Sailuotong Capsule Prevents the Cerebral Ischaemia-Induced Neuroinflammation and Impairment of Recognition Memory through Inhibition of LCN2 Expression

Yehao Zhang, Jianxun Liu, Mingjiang Yao, WenTing Song, Yongqiu Zheng, Li Xu, Mingqian Sun, Bin Yang, Alan Bensoussan, Dennis Chang, Hao Li, Yehao Zhang, Jianxun Liu, Mingjiang Yao, WenTing Song, Yongqiu Zheng, Li Xu, Mingqian Sun, Bin Yang, Alan Bensoussan, Dennis Chang, Hao Li

Abstract

Background: Astrogliosis can result in astrocytes with hypertrophic morphology after injury, indicated by extended processes and swollen cell bodies. Lipocalin-2 (LCN2), a secreted glycoprotein belonging to the lipocalin superfamily, has been reported to play a detrimental role in ischaemic brains and neurodegenerative diseases. Sailuotong (SLT) capsule is a standardized three-herb preparation composed of ginseng, ginkgo, and saffron for the treatment of vascular dementia. Although recent clinical trials have demonstrated the beneficial effect of SLT on vascular dementia, its potential cellular mechanism has not been fully explored.

Methods: Male adult Sprague-Dawley (SD) rats were subjected to microsphere-embolized cerebral ischaemia. Immunostaining and Western blotting were performed to assess astrocytic reaction. Human astrocytes exposed to oxygen-glucose deprivation (OGD) were used to elucidate the effects of SLT-induced inflammation and astrocytic reaction.

Results: A memory recovery effect was found to be associated with the cerebral ischaemia-induced expression of inflammatory proteins and the suppression of LCN2 expression in the brain. Additionally, SLT reduced the astrocytic reaction, LCN2 expression, and the phosphorylation of STAT3 and JAK2. For in vitro experiments, OGD-induced expression of inflammation and LCN2 was also decreased in human astrocyte by the SLT treatment. Moreover, LCN2 overexpression significantly enhanced the above effects. SLT downregulated these effects that were enhanced by LCN2 overexpression.

Conclusions: SLT mediates neuroinflammation, thereby protecting against ischaemic brain injury by inhibiting astrogliosis and suppressing neuroinflammation via the LCN2-JAK2/STAT3 pathway, providing a new idea for the treatment strategy of ischaemic stroke.

Conflict of interest statement

The authors declare that they have no conflicts of interest.

Copyright © 2019 Yehao Zhang et al.

Figures

Figure 1
Figure 1
SLT treatment reduced ischaemic infarct volume in the cerebral ischaemia model. (a) Timeline depicts the treatment of SLT and assessments of the cognitive functions of rats. The male rats (n = 10) were orally treated with SLT at a daily dose of 16.5 mg/kg and 33 mg/kg for 4 weeks. After surgery for 22 days, memory tests were conducted. The training trial was performed four times a day for 5 days. (b) Cerebral infarct volume was assessed via TTC staining 24 h after cerebral ischaemia. Neurological score (c) of rats after cerebral ischaemia was assessed using a five-point scale system. Data are expressed as the mean ± SEM (n = 10). ∗∗∗P < 0.001 vs. sham group; #P < 0.05, ##P < 0.01, and ###P < 0.001 vs. the model groups.
Figure 2
Figure 2
The ischaemic penumbra area in the box was assessed for neuronal apoptosis using HE staining. Cortex sections and hippocampal regions stained with HE presented with neuronal loss and signs of cerebral edema, and swollen cells were observed in the ipsilateral hippocampus; plentiful apoptotic neurons were observed with karyopyknosis, cell gaps, and debris. SLT (33 mg/kg, daily) significantly alleviated the symptoms of apoptosis in a dose-dependent manner.
Figure 3
Figure 3
Neuroprotective effects of SLT on the Morris water maze (MWM) test: (a) average swimming speed, (b) escape latency, (c) platform crossing, (d) target quadrant time, and (e) trajectory of swimming. Data are expressed as the mean ± SEM (n = 10). ∗∗P < 0.01 and ∗∗∗P < 0.001 vs. sham group; #P < 0.05, ##P < 0.01, and ###P < 0.001 vs. model groups.
Figure 4
Figure 4
Effects of SLT treatment on the level of cytokines/chemokines in the brain after cerebral ischaemia. (a–f) Analysis showing the relative levels of the proinflammatory mediators IL-1α, IL-6, IL-12, and CXCL10 (IP-10) in the brain and in serum; (a–d) was in the brain; (e–h) was in serum. Data are expressed as the mean ± SEM (n = 5). ∗P < 0.05, ∗∗P < 0.01, and ∗∗∗P < 0.001 vs. sham group; #P < 0.05, ##P < 0.01, and ###P < 0.001 vs. the model groups.
Figure 5
Figure 5
Effects of SLT on the activation of astrocytes and the expression of LCN2, p-JAK2, and p-STAT3, in cerebral ischaemia rats. (a–c) Double immunofluorescence staining for astrocytic LCN2, p-STAT3, p-JAK2, and GFAP expression in the ischaemic penumbra area after cerebral ischaemia. Scale bar = 20 μm. (d–h) Western blots and quantitative analysis of GFAP, LCN2, p-JAK2, and p-STAT3 expression are expressed as the mean ± SEM (n = 4). ∗P < 0.05, ∗∗P < 0.01, and ∗∗P < 0.001 vs. sham group; #P < 0.05, ##P < 0.01, and ###P < 0.001 vs. model groups.
Figure 6
Figure 6
SLT suppressed OGD-induced inflammation in astrocytes in vitro. (a–c) Analysis showing the relative levels of the proinflammatory mediators IL-1β, IL-6, and CXCL10 (IP-10). Data are expressed as the mean ± SEM (n = 5). ∗P < 0.05, ∗∗P < 0.01, and ∗∗∗P < 0.001 vs. control group; #P < 0.05, ##P < 0.01, and ###P < 0.001 vs. the indicated groups.
Figure 7
Figure 7
The effects of SLT on the activation of astrocytes and the expression of astrocytic LCN2, p-JAK2, and p-STAT3 after OGD induction in vitro. (a–h) Double immunofluorescence staining for GFAP, LCN2, p-JAK2, and p-STAT3 in astrocytes after OGD induction. Scale bar = 20 μm. Western blots and quantitative analysis of GFAP, LCN2, p-JAK2, and p-STAT3 expression are expressed as the mean ± SEM (n = 3). ∗P < 0.05 and ∗∗P < 0.01 vs. control group; #P < 0.05 and ##P < 0.01 vs. the indicated groups.

References

    1. Hankey G. J. Stroke. The Lancet. 2017;389(10069):641–654. doi: 10.1016/S0140-6736(16)30962-X.
    1. Ivan C. S., Seshadri S., Beiser A., et al. Dementia after stroke: the Framingham Study. Stroke. 2004;35(6):1264–1268. doi: 10.1161/01.STR.0000127810.92616.78.
    1. Anrather J., Iadecola C. Inflammation and stroke: an overview. Neurotherapeutics. 2016;13(4):661–670. doi: 10.1007/s13311-016-0483-x.
    1. Petrovic-Djergovic D., Goonewardena S. N., Pinsky D. J. Inflammatory disequilibrium in stroke. Circulation Research. 2016;119(1):142–158. doi: 10.1161/CIRCRESAHA.116.308022.
    1. Pekny M., Wilhelmsson U., Bogestål Y. R., Pekna M. The role of astrocytes and complement system in neural plasticity. International Review of Neurobiology. 2007;82:95–111. doi: 10.1016/S0074-7742(07)82005-8.
    1. McKimmie C. S., Graham G. J. Astrocytes modulate the chemokine network in a pathogen-specific manner. Biochemical and Biophysical Research Communications. 2010;394(4):1006–1011. doi: 10.1016/j.bbrc.2010.03.111.
    1. Li H., Zhang N., Lin H. Y., et al. Histological, cellular and behavioral assessments of stroke outcomes after photothrombosis-induced ischemia in adult mice. BMC Neuroscience. 2014;15(1):p. 58. doi: 10.1186/1471-2202-15-58.
    1. Kehrer J. P. Lipocalin-2: pro- or anti-apoptotic. Cell Biology and Toxicology. 2010;26(2):83–89. doi: 10.1007/s10565-009-9119-9.
    1. Yang J., Bielenberg D. R., Rodig S. J., et al. Lipocalin 2 promotes breast cancer progression. Proceedings of the National Academy of Sciences of the United States of America. 2009;106(10):3913–3918. doi: 10.1073/pnas.0810617106.
    1. Biessels G. J., Reagan L. P. Hippocampal insulin resistance and cognitive dysfunction. Nature Reviews Neuroscience. 2015;16(11):660–671. doi: 10.1038/nrn4019.
    1. Wu Z. L., Ciallella J. R., Flood D. G., O’Kane T. M., Bozyczko-Coyne D., Savage M. J. Comparative analysis of cortical gene expression in mouse models of Alzheimer’s disease. Neurobiology of Aging. 2006;27(3):377–386. doi: 10.1016/j.neurobiolaging.2005.02.010.
    1. Marques F., Rodrigues A. J., Sousa J. C., et al. Lipocalin 2 is a choroid plexus acute-phase protein. Journal of Cerebral Blood Flow & Metabolism. 2008;28(3):450–455. doi: 10.1038/sj.jcbfm.9600557.
    1. Eikelenboom P., Veerhuis R., Scheper W., Rozemuller A. J. M., van Gool W. A., Hoozemans J. J. M. The significance of neuroinflammation in understanding Alzheimer’s disease. Journal of Neural Transmission. 2006;113(11):1685–1695. doi: 10.1007/s00702-006-0575-6.
    1. Jin M., Kim J. H., Jang E., et al. Lipocalin-2 deficiency attenuates neuroinflammation and brain injury after transient middle cerebral artery occlusion in mice. Journal of Cerebral Blood Flow & Metabolism. 2014;34(8):1306–1314. doi: 10.1038/jcbfm.2014.83.
    1. Steiner G. Z., Yeung A., Liu J. X., et al. The effect of Sailuotong (SLT) on neurocognitive and cardiovascular function in healthy adults: a randomised, double-blind, placebo controlled crossover pilot trial. BMC Complementary and Alternative Medicine. 2015;16(1):p. 15. doi: 10.1186/s12906-016-0989-0.
    1. Bridi R., Crossetti F. P., Steffen V. M., Henriques A. T. The antioxidant activity of standardized extract of Ginkgo biloba (EGb 761) in rats. Phytotherapy Research. 2001;15(5):449–451. doi: 10.1002/ptr.814.
    1. Lee E. J., Chen H. Y., Wu T. S., Chen T. Y., Ayoub I. A., Maynard K. I. Acute administration of Ginkgo biloba extract (EGb 761) affords neuroprotection against permanent and transient focal cerebral ischemia in Sprague-Dawley rats. Journal of Neuroscience Research. 2002;68(5):636–645. doi: 10.1002/jnr.10251.
    1. Domoráková I., Burda J., Mechírová E., Feriková M. Mapping of rat hippocampal neurons with NeuN after ischemia/reperfusion and Ginkgo biloba extract (EGb 761) pretreatment. Cellular and Molecular Neurobiology. 2006;26(7-8):1193–1204. doi: 10.1007/s10571-006-9080-6.
    1. Paganelli R. A., Benetoli A., Milani H. Sustained neuroprotection and facilitation of behavioral recovery by the Ginkgo biloba extract, EGb 761, after transient forebrain ischemia in rats. Behavioural Brain Research. 2006;174(1):70–77. doi: 10.1016/j.bbr.2006.07.005.
    1. Zhang Y., Liu J., Yang B., et al. Ginkgo biloba extract inhibits astrocytic lipocalin-2 expression and alleviates neuroinflammatory injury via the JAK2/STAT3 pathway after ischemic brain stroke. Frontiers in Pharmacology. 2018;9:p. 518. doi: 10.3389/fphar.2018.00518.
    1. Lee T. F., Shiao Y. J., Chen C. F., Wang L. C. H. Effect of ginseng saponins on β-amyloid-suppressed acetylcholine release from rat hippocampal slices. Planta Medica. 2001;67(7):634–637. doi: 10.1055/s-2001-17366.
    1. Shen L., Zhang J. NMDA receptor and iNOS are involved in the effects of ginsenoside Rg1 on hippocampal neurogenesis in ischemic gerbils. Neurological Research. 2007;29(3):270–273. doi: 10.1179/016164107X159144.
    1. Zhang G., Liu A., Zhou Y., San X., Jin T., Jin Y. Panax ginseng ginsenoside-Rg2 protects memory impairment via anti-apoptosis in a rat model with vascular dementia. Journal of Ethnopharmacology. 2008;115(3):441–448. doi: 10.1016/j.jep.2007.10.026.
    1. Zhao H., Li Q., Pei X., et al. Long-term ginsenoside administration prevents memory impairment in aged C57BL/6J mice by up-regulating the synaptic plasticity-related proteins in hippocampus. Behavioural Brain Research. 2009;201(2):311–317. doi: 10.1016/j.bbr.2009.03.002.
    1. Jia J., Wei C., Chen S., et al. Efficacy and safety of the compound Chinese medicine SaiLuoTong in vascular dementia: a randomized clinical trial. Alzheimer's & Dementia: Translational Research & Clinical Interventions. 2018;4:108–117. doi: 10.1016/j.trci.2018.02.004.
    1. Zhang Y., Miao L., Lin L., Ren C. Y., Liu J. X., Cui Y. M. Repeated administration of Sailuotong, a fixed combination of Panax ginseng, Ginkgo biloba, and Crocus sativus extracts for vascular dementia, alters CYP450 activities in rats. Phytomedicine. 2018;38:125–134. doi: 10.1016/j.phymed.2017.02.007.
    1. Bederson J. B., Pitts L. H., Tsuji M., Nishimura M. C., Davis R. L., Bartkowski H. Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination. Stroke. 1986;17(3):472–476. doi: 10.1161/01.STR.17.3.472.
    1. Morris R. Developments of a water-maze procedure for studying spatial learning in the rat. Journal of Neuroscience Methods. 1984;11(1):47–60. doi: 10.1016/0165-0270(84)90007-4.
    1. Choi J., Lee H. W., Suk K. Increased plasma levels of lipocalin 2 in mild cognitive impairment. Journal of the Neurological Sciences. 2011;305(1-2):28–33. doi: 10.1016/j.jns.2011.03.023.
    1. Jang E., Lee S., Kim J. H., et al. Secreted protein lipocalin-2 promotes microglial M1 polarization. The FASEB Journal. 2013;27(3):1176–1190. doi: 10.1096/fj.12-222257.
    1. Wang J. Preclinical and clinical research on inflammation after intracerebral hemorrhage. Progress in Neurobiology. 2010;92(4):463–477. doi: 10.1016/j.pneurobio.2010.08.001.
    1. Iadecola C., Anrather J. The immunology of stroke: from mechanisms to translation. Nature Medicine. 2011;17(7):796–808. doi: 10.1038/nm.2399.
    1. Macrez R., Ali C., Toutirais O., et al. Stroke and the immune system: from pathophysiology to new therapeutic strategies. The Lancet Neurology. 2011;10(5):471–480. doi: 10.1016/S1474-4422(11)70066-7.
    1. Chamorro Á., Meisel A., Planas A. M., Urra X., van de Beek D., Veltkamp R. The immunology of acute stroke. Nature Reviews Neurology. 2012;8(7):401–410. doi: 10.1038/nrneurol.2012.98.
    1. Yaffe K., Kanaya A., Lindquist K., et al. The metabolic syndrome, inflammation, and risk of cognitive decline. JAMA. 2004;292(18):2237–2242. doi: 10.1001/jama.292.18.2237.
    1. Arfanakis K., Fleischman D. A., Grisot G., et al. Systemic inflammation in non-demented elderly human subjects: brain microstructure and cognition. PloS One. 2013;8(8, article e73107) doi: 10.1371/journal.pone.0073107.
    1. Seto S. W., Chang D., Ko W., et al. Sailuotong prevents hydrogen peroxide (H2O2)-induced injury in EA.hy926 cells. International Journal of Molecular Sciences. 2017;18(1):p. 95. doi: 10.3390/ijms18010095.
    1. Mennicken F., Maki R., de Souza E. B., Quirion R. Chemokines and chemokine receptors in the CNS: a possible role in neuroinflammation and patterning. Trends in Pharmacological Sciences. 1999;20(2):73–78. doi: 10.1016/S0165-6147(99)01308-5.
    1. Allan S. M., Rothwell N. J. Cytokines and acute neurodegeneration. Nature Reviews Neuroscience. 2001;2(10):734–744. doi: 10.1038/35094583.
    1. Mastroianni C. M., Lancella L., Mengoni F., et al. Chemokine profiles in the cerebrospinal fluid (CSF) during the course of pyogenic and tuberculous meningitis. Clinical and Experimental Immunology. 1998;114(2):210–214. doi: 10.1046/j.1365-2249.1998.00698.x.
    1. Gyoneva S., Ransohoff R. M. Inflammatory reaction after traumatic brain injury: therapeutic potential of targeting cell-cell communication by chemokines. Trends in Pharmacological Sciences. 2015;36(7):471–480. doi: 10.1016/j.tips.2015.04.003.
    1. Sosunov A. A., Wu X., Tsankova N. M., Guilfoyle E., McKhann G. M., Goldman J. E. Phenotypic heterogeneity and plasticity of isocortical and hippocampal astrocytes in the human brain. Journal of Neuroscience. 2014;34(6):2285–2298. doi: 10.1523/JNEUROSCI.4037-13.2014.
    1. Naudé P. J. W., Nyakas C., Eiden L. E., et al. Lipocalin 2: novel component of proinflammatory signaling in Alzheimer’s disease. The FASEB Journal. 2012;26(7):2811–2823. doi: 10.1096/fj.11-202457.
    1. Bi F., Huang C., Tong J., et al. Reactive astrocytes secrete lcn2 to promote neuron death. Proceedings of the National Academy of Sciences of the United States of America. 2013;110(10):4069–4074. doi: 10.1073/pnas.1218497110.
    1. Suk K. Lipocalin-2 as a therapeutic target for brain injury: an astrocentric perspective. Progress in Neurobiology. 2016;144:158–172. doi: 10.1016/j.pneurobio.2016.08.001.
    1. Lee S., Park J. Y., Lee W. H., et al. Lipocalin-2 is an autocrine mediator of reactive astrocytosis. Journal of Neuroscience. 2009;29(1):234–249. doi: 10.1523/JNEUROSCI.5273-08.2009.
    1. Kisseleva T., Bhattacharya S., Braunstein J., Schindler C. W. Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene. 2002;285(1-2):1–24. doi: 10.1016/S0378-1119(02)00398-0.
    1. Ivashkiv L. B. Jak-STAT signaling pathways in cells of the immune system. Reviews in Immunogenetics. 2000;2(2):220–230.
    1. Schindler C. W. Series introduction: JAK-STAT signaling in human disease. Journal of Clinical Investigation. 2002;109(9):1133–1137. doi: 10.1172/JCI0215644.
    1. Na Y. J., Jin J. K., Kim J. I., Choi E. K., Carp R. I., Kim Y. S. JAK-STAT signaling pathway mediates astrogliosis in brains of scrapie-infected mice. Journal of Neurochemistry. 2007;103(2):637–649. doi: 10.1111/j.1471-4159.2007.04769.x.
    1. Lee S., Kim J. H., Kim J. H., et al. Lipocalin-2 is a chemokine inducer in the central nervous system: role of chemokine ligand 10 (CXCL10) in lipocalin-2-induced cell migration. Journal of Biological Chemistry. 2011;286(51):43855–43870. doi: 10.1074/jbc.M111.299248.

Source: PubMed

3
S'abonner