The effect of Sailuotong (SLT) on neurocognitive and cardiovascular function in healthy adults: a randomised, double-blind, placebo controlled crossover pilot trial

Genevieve Z Steiner, Alan Yeung, Jian-Xun Liu, David A Camfield, Frances M de Blasio, Andrew Pipingas, Andrew B Scholey, Con Stough, Dennis H Chang, Genevieve Z Steiner, Alan Yeung, Jian-Xun Liu, David A Camfield, Frances M de Blasio, Andrew Pipingas, Andrew B Scholey, Con Stough, Dennis H Chang

Abstract

Background: Sailuotong (SLT) is a standardised herbal medicine formula consisting of Panax ginseng, Ginkgo biloba, and Crocus sativus, and has been designed to enhance cognitive and cardiovascular function.

Methods: Using a randomised, double-blind, placebo controlled crossover design, this pilot study assessed the effect of treatment for 1 week with SLT and placebo (1 week washout period) on neurocognitive and cardiovascular function in healthy adults. Sixteen adults completed a computerised neuropsychological test battery (Compass), and had their electroencephalographic (EEG) activity and cardiovascular system function assessed. Primary outcome measures were cognitive test scores and oddball task event-related potential (ERP) component amplitudes. Secondary outcome measures were resting EEG spectral band amplitudes, and cardiovascular parameters.

Results: Treatment with SLT, compared to placebo, resulted in small improvements in working memory, a slight increase in auditory target (cf. nontarget) P3a amplitude, and a decrease in auditory N1 target (cf. nontarget) amplitude. There was no effect of SLT on EEG amplitude in delta, theta, alpha, or beta bands in both eyes open and eyes closed resting conditions, or on aortic and peripheral pulse pressure, and resting heartrate.

Conclusions: Findings suggest that SLT has the potential to improve working memory performance in healthy adults; a larger sample size is needed to confirm this.

Trial registration: Australia New Zealand Clinical Trials Registry Trial Registration Id: ACTRN12610000947000 .

Figures

Fig. 1
Fig. 1
Flow chart of the study participants
Fig. 2
Fig. 2
Grand mean ERPs for targets and nontargets from the midline sites for both visual (left) and auditory (right) modalities. The solid lines represent the raw data, and the dashed lines illustrate the reconstructed PCA waveforms. PCA extracted components are labelled at Fz for both modalities
Fig. 3
Fig. 3
Factor loadings for visual (top) and auditory (bottom) modalities. The topographic headmaps for each of the extracted ERP components are shown above the factor loadings (averaged across all subjects, treatments, and testing sessions), separately for each modality
Fig. 4
Fig. 4
Mean difference topographic headmaps for auditory N1 and P3a. Headmaps illustrate the difference in stimulus condition (target minus nontarget) and the difference between sessions (post-treatment minus baseline) for placebo and SLT. A SLT related reduction in N1 negativity, and an increase in P3a positivity are apparent

References

    1. Hedden T, Gabriele JDE. Insights into the ageing mind: a view from cognitive neuroscience. Nat Rev Neurosci. 2004;5:87–96. doi: 10.1038/nrn1323.
    1. Gregoire J, Van der Linder M. Effects of age on forward and backward digit spans. Aging Neuropsychol Cogn. 1997;4:140–149. doi: 10.1080/13825589708256642.
    1. Selkoe DJ. Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev. 2001;81:741–766.
    1. Bishop NA, Lu T, Yankner BA. Neural mechanisms of ageing and cognitive decline. Nature. 2010;464:529–535. doi: 10.1038/nature08983.
    1. Pieperhoff P, Homke L, Schneider F, Habel U, Shah N, Zilles K, et al. Deformation field morphometry reveals age-related structural differences between the brains of adults up to 51 years. J Neurosci. 2008;28(4):828. doi: 10.1523/JNEUROSCI.3732-07.2008.
    1. Salat DH, Lee SY, van der Kouwe AJ, Greve DN, Fischl B, Rosas HD. Age-associated alternations in cortical gray and white matter signal intensity and gray to white matter contrast. Neuroimage. 2009;48:21–28. doi: 10.1016/j.neuroimage.2009.06.074.
    1. Kadota T, Horinouchi T, Kuroda C. Development and aging of the cerebrum: assessment with proton MR spectroscopy. Am J Neuroradiol. 2001;22:128.
    1. Pase MP, Herbert A, Grima NA, Pipingas A, O’Rourke MF. Arterial stiffness as a cause of cognitive decline and dementia: a systematic review and meta-analysis. Intern Med J. 2012;42(7):808–815. doi: 10.1111/j.1445-5994.2011.02645.x.
    1. Kivipelto M, Ngandu T, Fratiglioni L, Viitanen M, Kåreholt I, Nissinen A. Obesity and vascular risk factors at midlife and the risk of dementia and Alzheimer disease. Arch Neurol. 2005;62:1556–1560. doi: 10.1001/archneur.62.10.1556.
    1. Ravaglia G, Forti P, Maioli F, Chiappelli M, Montesi F, Patterson C. Blood inflammatory markers and risk of dementia: The Conselice Study of Brain Aging. Neurobiol Aging. 2007;28:1810–1820. doi: 10.1016/j.neurobiolaging.2006.08.012.
    1. Sabia S, Elbaz A, Britton A, Bell S, Dugravot A, Shipley M, et al. Alcohol consumption and cognitive decline in early old age. Neurology. 2014;82(4):1–8. doi: 10.1212/WNL.0000000000000063.
    1. Yaffe K, Kanaya A, Lindquist K, Simonsick EM, Harris T, Newman AB. The metabolic syndrome, inflammation, and risk of cognitive decline. JAMA. 2004;18:2237–2242. doi: 10.1001/jama.292.18.2237.
    1. Karakaya T, Fußer F, Schröder J, Pantel J. Pharmacological treatment of mild cognitive impairment as a prodromal syndrome of Alzheimer’s disease. Curr Neuropharmacol. 2013;11:102–108.
    1. Birks J, Harvey RJ. Donepezil for dementia due to Alzheimer’s disease. Cochrane Database Syst Rev. 2006;25:CD001190.
    1. Olivares D, Deshpande VK, Shi Y, Lahiri DK, Greig NH, Rogers JT, et al. N-methyl D-asparate (NMDA) receptor antagonists and memantine treatment for Alzheimer’s disease, vascular dementia and Parkinson’s disease. Curr Alzheimer Res. 2012;9:746–758. doi: 10.2174/156720512801322564.
    1. Feldman HH, Ferris S, Winblad B, Sfikas N, Mancoine L, Lane R. Effect of rivastigmine on delay to diagnosis of Alzheimer’s disease from mild cognitive impairment: the InDDEx study. Lancet Neurol. 2007;6:501–512. doi: 10.1016/S1474-4422(07)70109-6.
    1. Thal LJ, Ferris SH, Kirby L, Block GA, Lines CR, Reines SA. A randomized, double-blind, study of rofecoxib in patients with mild cognitive impairment. Neuropsychopharmacology. 2005;30:1204–1215. doi: 10.1038/sj.npp.1300690.
    1. Winblad B, Gauthier S, Scinto L, Feldman H, Wilcock GK, Brashear HR. Safety and efficacy of galantamine in subjects with mild cognitive impairment. Neurology. 2008;70:2024–2035. doi: 10.1212/01.wnl.0000303815.69777.26.
    1. Lockhart BP, Lestage PJ. Cognition enhancing or neuroprotective compounds for the treatment of cognitive disorders: why? when? which? Exp Gerontol. 2003;38:119–128. doi: 10.1016/S0531-5565(02)00163-8.
    1. Peterson RC, Negash S. Mild cognitive impairment: an overview. CNS Spectr. 2008;13:45–53.
    1. Van der Schyf CJ, Gal S, Geldenhuys WJ, Youdim MBH. Multifunctional neuroprotective drugs targeting monoamine oxidase inhibition, iron chelation, adenosine receptors, cholinergic, and glutamatergic action for neurodegenerative diseases. Expert Opin Investig Drugs. 2006;15:873–886. doi: 10.1517/13543784.15.8.873.
    1. Chang D, Liu J. Vascular Dementia. Journal of Complementary Medicine. 2006;5(2):14–20.
    1. Scholey AB, Kennedy DO. Cognitive and physiological effects of an “energy drink”: an evaluation of the whole drink and of glucose, caffeine and herbal flavouring fractions. Psychopharmacology (Berl) 2004;176:320–330. doi: 10.1007/s00213-004-1935-2.
    1. Kennedy DO, Scholey AB, Wesnes KA. Differential, dose dependent changes in cognitive performance following acute administration of Ginkgo biloba/Panax ginseng combination in healthy young volunteers. Nutr Neurosci. 2001;4:399–412.
    1. Wagner H. New targets in the Phytopharmacology of plants. In Herbal medicine, a concise overview for healthcare professionals. Butterworh-Heinemann, 34–42; 1999. doi: 10.1212/ WNL.0000000000000063.
    1. Wagner H, Ulrich-Merzenich G. Synergy research: approaching a new generation of phytopharmaceuticals. Phytomedicine. 2009;16:97–110. doi: 10.1016/j.phymed.2008.12.018.
    1. Williamson EM. Synergy and other interactions in phytomedicines. Phytomedicine. 2001;8:401–409. doi: 10.1078/0944-7113-00060.
    1. Flaws B, Lake J. Chinese Medical Psychiatry: A Textbook and Clinical Manual. Colorado: Blue Poppy Press; 2010. A brief history of Chinese medicine psychiatry; pp. 3–16.
    1. Zhang Y-Y, Li P-F, Li D. Effect of Ginkgo biloba leaf extract on electroencephalography of rat with cerebral ischemia and reperfusion. Acta Pharmacol Sin. 2003;24:157–162.
    1. Zheng YQ, Liu XJ, Wang JN, Xu L. Effects of crocin on reperfusion-induced oxidative/nitrative injury to cerebral microvessels after global cerebral ischemia. Brain Res. 2006;1138:86–94. doi: 10.1016/j.brainres.2006.12.064.
    1. Cong WH, Liu JX, Xu L. Effects of extracts of Ginseng and Ginkgo biloba on hippocampal acetylcholine and monoamines in PDAP-pV7171 transgenic mice. Chin J Integr Med. 2007;27:810–813.
    1. Liu JX, Cong WH, Xu L, Wang JN. Effect of combination of extracts of ginseng and ginkgo biloba on acetylcholine in amyloid beta-protein-treated rats determined by an improved HPLC. Acta Pharmacol Sin. 2004;25:1118–1123.
    1. Liu J. Development of an evidence-based Chinese herbal medicine for the management of vascular dementia. 2008. .
    1. Chan P, Zia Q, Fu P. Ginkgo biloba leave extract: biological, medicinal, and toxicological effects. J Environ Sci Health C. 2007;25:211–244. doi: 10.1080/10590500701569414.
    1. Xu L, Liu JX. Effects of Weinaokang (WNK) capsule in tracephalic cholinergic system and capability of scavenging free radicals in chronic cerebral hypoperfusion rats. China Journal of Chinese Materia Medica. 2008;33:531–534.
    1. Xu L, Liu JX. Effect of Weinaokang (SLT) on dysmensia mice model. Journal of Pharmacological and Clinical Chinese Herbal Medicine. 2007;23:60–61.
    1. Smith J, Luo Y. Studies on molecular mechanisms of Ginkgo biloba extract. Appl Microbiol Biotechnol. 2004;64:465–472. doi: 10.1007/s00253-003-1527-9.
    1. Chang D, Colagiuri B, Luo R: Chinese medicine used to treat dementia. InAdvances in Natural Medicines, Nutraceuticals and Neurocognition. Edited by Stough C, Scholey A. CRC Press, 2013. .
    1. Bond A, Lader M. The use of analogue scales in rating subjective feelings. Br J Med Psychol. 1974;47:211–218. doi: 10.1111/j.2044-8341.1974.tb02285.x.
    1. Semlitsch HV, Anderer P, Schuster P, Presslich O. A solution for reliable and valid reduction of ocular artifacts, applied to the P300 ERP. Psychophysiology. 1986;23:695–703. doi: 10.1111/j.1469-8986.1986.tb00696.x.
    1. Kayser J, Tenke CE. Optimizing PCA methodology for ERP component identification and measurement: theoretical rationale and empirical evaluation. Clin Neurophysiol. 2003;114:2307–2325. doi: 10.1016/S1388-2457(03)00241-4.
    1. Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods. 2004;134:9–21. doi: 10.1016/j.jneumeth.2003.10.009.
    1. Steiner GZ, Barry RJ, Gonsalvez CJ. Stimulus-to-matching-stimulus interval influences N1, P2, and P3b in an equiprobable Go/NoGo task. Int J Psychophysiol. 2014;94:59–68. doi: 10.1016/j.ijpsycho.2014.07.003.
    1. O’Brien RG, Kaiser MK. MANOVA method for analysing repeated measures designs: An extensive primer. Psychol Bull. 1985;97:316–333. doi: 10.1037/0033-2909.97.2.316.
    1. Howell D. Statistical methods for psychology. 6. Belmont, CA: Thompson Wadsworth; 1997.
    1. Tabachnick BG, Fidell LS. Using multivariate statistics. New York: Harper Collins; 1989.
    1. Wesnes KA, Ward T, McGinty A, Petrini O. The memory enhancing effects of Ginkgo biloba/Panax ginseng combination in healthy middle-aged volunteers. Psychopharmacology (Berl) 2000;152:353–361. doi: 10.1007/s002130000533.
    1. Stough C, Clarke J, Lloyd J, Nathan PJ. Neuropsychological changes after 30-day Ginkgo Biloba administration in healthy participants. Int J Neuropsychopharmacolog. 2001;4:131–134. doi: 10.1017/S1461145701002292.
    1. Karamacoska D, Barry RJ, Steiner GZ, de Blasio FM. Clarifying the sequential processes involved in a cued continuous performance test. Psychophysiology. 2015;52(1):67–80. doi: 10.1111/psyp.12286.
    1. Näätänen R. The role of attention in auditory information processing as revealed by event-related potentials and other brain measures of cognitive function. Behav Brain Sci. 1990;13:201–288. doi: 10.1017/S0140525X00078407.
    1. Spencer KM, Dien J, Donchin E. Spatiotemporal analysis of the late ERP responses to deviant stimuli. Psychophysiology. 2001;38:343–358. doi: 10.1111/1469-8986.3820343.
    1. Wronka E, Kaiser J, Coenen AML. The auditory P3 from passive and active three-stimulus oddball paradigm. Acta Neurobiol Exp. 2008;68:362–372.
    1. Semlitsch HV, Anderer P, Saletu P, Binder GA, Decker KA. Cognitive psychophysiology in nootropic drug research: effects of Ginkgo biloba on event-related potentials (P300) in age-associated memory impairment. Pharmacopsychiatry. 1995;28:134–142. doi: 10.1055/s-2007-979605.
    1. Näätänen R, Picton T. The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure. Psychophysiology. 1987;24:375–425. doi: 10.1111/j.1469-8986.1987.tb00311.x.
    1. Vaughan HG, Ritter W. The sources of auditory evoked responses recorded from the human head. Electroencephalogr Clin Neurophysiol. 1970;28:360–367. doi: 10.1016/0013-4694(70)90228-2.
    1. Squires NK, Squires KC, Hillyard SA. Two varieties of long-latency positive waves evoked by unpredicable auditory stimuli in man. Electroencephalogr Clin Neurophysiol. 1975;39:387–401. doi: 10.1016/0013-4694(75)90263-1.
    1. Squires NK, Squires KC, Hillyard SA. Decision-related cortical potentials during an auditory signal detection task with cued observation intervals. J Exp Psychol Hum Percept Perform. 1975;1:268–279. doi: 10.1037/0096-1523.1.3.268.
    1. Verleger R. P3b: Towards some decision about memory. Clin Neurophysiol. 2008;119:968–970. doi: 10.1016/j.clinph.2007.11.175.
    1. Klostermann F, Wahl M, Marzinzik F, Schneider GH, Kupsch A, Curio G. Mental chronometry of target detection: human thalamus leads cortex. Brain. 2006;129:923–931. doi: 10.1093/brain/awl014.
    1. Polich J. Updating P300: An integrative theory of P3a and P3b. Clin Neurophysiol. 2007;118:2128–2148. doi: 10.1016/j.clinph.2007.04.019.
    1. Barry RJ, Clarke AR, Johnstone SJ, Magee CA, Rushby JA. EEG differences between eyes-closed and eyes-open resting conditions. Clin Neurophysiol. 2007;118:2765–2773. doi: 10.1016/j.clinph.2007.07.028.
    1. Başar E, Schűrmannn M. Cross-modality experiments in humans. In: Başar E, editor. Brain function and oscillations: II. Integrative brain function, neurophysiology and cognitive processes. Germany: Springer; 1999.
    1. Volavka J, Matoušek M, Roubíček J. Mental arithmetic and eye opening. An EEG frequency analysis and GSR study. Electroencephalogr Clin Neurophysiol. 1967;22:174–176. doi: 10.1016/0013-4694(67)90158-7.
    1. Kennedy DO, Scholey AB. Ginseng: potential for the enhancement of cognitive performance and mood. Pharmacol Biochem Behav. 2003;75:687–700. doi: 10.1016/S0091-3057(03)00126-6.
    1. Kennedy DO, Scholey AB, Drewery L, Marsh VR, Moore B, Ashton H. Electroencephalograph effects of single doses of Ginkgo biloba and Panax ginseng on healthy young volunteers. Pharmacol Biochem Behav. 2003;75:701–709. doi: 10.1016/S0091-3057(03)00120-5.
    1. Ouyang G, Herzmann G, Zhou C, Sommer W. Residue iteration decomposition (RIDE): A new method to separate ERP components on the basis of latency variability in single trials. Psychophysiology. 2011;48:1631–1647. doi: 10.1111/j.1469-8986.2011.01269.x.
    1. Ouyang G, Schacht A, Zhou C, Sommer W. Overcoming limitations of the ERP method with Residue Iteration Decomposition (RIDE): A demonstration in go/no-go experiments. Psychophysiology. 2013;50:253–265. doi: 10.1111/psyp.12004.
    1. Stürmer B, Ouyang G, Zhou C, Boldt A, Sommer W. Separating stimulus-driven and response-related LRP components with Residue Iteration Decomposition (RIDE) Psychophysiology. 2013;50:70–73. doi: 10.1111/j.1469-8986.2012.01479.x.
    1. Keheyan G, Dunn LA, Hall WL. Acute effects of ginkgo biloba extract on vascular function and blood pressure. Plant Food Hum Nutr. 2011;66:209–211. doi: 10.1007/s11130-011-0234-4.

Source: PubMed

3
S'abonner