin Exp Med. 2020;29:1101-1109.
    1. Vanhoecke BW, Delporte F, Van Braeckel E, et al. A safety study of oral tangeretin and xanthohumol administration to laboratory mice. In Vivo. 2005;19:103-107.
    1. Dorn C, Bataille F, Gaebele E, Heilmann J, Hellerbrand C. Xanthohumol feeding does not impair organ function and homoeostasis in mice. Food Chem Toxicol. 2010;48:1890-1897.
    1. Hussong R, Frank N, Knauft J, et al. A safety study of oral xanthohumol administration and its influence on fertility in Sprague Dawley rats. Mol Nutr Food Res. 2005;49:861-867.
    1. Kim MR, Kim HJ, Yu SH, et al. Combination of red clover and hops extract improved menopause symptoms in an ovariectomized rat model. Evid Based Complement Alternat Med. 2020;2020:7941391.
    1. Khayyal MT, El-Hazek RM, El-Sabbagh WA, Frank J, Behnam D, Abdel-Tawab M. Micellar solubilization enhances the anti-inflammatory effect of xanthohumol. Phytomedicine. 2020;71:153233.
    1. Mahli A, Seitz T, Freese K, et al. Therapeutic application of micellar solubilized xanthohumol in a western-type diet-induced mouse model of obesity, diabetes and non-alcoholic fatty liver disease. Cell. 2019;8:359.
    1. Zhang J, Yan L, Wei P, et al. PEG-GO@XN nanocomposite suppresses breast cancer metastasis via inhibition of mitochondrial oxidative phosphorylation and blockade of epithelial-to-mesenchymal transition. Eur J Pharmacol. 2021;895:173866.
    1. Banik K, Ranaware AM, Harsha C, et al. Piceatannol: A natural stilbene for the prevention and treatment of cancer. Pharmacol Res. 2020;153:104635.
    1. Harikumar KB, Kunnumakkara AB, Sethi G, et al. Resveratrol, a multitargeted agent, can enhance antitumor activity of gemcitabine in vitro and in orthotopic mouse model of human pancreatic cancer. Int J Cancer. 2010;127:257-268.
    1. Jude S, Amalraj A, Kunnumakkara AB, Divya C, Loffler BM, Gopi S. Development of validated methods and quantification of curcuminoids and curcumin metabolites and their pharmacokinetic study of oral administration of complete natural turmeric formulation (Cureit) in human plasma via UPLC/ESI-Q-TOF-MS spectrometry. Molecules. 2018;23:2415.
    1. Khwairakpam AD, Bordoloi D, Thakur KK, et al. Possible use of Punica granatum (pomegranate) in cancer therapy. Pharmacol Res. 2018;133:53-64.
    1. Mishra S, Verma SS, Rai V, et al. Long non-coding RNAs are emerging targets of phytochemicals for cancer and other chronic diseases. Cell Mol Life Sci. 2019;76:1947-1966.
    1. Monisha J, Roy NK, Padmavathi G, et al. NGAL is downregulated in oral squamous cell carcinoma and leads to increased survival, proliferation, migration and chemoresistance. Cancers (Basel). 2018;10:228.
    1. Nair A, Amalraj A, Jacob J, Kunnumakkara AB, Gopi S. Non-curcuminoids from turmeric and their potential in cancer therapy and anticancer drug delivery formulations. Biomolecules. 2019;9:13.
    1. Singh YP, Girisa S, Banik K, et al. Potential application of zerumbone in the prevention and therapy of chronic human diseases. J Funct Foods. 2019;53:248-258.

Source: PubMed

3
S'abonner