Modulation of GABAergic transmission in development and neurodevelopmental disorders: investigating physiology and pathology to gain therapeutic perspectives

Gabriele Deidda, Ignacio F Bozarth, Laura Cancedda, Gabriele Deidda, Ignacio F Bozarth, Laura Cancedda

Abstract

During mammalian ontogenesis, the neurotransmitter GABA is a fundamental regulator of neuronal networks. In neuronal development, GABAergic signaling regulates neural proliferation, migration, differentiation, and neuronal-network wiring. In the adult, GABA orchestrates the activity of different neuronal cell-types largely interconnected, by powerfully modulating synaptic activity. GABA exerts these functions by binding to chloride-permeable ionotropic GABAA receptors and metabotropic GABAB receptors. According to its functional importance during development, GABA is implicated in a number of neurodevelopmental disorders such as autism, Fragile X, Rett syndrome, Down syndrome, schizophrenia, Tourette's syndrome and neurofibromatosis. The strength and polarity of GABAergic transmission is continuously modulated during physiological, but also pathological conditions. For GABAergic transmission through GABAA receptors, strength regulation is achieved by different mechanisms such as modulation of GABAA receptors themselves, variation of intracellular chloride concentration, and alteration in GABA metabolism. In the never-ending effort to find possible treatments for GABA-related neurological diseases, of great importance would be modulating GABAergic transmission in a safe and possibly physiological way, without the dangers of either silencing network activity or causing epileptic seizures. In this review, we will discuss the different ways to modulate GABAergic transmission normally at work both during physiological and pathological conditions. Our aim is to highlight new research perspectives for therapeutic treatments that reinstate natural and physiological brain functions in neuro-pathological conditions.

Keywords: GABA; GABA metabolism; GABAA receptor; cation chloride cotransporters; neurodevelopmental disorders.

References

    1. Abramian A. M., Comenencia-Ortiz E., Vithlani M., Tretter E. V., Sieghart W., Davies P. A., et al. (2010). Protein kinase C phosphorylation regulates membrane insertion of GABAA receptor subtypes that mediate tonic inhibition. J. Biol. Chem. 285, 41795–41805 10.1074/jbc.M110.149229
    1. Adusei D. C., Pacey L. K., Chen D., Hampson D. R. (2010). Early developmental alterations in GABAergic protein expression in fragile X knockout mice. Neuropharmacology 59, 167–171 10.1016/j.neuropharm.2010.05.002
    1. Ahn K., Gil R., Seibyl J., Sewell R. A., D'Souza D. C. (2011). Probing GABA receptor function in schizophrenia with iomazenil. Neuropsychopharmacology 36, 677–683 10.1038/npp.2010.198
    1. Akbarian S., Chen R. Z., Gribnau J., Rasmussen T. P., Fong H., Jaenisch R., et al. (2001). Expression pattern of the Rett syndrome gene MeCP2 in primate prefrontal cortex. Neurobiol. Dis. 8, 784–791 10.1006/nbdi.2001.0420
    1. Amir R. E., Van Den Veyver I. B., Wan M., Tran C. Q., Francke U., Zoghbi H. Y. (1999). Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat. Genet. 23, 185–188 10.1038/13810
    1. Arima-Yoshida F., Watabe A. M., Manabe T. (2011). The mechanisms of the strong inhibitory modulation of long-term potentiation in the rat dentate gyrus. Eur. J. Neurosci. 33, 1637–1646 10.1111/j.1460-9568.2011.07657.x
    1. Arion D., Lewis D. A. (2011). Altered expression of regulators of the cortical chloride transporters NKCC1 and KCC2 in schizophrenia. Arch. Gen. Psychiatry 68, 21–31 10.1001/archgenpsychiatry.2010.114
    1. Asada H., Kawamura Y., Maruyama K., Kume H., Ding R. G., Kanbara N., et al. (1997). Cleft palate and decreased brain gamma-aminobutyric acid in mice lacking the 67-kDa isoform of glutamic acid decarboxylase. Proc. Natl. Acad. Sci. U.S.A. 94, 6496–6499 10.1073/pnas.94.12.6496
    1. Attwell D., Laughlin S. B. (2001). An energy budget for signaling in the grey matter of the brain. J. Cereb. Blood Flow Metab. 21, 1133–1145 10.1097/00004647-200110000-00001
    1. Bagni C., Greenough W. T. (2005). From mRNP trafficking to spine dysmorphogenesis: the roots of fragile X syndrome. Nat. Rev. Neurosci. 6, 376–387 10.1038/nrn1667
    1. Barnard E. A., Skolnick P., Olsen R. W., Mohler H., Sieghart W., Biggio G., et al. (1998). International Union of Pharmacology. XV. Subtypes of gamma-aminobutyric acidA receptors: classification on the basis of subunit structure and receptor function. Pharmacol. Rev. 50, 291–313
    1. Battaglioli G., Liu H., Martin D. L. (2003). Kinetic differences between the isoforms of glutamate decarboxylase: implications for the regulation of GABA synthesis. J. Neurochem. 86, 879–887 10.1046/j.1471-4159.2003.01910.x
    1. Begenisic T., Baroncelli L., Sansevero G., Milanese M., Bonifacino T., Bonanno G., et al. (2014). Fluoxetine in adulthood normalizes GABA release and rescues hippocampal synaptic plasticity and spatial memory in a mouse model of Down syndrome. Neurobiol. Dis. 63, 12–19 10.1016/j.nbd.2013.11.010
    1. Begenisic T., Spolidoro M., Braschi C., Baroncelli L., Milanese M., Pietra G., et al. (2011). Environmental enrichment decreases GABAergic inhibition and improves cognitive abilities, synaptic plasticity, and visual functions in a mouse model of Down syndrome. Front. Cell Neurosci. 5:29 10.3389/fncel.2011.00029
    1. Belichenko N. P., Belichenko P. V., Kleschevnikov A. M., Salehi A., Reeves R. H., Mobley W. C. (2009a). The “Down syndrome critical region” is sufficient in the mouse model to confer behavioral, neurophysiological, and synaptic phenotypes characteristic of Down syndrome. J. Neurosci. 29, 5938–5948 10.1523/JNEUROSCI.1547-09.2009
    1. Belichenko P. V., Kleschevnikov A. M., Masliah E., Wu C., Takimoto-Kimura R., Salehi A., et al. (2009b). Excitatory-inhibitory relationship in the fascia dentata in the Ts65Dn mouse model of Down syndrome. J. Comp. Neurol. 512, 453–466 10.1002/cne.21895
    1. Belichenko P. V., Kleschevnikov A. M., Salehi A., Epstein C. J., Mobley W. C. (2007). Synaptic and cognitive abnormalities in mouse models of Down syndrome: exploring genotype-phenotype relationships. J. Comp. Neurol. 504, 329–345 10.1002/cne.21433
    1. Belichenko P. V., Masliah E., Kleschevnikov A. M., Villar A. J., Epstein C. J., Salehi A., et al. (2004). Synaptic structural abnormalities in the Ts65Dn mouse model of Down Syndrome. J. Comp. Neurol. 480, 281–298 10.1002/cne.20337
    1. Ben-Ari Y. (2002). Excitatory actions of gaba during development: the nature of the nurture. Nat. Rev. Neurosci. 3, 728–739 10.1038/nrn920
    1. Ben-Ari Y., Gaiarsa J. L., Tyzio R., Khazipov R. (2007). GABA: a pioneer transmitter that excites immature neurons and generates primitive oscillations. Physiol. Rev. 87, 1215–1284 10.1152/physrev.00017.2006
    1. Ben-Ari Y., Woodin M. A., Sernagor E., Cancedda L., Vinay L., Rivera C., et al. (2012). Refuting the challenges of the developmental shift of polarity of GABA actions: GABA more exciting than ever! Front. Cell Neurosci. 6:35 10.3389/fncel.2012.00035
    1. Benes F. M., Vincent S. L., Marie A., Khan Y. (1996). Up-regulation of GABAA receptor binding on neurons of the prefrontal cortex in schizophrenic subjects. Neuroscience 75, 1021–1031 10.1016/0306-4522(96)00328-4
    1. Benevento L. A., Bakkum B. W., Cohen R. S. (1995). gamma-Aminobutyric acid and somatostatin immunoreactivity in the visual cortex of normal and dark-reared rats. Brain Res. 689, 172–182 10.1016/0006-8993(95)00553-3
    1. Beneyto M., Abbott A., Hashimoto T., Lewis D. A. (2011). Lamina-specific alterations in cortical GABA(A) receptor subunit expression in schizophrenia. Cereb. Cortex 21, 999–1011 10.1093/cercor/bhq169
    1. Bergqvist L. L., Katz-Salamon M., Hertegard S., Anand K. J., Lagercrantz H. (2009). Mode of delivery modulates physiological and behavioral responses to neonatal pain. J. Perinatol. 29, 44–50 10.1038/jp.2008.129
    1. Bhattacharyya A., McMillan E., Chen S. I., Wallace K., Svendsen C. N. (2009). A critical period in cortical interneuron neurogenesis in down syndrome revealed by human neural progenitor cells. Dev. Neurosci. 31, 497–510 10.1159/000236899
    1. Blaesse P., Airaksinen M. S., Rivera C., Kaila K. (2009). Cation-chloride cotransporters and neuronal function. Neuron 61, 820–838 10.1016/j.neuron.2009.03.003
    1. Blatt G. J., Fitzgerald C. M., Guptill J. T., Booker A. B., Kemper T. L., Bauman M. L. (2001). Density and distribution of hippocampal neurotransmitter receptors in autism: an autoradiographic study. J. Autism. Dev. Disord. 31, 537–543 10.1023/A:1013238809666
    1. Bliss T. V., Collingridge G. L. (1993). A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39 10.1038/361031a0
    1. Bloomfield C., French S. J., Jones D. N., Reavill C., Southam E., Cilia J., et al. (2008). Chandelier cartridges in the prefrontal cortex are reduced in isolation reared rats. Synapse 62, 628–631 10.1002/syn.20521
    1. Blue M. E., Naidu S., Johnston M. V. (1999). Altered development of glutamate and GABA receptors in the basal ganglia of girls with Rett syndrome. Exp. Neurol. 156, 345–352 10.1006/exnr.1999.7030
    1. Boggio E. M., Lonetti G., Pizzorusso T., Giustetto M. (2010). Synaptic determinants of rett syndrome. Front. Synaptic Neurosci. 2:28 10.3389/fnsyn.2010.00028
    1. Bos N. P., Mirmiran M. (1993). Effects of excitatory and inhibitory amino acids on neuronal discharges in the cultured suprachiasmatic nucleus. Brain Res. Bull. 31, 67–72 10.1016/0361-9230(93)90012-Z
    1. Boulland J. L., Chaudhry F. A. (2012). Ontogenetic changes in the distribution of the vesicular GABA transporter VGAT correlate with the excitation/inhibition shift of GABA action. Neurochem. Int. 61, 506–516 10.1016/j.neuint.2012.03.018
    1. Brandon N., Jovanovic J., Moss S. (2002). Multiple roles of protein kinases in the modulation of gamma-aminobutyric acid(A) receptor function and cell surface expression. Pharmacol. Ther. 94, 113–122 10.1016/S0163-7258(02)00175-4
    1. Brandon N. J., Delmas P., Hill J., Smart T. G., Moss S. J. (2001). Constitutive tyrosine phosphorylation of the GABA(A) receptor gamma 2 subunit in rat brain. Neuropharmacology 41, 745–752 10.1016/S0028-3908(01)00121-6
    1. Brandon N. J., Delmas P., Kittler J. T., McDonald B. J., Sieghart W., Brown D. A., et al. (2000). GABAA receptor phosphorylation and functional modulation in cortical neurons by a protein kinase C-dependent pathway. J. Biol. Chem. 275, 38856–38862 10.1074/jbc.M004910200
    1. Braudeau J., Dauphinot L., Duchon A., Loistron A., Dodd R. H., Herault Y., et al. (2011a). Chronic treatment with a promnesiant GABA-A alpha5-selective inverse agonist increases immediate early genes expression during memory processing in mice and rectifies their expression levels in a down syndrome mouse model. Adv. Pharmacol. Sci. 2011, 153218 10.1155/2011/153218
    1. Braudeau J., Delatour B., Duchon A., Pereira P. L., Dauphinot L., De Chaumont F., et al. (2011b). Specific targeting of the GABA-A receptor alpha5 subtype by a selective inverse agonist restores cognitive deficits in Down syndrome mice. J. Psychopharmacol. 25, 1030–1042 10.1177/0269881111405366
    1. Brennand K. J., Simone A., Jou J., Gelboin-Burkhart C., Tran N., Sangar S., et al. (2011). Modelling schizophrenia using human induced pluripotent stem cells. Nature 473, 221–225 10.1038/nature09915
    1. Briggs S. W., Galanopoulou A. S. (2011). Altered GABA signaling in early life epilepsies. Neural Plast. 2011:527605 10.1155/2011/527605
    1. Bright D. P., Smart T. G. (2013). Protein kinase C regulates tonic GABA(A) receptor-mediated inhibition in the hippocampus and thalamus. Eur. J. Neurosci. 38, 3408–3423 10.1111/ejn.12352
    1. Bronfeld M., Yael D., Belelovsky K., Bar-Gad I. (2013). Motor tics evoked by striatal disinhibition in the rat. Front. Syst. Neurosci. 7:50 10.3389/fnsys.2013.00050
    1. Brooks-Kayal A. (2010). Epilepsy and autism spectrum disorders: are there common developmental mechanisms? Brain Dev. 32, 731–738 10.1016/j.braindev.2010.04.010
    1. Buchanan R. W., Keefe R. S., Lieberman J. A., Barch D. M., Csernansky J. G., Goff D. C., et al. (2011). A randomized clinical trial of MK-0777 for the treatment of cognitive impairments in people with schizophrenia. Biol. Psychiatry 69, 442–449 10.1016/j.biopsych.2010.09.052
    1. Buddhala C., Hsu C. C., Wu J. Y. (2009). A novel mechanism for GABA synthesis and packaging into synaptic vesicles. Neurochem. Int. 55, 9–12 10.1016/j.neuint.2009.01.020
    1. Buiting K. (2010). Prader-willi syndrome and angelman syndrome. Am. J. Med. Genet. C Semin. Med. Genet. 154C, 365–376 10.1002/ajmg.c.30273
    1. Bullock W. M., Bolognani F., Botta P., Valenzuela C. F., Perrone-Bizzozero N. I. (2009). Schizophrenia-like GABAergic gene expression deficits in cerebellar Golgi cells from rats chronically exposed to low-dose phencyclidine. Neurochem. Int. 55, 775–782 10.1016/j.neuint.2009.07.010
    1. Buxbaum J. D., Silverman J. M., Smith C. J., Greenberg D. A., Kilifarski M., Reichert J., et al. (2002). Association between a GABRB3 polymorphism and autism. Mol. Psychiatry 7, 311–316 10.1038/sj.mp.4001011
    1. Cancedda L., Fiumelli H., Chen K., Poo M. M. (2007). Excitatory GABA action is essential for morphological maturation of cortical neurons in vivo. J. Neurosci. 27, 5224–5235 10.1523/JNEUROSCI.5169-06.2007
    1. Cancedda L., Putignano E., Sale A., Viegi A., Berardi N., Maffei L. (2004). Acceleration of visual system development by environmental enrichment. J. Neurosci. 24, 4840–4848 10.1523/JNEUROSCI.0845-04.2004
    1. Cassidy A. W., Mulvany S. K., Pangalos M. N., Murphy K. J., Regan C. M. (2010). Reduced reelin protein synthesis in ventral hippocampus of isolation reared Wistar rats accompanies impaired avoidance conditioning. Behav. Brain Res. 213, 130–134 10.1016/j.bbr.2010.04.040
    1. Cellot G., Cherubini E. (2013). Functional role of ambient GABA in refining neuronal circuits early in postnatal development. Front. Neural Circuits 7:136 10.3389/fncir.2013.00136
    1. Centonze D., Rossi S., Mercaldo V., Napoli I., Ciotti M. T., De Chiara V., et al. (2008). Abnormal striatal GABA transmission in the mouse model for the fragile X syndrome. Biol. Psychiatry 63, 963–973 10.1016/j.biopsych.2007.09.008
    1. Chakrabarti L., Best T. K., Cramer N. P., Carney R. S., Isaac J. T., Galdzicki Z., et al. (2010). Olig1 and Olig2 triplication causes developmental brain defects in Down syndrome. Nat. Neurosci. 13, 927–934 10.1038/nn.2600
    1. Chakrabarti L., Scafidi J., Gallo V., Haydar T. F. (2011). Environmental enrichment rescues postnatal neurogenesis defect in the male and female Ts65Dn mouse model of Down syndrome. Dev. Neurosci. 33, 428–441 10.1159/000329423
    1. Chao H. T., Chen H., Samaco R. C., Xue M., Chahrour M., Yoo J., et al. (2010). Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes. Nature 468, 263–269 10.1038/nature09582
    1. Cheung U., Moghaddasi M., Hall H. L., Smith J. J., Buck L. T., Woodin M. A. (2006). Excitatory actions of GABA mediate severe-hypoxia-induced depression of neuronal activity in the pond snail (Lymnaea stagnalis). J. Exp. Biol. 209, 4429–4435 10.1242/jeb.02553
    1. Choi H. J., Lee C. J., Schroeder A., Kim Y. S., Jung S. H., Kim J. S., et al. (2008). Excitatory actions of GABA in the suprachiasmatic nucleus. J. Neurosci. 28, 5450–5459 10.1523/JNEUROSCI.5750-07.2008
    1. Clark S., Schwalbe J., Stasko M. R., Yarowsky P. J., Costa A. C. (2006). Fluoxetine rescues deficient neurogenesis in hippocampus of the Ts65Dn mouse model for Down syndrome. Exp. Neurol. 200, 256–261 10.1016/j.expneurol.2006.02.005
    1. Cobb S. R., Buhl E. H., Halasy K., Paulsen O., Somogyi P. (1995). Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons. Nature 378, 75–78 10.1038/378075a0
    1. Cochran S. M., Kennedy M., McKerchar C. E., Steward L. J., Pratt J. A., Morris B. J. (2003). Induction of metabolic hypofunction and neurochemical deficits after chronic intermittent exposure to phencyclidine: differential modulation by antipsychotic drugs. Neuropsychopharmacology 28, 265–275 10.1038/sj.npp.1300031
    1. Coghlan S., Horder J., Inkster B., Mendez M. A., Murphy D. G., Nutt D. J. (2012). GABA system dysfunction in autism and related disorders: from synapse to symptoms. Neurosci. Biobehav. Rev. 36, 2044–2055 10.1016/j.neubiorev.2012.07.005
    1. Connell J., Oozeer R., De Vries L., Dubowitz L. M., Dubowitz V. (1989). Clinical and EEG response to anticonvulsants in neonatal seizures. Arch. Dis. Child 64, 459–464 10.1136/adc.64.4_Spec_No.459
    1. Contestabile A., Greco B., Ghezzi D., Tucci V., Benfenati F., Gasparini L. (2013). Lithium rescues synaptic plasticity and memory in Down syndrome mice. J. Clin. Invest. 123, 348–361 10.1172/JCI64650
    1. Cook E. H., Jr., Courchesne R. Y., Cox N. J., Lord C., Gonen D., Guter S. J., et al. (1998). Linkage-disequilibrium mapping of autistic disorder, with 15q11-13 markers. Am. J. Hum. Genet. 62, 1077–1083 10.1086/301832
    1. Costa A. C., Grybko M. J. (2005). Deficits in hippocampal CA1 LTP induced by TBS but not HFS in the Ts65Dn mouse: a model of Down syndrome. Neurosci. Lett. 382, 317–322 10.1016/j.neulet.2005.03.031
    1. Costa A. C., Scott-McKean J. J. (2013). Prospects for improving brain function in individuals with Down syndrome. CNS Drugs. 27, 679–702 10.1007/s40263-013-0089-3
    1. Costa R. M., Federov N. B., Kogan J. H., Murphy G. G., Stern J., Ohno M., et al. (2002). Mechanism for the learning deficits in a mouse model of neurofibromatosis type 1. Nature 415, 526–530 10.1038/nature711
    1. Costa R. M., Silva A. J. (2002). Molecular and cellular mechanisms underlying the cognitive deficits associated with neurofibromatosis 1. J. Child Neurol. 17, 622–626 discussion: 627–629, 646–651.
    1. Cotter D., Landau S., Beasley C., Stevenson R., Chana G., Macmillan L., et al. (2002). The density and spatial distribution of GABAergic neurons, labelled using calcium binding proteins, in the anterior cingulate cortex in major depressive disorder, bipolar disorder, and schizophrenia. Biol. Psychiatry 51, 377–386 10.1016/S0006-3223(01)01243-4
    1. Cui Y., Costa R. M., Murphy G. G., Elgersma Y., Zhu Y., Gutmann D. H., et al. (2008). Neurofibromin regulation of ERK signaling modulates GABA release and learning. Cell 135, 549–560 10.1016/j.cell.2008.09.060
    1. Curia G., Papouin T., Seguela P., Avoli M. (2009). Downregulation of tonic GABAergic inhibition in a mouse model of fragile X syndrome. Cereb. Cortex 19, 1515–1520 10.1093/cercor/bhn159
    1. Dani V. S., Chang Q., Maffei A., Turrigiano G. G., Jaenisch R., Nelson S. B. (2005). Reduced cortical activity due to a shift in the balance between excitation and inhibition in a mouse model of Rett syndrome. Proc. Natl. Acad. Sci. U.S.A. 102, 12560–12565 10.1073/pnas.0506071102
    1. De Jeu M., Pennartz C. (2002). Circadian modulation of GABA function in the rat suprachiasmatic nucleus: excitatory effects during the night phase. J. Neurophysiol. 87, 834–844
    1. Del Pino I., Garcia-Frigola C., Dehorter N., Brotons-Mas J. R., Alvarez-Salvado E., Martinez De Lagran M., et al. (2013). Erbb4 deletion from fast-spiking interneurons causes schizophrenia-like phenotypes. Neuron 79, 1152–1168 10.1016/j.neuron.2013.07.010
    1. Dhossche D. M., Song Y., Liu Y. (2005). Is there a connection between autism, Prader-Willi syndrome, catatonia, and GABA? Int. Rev. Neurobiol. 71, 189–216 10.1016/S0074-7742(05)71009-6
    1. D'Hulst C., De Geest N., Reeve S. P., Van Dam D., De Deyn P. P., Hassan B. A., et al. (2006). Decreased expression of the GABAA receptor in fragile X syndrome. Brain Res. 1121, 238–245 10.1016/j.brainres.2006.08.115
    1. D'Hulst C., Heulens I., Brouwer J. R., Willemsen R., De Geest N., Reeve S. P., et al. (2009). Expression of the GABAergic system in animal models for fragile X syndrome and fragile X associated tremor/ataxia syndrome (FXTAS). Brain Res. 1253, 176–183 10.1016/j.brainres.2008.11.075
    1. Di Cristo G. (2007). Development of cortical GABAergic circuits and its implications for neurodevelopmental disorders. Clin. Genet. 72, 1–8 10.1111/j.1399-0004.2007.00822.x
    1. Di Cristo G., Pizzorusso T., Cancedda L., Sernagor E. (2011). GABAergic circuit development and its implication for CNS disorders. Neural Plast. 2011:623705 10.1155/2011/623705
    1. Diggs-Andrews K. A., Gutmann D. H. (2013). Modeling cognitive dysfunction in neurofibromatosis-1. Trends Neurosci. 36, 237–247 10.1016/j.tins.2012.12.002
    1. Di Martino A., Tuchman R. F. (2001). Antiepileptic drugs: affective use in autism spectrum disorders. Pediatr. Neurol. 25, 199–207 10.1016/S0887-8994(01)00276-4
    1. Dingledine R., Korn S. J. (1985). Gamma-aminobutyric acid uptake and the termination of inhibitory synaptic potentials in the rat hippocampal slice. J. Physiol. 366, 387–409
    1. Duarte S. T., Armstrong J., Roche A., Ortez C., Perez A., O'Callaghan Mdel M., et al. (2013). Abnormal expression of cerebrospinal fluid cation chloride cotransporters in patients with rett syndrome. PLoS ONE 8:e68851 10.1371/journal.pone.0068851
    1. Dupuy S. T., Houser C. R. (1996). Prominent expression of two forms of glutamate decarboxylase in the embryonic and early postnatal rat hippocampal formation. J. Neurosci. 16, 6919–6932
    1. Durand S., Patrizi A., Quast K. B., Hachigian L., Pavlyuk R., Saxena A., et al. (2012). NMDA receptor regulation prevents regression of visual cortical function in the absence of Mecp2. Neuron 76, 1078–1090 10.1016/j.neuron.2012.12.004
    1. Duveau V., Laustela S., Barth L., Gianolini F., Vogt K. E., Keist R., et al. (2011). Spatiotemporal specificity of GABAA receptor-mediated regulation of adult hippocampal neurogenesis. Eur. J. Neurosci. 34, 362–373 10.1111/j.1460-9568.2011.07782.x
    1. Dzhala V., Ben-Ari Y., Khazipov R. (2000). Seizures accelerate anoxia-induced neuronal death in the neonatal rat hippocampus. Ann. Neurol. 48, 632–640 10.1002/1531-8249(200010)48:4<632::AID-ANA10>;2-3
    1. Dzhala V. I., Talos D. M., Sdrulla D. A., Brumback A. C., Mathews G. C., Benke T. A., et al. (2005). NKCC1 transporter facilitates seizures in the developing brain. Nat. Med. 11, 1205–1213 10.1038/nm1301
    1. Eftekhari S., Mehvari Habibabadi J., Najafi Ziarani M., Hashemi Fesharaki S. S., Gharakhani M., Mostafavi H., et al. (2013). Bumetanide reduces seizure frequency in patients with temporal lobe epilepsy. Epilepsia 54, e9–e12 10.1111/j.1528-1167.2012.03654.x
    1. El Idrissi A., Boukarrou L., Dokin C., Brown W. T. (2009). Taurine improves congestive functions in a mouse model of fragile X syndrome. Adv. Exp. Med. Biol. 643, 191–198 10.1007/978-0-387-75681-3_19
    1. El Idrissi A., Ding X. H., Scalia J., Trenkner E., Brown W. T., Dobkin C. (2005). Decreased GABA(A) receptor expression in the seizure-prone fragile X mouse. Neurosci. Lett. 377, 141–146 10.1016/j.neulet.2004.11.087
    1. Endo K., Hori T., Abe S., Asada T. (2007). Alterations in GABA(A) receptor expression in neonatal ventral hippocampal lesioned rats: comparison of prepubertal and postpubertal periods. Synapse 61, 357–366 10.1002/syn.20393
    1. Esclapez M., Tillakaratne N. J., Kaufman D. L., Tobin A. J., Houser C. R. (1994). Comparative localization of two forms of glutamic acid decarboxylase and their mRNAs in rat brain supports the concept of functional differences between the forms. J. Neurosci. 14, 1834–1855
    1. Evans J. E., Frostholm A., Rotter A. (1996). Embryonic and postnatal expression of four gamma-aminobutyric acid transporter mRNAs in the mouse brain and leptomeninges. J. Comp. Neurol. 376, 431–446 10.1002/(SICI)1096-9861(19961216)376:3<431::AID-CNE6>;2-3
    1. Fagiolini M., Fritschy J. M., Low K., Mohler H., Rudolph U., Hensch T. K. (2004). Specific GABAA circuits for visual cortical plasticity. Science 303, 1681–1683 10.1126/science.1091032
    1. Fagiolini M., Hensch T. K. (2000). Inhibitory threshold for critical-period activation in primary visual cortex. Nature 404, 183–186 10.1038/35004582
    1. Farmer L. M., Le B. N., Nelson D. J. (2013). CLC-3 chloride channels moderate long-term potentiation at Schaffer collateral-CA1 synapses. J. Physiol. 591, 1001–1015 10.1113/jphysiol.2012.243485
    1. Fatemi S. H., Folsom T. D., Rooney R. J., Thuras P. D. (2013). mRNA and protein expression for novel GABAA receptors theta and rho2 are altered in schizophrenia and mood disorders; relevance to FMRP-mGluR5 signaling pathway. Transl. Psychiatry 3, e271 10.1038/tp.2013.46
    1. Fatemi S. H., Halt A. R., Stary J. M., Kanodia R., Schulz S. C., Realmuto G. R. (2002). Glutamic acid decarboxylase 65 and 67 kDa proteins are reduced in autistic parietal and cerebellar cortices. Biol. Psychiatry 52, 805–810 10.1016/S0006-3223(02)01430-0
    1. Fatemi S. H., Reutiman T. J., Folsom T. D., Rooney R. J., Patel D. H., Thuras P. D. (2010). mRNA and protein levels for GABAAalpha4, alpha5, beta1 and GABABR1 receptors are altered in brains from subjects with autism. J. Autism. Dev. Disord. 40, 743–750 10.1007/s10803-009-0924-z
    1. Fatemi S. H., Reutiman T. J., Folsom T. D., Thuras P. D. (2009). GABA(A) receptor downregulation in brains of subjects with autism. J. Autism Dev. Disord. 39, 223–230 10.1007/s10803-008-0646-7
    1. Fatemi S. H., Stary J. M., Earle J. A., Araghi-Niknam M., Eagan E. (2005). GABAergic dysfunction in schizophrenia and mood disorders as reflected by decreased levels of glutamic acid decarboxylase 65 and 67 kDa and Reelin proteins in cerebellum. Schizophr. Res. 72, 109–122 10.1016/j.schres.2004.02.017
    1. Feldblum S., Erlander M. G., Tobin A. J. (1993). Different distributions of GAD65 and GAD67 mRNAs suggest that the two glutamate decarboxylases play distinctive functional roles. J. Neurosci. Res. 34, 689–706 10.1002/jnr.490340612
    1. Feldman D. E. (2009). Synaptic mechanisms for plasticity in neocortex. Annu. Rev. Neurosci. 32, 33–55 10.1146/annurev.neuro.051508.135516
    1. Feldman D. E. (2012). The spike-timing dependence of plasticity. Neuron 75, 556–571 10.1016/j.neuron.2012.08.001
    1. Fenalti G., Law R. H., Buckle A. M., Langendorf C., Tuck K., Rosado C. J., et al. (2007). GABA production by glutamic acid decarboxylase is regulated by a dynamic catalytic loop. Nat. Struct. Mol. Biol. 14, 280–286 10.1038/nsmb1228
    1. Fernandez F., Morishita W., Zuniga E., Nguyen J., Blank M., Malenka R. C., et al. (2007). Pharmacotherapy for cognitive impairment in a mouse model of Down syndrome. Nat. Neurosci. 10, 411–413 10.1038/nn1860
    1. Fisahn A., Neddens J., Yan L., Buonanno A. (2009). Neuregulin-1 modulates hippocampal gamma oscillations: implications for schizophrenia. Cereb. Cortex 19, 612–618 10.1093/cercor/bhn107
    1. Fitzgerald M. (2005). The development of nociceptive circuits. Nat. Rev. Neurosci. 6, 507–520 10.1038/nrn1701
    1. Fiumara A., Pittala A., Cocuzza M., Sorge G. (2010). Epilepsy in patients with Angelman syndrome. Ital. J. Pediatr. 36:31 10.1186/1824-7288-36-31
    1. Fiumelli H., Cancedda L., Poo M. M. (2005). Modulation of GABAergic transmission by activity via postsynaptic Ca2+-dependent regulation of KCC2 function. Neuron 48, 773–786 10.1016/j.neuron.2005.10.025
    1. Fritschy J. M., Panzanelli P. (2014). GABA receptors and plasticity of inhibitory neurotransmission in the central nervous system. Eur. J. Neurosci. . [Epub ahead of print]. 10.1111/ejn.12534
    1. Fritschy J. M., Paysan J., Enna A., Mohler H. (1994). Switch in the expression of rat GABAA-receptor subtypes during postnatal development: an immunohistochemical study. J. Neurosci. 14, 5302–5324
    1. Fung S. J., Webster M. J., Sivagnanasundaram S., Duncan C., Elashoff M., Weickert C. S. (2010). Expression of interneuron markers in the dorsolateral prefrontal cortex of the developing human and in schizophrenia. Am. J. Psychiatry 167, 1479–1488 10.1176/appi.ajp.2010.09060784
    1. Gagnon M., Bergeron M. J., Lavertu G., Castonguay A., Tripathy S., Bonin R. P., et al. (2013). Chloride extrusion enhancers as novel therapeutics for neurological diseases. Nat. Med. 19, 1524–1528 10.1038/nm.3356
    1. Galanopoulou A. S. (2008). Dissociated gender-specific effects of recurrent seizures on GABA signaling in CA1 pyramidal neurons: role of GABA(A) receptors. J. Neurosci. 28, 1557–1567 10.1523/JNEUROSCI.5180-07.2008
    1. Gantois I., Vandesompele J., Speleman F., Reyniers E., D'Hooge R., Severijnen L. A., et al. (2006). Expression profiling suggests underexpression of the GABA(A) receptor subunit delta in the fragile X knockout mouse model. Neurobiol. Dis. 21, 346–357 10.1016/j.nbd.2005.07.017
    1. Ge S., Goh E. L., Sailor K. A., Kitabatake Y., Ming G. L., Song H. (2006). GABA regulates synaptic integration of newly generated neurons in the adult brain. Nature 439, 589–593 10.1038/nature04404
    1. Ge S., Sailor K. A., Ming G. L., Song H. (2008). Synaptic integration and plasticity of new neurons in the adult hippocampus. J. Physiol. 586, 3759–3765 10.1113/jphysiol.2008.155655
    1. Gibson J. R., Bartley A. F., Hays S. A., Huber K. M. (2008). Imbalance of neocortical excitation and inhibition and altered UP states reflect network hyperexcitability in the mouse model of fragile X syndrome. J. Neurophysiol. 100, 2615–2626 10.1152/jn.90752.2008
    1. Gimpl G., Fahrenholz F. (2001). The oxytocin receptor system: structure, function, and regulation. Physiol. Rev. 81, 629–683
    1. Gittis A. H., Leventhal D. K., Fensterheim B. A., Pettibone J. R., Berke J. D., Kreitzer A. C. (2011). Selective inhibition of striatal fast-spiking interneurons causes dyskinesias. J. Neurosci. 31, 15727–15731 10.1523/JNEUROSCI.3875-11.2011
    1. Goncalves J. T., Anstey J. E., Golshani P., Portera-Cailliau C. (2013). Circuit level defects in the developing neocortex of Fragile X mice. Nat. Neurosci. 16, 903–909 10.1038/nn.3415
    1. Gonzalez-Burgos G., Fish K. N., Lewis D. A. (2011). GABA neuron alterations, cortical circuit dysfunction and cognitive deficits in schizophrenia. Neural Plast. 2011, 723184 10.1155/2011/723184
    1. Goto N., Yoshimura R., Moriya J., Kakeda S., Ueda N., Ikenouchi-Sugita A., et al. (2009). Reduction of brain gamma-aminobutyric acid (GABA) concentrations in early-stage schizophrenia patients: 3T Proton MRS study. Schizophr. Res. 112, 192–193 10.1016/j.schres.2009.04.026
    1. Griebel G., Holmes A. (2013). 50 years of hurdles and hope in anxiolytic drug discovery. Nat. Rev. Drug Discov. 12, 667–687 10.1038/nrd4075
    1. Grover L. M., Yan C. (1999). Blockade of GABAA receptors facilitates induction of NMDA receptor-independent long-term potentiation. J. Neurophysiol. 81, 2814–2822
    1. Guidotti A., Auta J., Davis J. M., Di-Giorgi-Gerevini V., Dwivedi Y., Grayson D. R., et al. (2000). Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: a postmortem brain study. Arch. Gen. Psychiatry 57, 1061–1069 10.1001/archpsyc.57.11.1061
    1. Guptill J. T., Booker A. B., Gibbs T. T., Kemper T. L., Bauman M. L., Blatt G. J. (2007). [3H]-flunitrazepam-labeled benzodiazepine binding sites in the hippocampal formation in autism: a multiple concentration autoradiographic study. J. Autism Dev. Disord. 37, 911–920 10.1007/s10803-006-0226-7
    1. Hadjikhani N., Zurcher N. R., Rogier O., Ruest T., Hippolyte L., Ben-Ari Y., et al. (2013). Improving emotional face perception in autism with diuretic bumetanide: a proof-of-concept behavioral and functional brain imaging pilot study. Autism. . [Epub ahead of print]. 10.1177/1362361313514141
    1. Hagerman R. J., Berry-Kravis E., Kaufmann W. E., Ono M. Y., Tartaglia N., Lachiewicz A., et al. (2009). Advances in the treatment of fragile X syndrome. Pediatrics 123, 378–390 10.1542/peds.2008-0317
    1. Haglund M. M., Hochman D. W. (2005). Furosemide and mannitol suppression of epileptic activity in the human brain. J. Neurophysiol. 94, 907–918 10.1152/jn.00944.2004
    1. Han S., Tai C., Jones C. J., Scheuer T., Catterall W. A. (2014). Enhancement of Inhibitory Neurotransmission by GABAA Receptors Having alpha2,3-Subunits Ameliorates Behavioral Deficits in a Mouse Model of Autism. Neuron 81, 1282–1289 10.1016/j.neuron.2014.01.016
    1. Han S., Tai C., Westenbroek R. E., Yu F. H., Cheah C. S., Potter G. B., et al. (2012). Autistic-like behaviour in Scn1a+/- mice and rescue by enhanced GABA-mediated neurotransmission. Nature 489, 385–390 10.1038/nature11356
    1. Hannan A. J. (2014). Review: environmental enrichment and brain repair: harnessing the therapeutic effects of cognitive stimulation and physical activity to enhance experience-dependent plasticity. Neuropathol. Appl. Neurobiol. 40, 13–25 10.1111/nan.12102
    1. Harada M., Taki M. M., Nose A., Kubo H., Mori K., Nishitani H., et al. (2011). Non-invasive evaluation of the GABAergic/glutamatergic system in autistic patients observed by MEGA-editing proton MR spectroscopy using a clinical 3 tesla instrument. J. Autism Dev. Disord. 41, 447–454 10.1007/s10803-010-1065-0
    1. Harauzov A., Spolidoro M., Dicristo G., De Pasquale R., Cancedda L., Pizzorusso T., et al. (2010). Reducing intracortical inhibition in the adult visual cortex promotes ocular dominance plasticity. J. Neurosci. 30, 361–371 10.1523/JNEUROSCI.2233-09.2010
    1. Harte M. K., Powell S. B., Swerdlow N. R., Geyer M. A., Reynolds G. P. (2007). Deficits in parvalbumin and calbindin immunoreactive cells in the hippocampus of isolation reared rats. J. Neural Transm. 114, 893–898 10.1007/s00702-007-0627-6
    1. Hashimoto T., Bazmi H. H., Mirnics K., Wu Q., Sampson A. R., Lewis D. A. (2008). Conserved regional patterns of GABA-related transcript expression in the neocortex of subjects with schizophrenia. Am. J. Psychiatry 165, 479–489 10.1176/appi.ajp.2007.07081223
    1. He Q., Nomura T., Xu J., Contractor A. (2014). The developmental switch in GABA polarity is delayed in Fragile X mice. J. Neurosci. 34, 446–450 10.1523/JNEUROSCI.4447-13.2014
    1. He S., Ma J., Liu N., Yu X. (2010). Early enriched environment promotes neonatal GABAergic neurotransmission and accelerates synapse maturation. J. Neurosci. 30, 7910–7916 10.1523/JNEUROSCI.6375-09.2010
    1. Heimel J. A., Van Versendaal D., Levelt C. N. (2011). The role of GABAergic inhibition in ocular dominance plasticity. Neural Plast. 2011, 391763 10.1155/2011/391763
    1. Heine M., Groc L., Frischknecht R., Beique J. C., Lounis B., Rumbaugh G., et al. (2008). Surface mobility of postsynaptic AMPARs tunes synaptic transmission. Science 320, 201–205 10.1126/science.1152089
    1. Hensch T. K. (2004). Critical period regulation. Annu. Rev. Neurosci. 27, 549–579 10.1146/annurev.neuro.27.070203.144327
    1. Hensch T. K., Fagiolini M., Mataga N., Stryker M. P., Baekkeskov S., Kash S. F. (1998). Local GABA circuit control of experience-dependent plasticity in developing visual cortex. Science 282, 1504–1508 10.1126/science.282.5393.1504
    1. Heulens I., D'Hulst C., Van Dam D., De Deyn P. P., Kooy R. F. (2012). Pharmacological treatment of fragile X syndrome with GABAergic drugs in a knockout mouse model. Behav. Brain Res. 229, 244–249 10.1016/j.bbr.2012.01.031
    1. Hikida T., Jaaro-Peled H., Seshadri S., Oishi K., Hookway C., Kong S., et al. (2007). Dominant-negative DISC1 transgenic mice display schizophrenia-associated phenotypes detected by measures translatable to humans. Proc. Natl. Acad. Sci. U.S.A. 104, 14501–14506 10.1073/pnas.0704774104
    1. Hirai H., Okada Y. (1993). Ipsilateral corticotectal pathway inhibits the formation of long-term potentiation (LTP) in the rat superior colliculus through GABAergic mechanism. Brain Res. 629, 23–30 10.1016/0006-8993(93)90476-4
    1. Hochman D. W. (2012). The extracellular space and epileptic activity in the adult brain: explaining the antiepileptic effects of furosemide and bumetanide. Epilepsia 53(Suppl. 1), 18–25 10.1111/j.1528-1167.2012.03471.x
    1. Houston C. M., Hosie A. M., Smart T. G. (2008). Distinct regulation of beta2 and beta3 subunit-containing cerebellar synaptic GABAA receptors by calcium/calmodulin-dependent protein kinase II. J. Neurosci. 28, 7574–7584 10.1523/JNEUROSCI.5531-07.2008
    1. Huang R. Q., Dillon G. H. (1998). Maintenance of recombinant type A gamma-aminobutyric acid receptor function: role of protein tyrosine phosphorylation and calcineurin. J. Pharmacol. Exp. Ther. 286, 243–255
    1. Hubner C. A., Holthoff K. (2013). Anion transport and GABA signaling. Front. Cell Neurosci. 7:177 10.3389/fncel.2013.00177
    1. Hyde T. M., Lipska B. K., Ali T., Mathew S. V., Law A. J., Metitiri O. E., et al. (2011). Expression of GABA signaling molecules KCC2, NKCC1, and GAD1 in cortical development and schizophrenia. J. Neurosci. 31, 11088–11095 10.1523/JNEUROSCI.1234-11.2011
    1. Inoue T., Haque Z., Lukowiak K., Syed N. I. (2001). Hypoxia-induced respiratory patterned activity in Lymnaea originates at the periphery. J. Neurophysiol. 86, 156–163
    1. Ishihara K., Amano K., Takaki E., Shimohata A., Sago H., Epstein C. J., et al. (2010). Enlarged brain ventricles and impaired neurogenesis in the Ts1Cje and Ts2Cje mouse models of Down syndrome. Cereb. Cortex 20, 1131–1143 10.1093/cercor/bhp176
    1. Jambaque I., Chiron C., Dumas C., Mumford J., Dulac O. (2000). Mental and behavioural outcome of infantile epilepsy treated by vigabatrin in tuberous sclerosis patients. Epilepsy Res. 38, 151–160 10.1016/S0920-1211(99)00082-0
    1. Jankovic J. (2001). Tourette's syndrome. N. Engl. J. Med. 345, 1184–1192 10.1056/NEJMra010032
    1. Jian L., Nagarajan L., De Klerk N., Ravine D., Bower C., Anderson A., et al. (2006). Predictors of seizure onset in Rett syndrome. J. Pediatr. 149, 542–547 10.1016/j.jpeds.2006.06.015
    1. Jin H., Wu H., Osterhaus G., Wei J., Davis K., Sha D., et al. (2003). Demonstration of functional coupling between gamma -aminobutyric acid (GABA) synthesis and vesicular GABA transport into synaptic vesicles. Proc. Natl. Acad. Sci. U.S.A. 100, 4293–4298 10.1073/pnas.0730698100
    1. Jin X., Cui N., Zhong W., Jin X. T., Jiang C. (2013). GABAergic synaptic inputs of locus coeruleus neurons in wild-type and Mecp2-null mice. Am. J. Physiol. Cell Physiol. 304, C844–C857 10.1152/ajpcell.00399.2012
    1. Johnson H., Wiggs L., Stores G., Huson S. M. (2005). Psychological disturbance and sleep disorders in children with neurofibromatosis type 1. Dev. Med. Child Neurol. 47, 237–242 10.1017/S0012162205000460
    1. Jones J. D. (1961). Aspects of respiration in Planorbis corneus L. and Lymnaea stagnalis L. (Gastropoda: Pulmonata). Comp. Biochem. Physiol. 4, 1–29 10.1016/0010-406X(61)90042-1
    1. Jones M. V., Westbrook G. L. (1997). Shaping of IPSCs by endogenous calcineurin activity. J. Neurosci. 17, 7626–7633
    1. Jovanovic J. N., Thomas P., Kittler J. T., Smart T. G., Moss S. J. (2004). Brain-derived neurotrophic factor modulates fast synaptic inhibition by regulating GABA(A) receptor phosphorylation, activity, and cell-surface stability. J. Neurosci. 24, 522–530 10.1523/JNEUROSCI.3606-03.2004
    1. Juge N., Muroyama A., Hiasa M., Omote H., Moriyama Y. (2009). Vesicular inhibitory amino acid transporter is a Cl-/gamma-aminobutyrate Co-transporter. J. Biol. Chem. 284, 35073–35078 10.1074/jbc.M109.062414
    1. Kahle K. T., Barnett S. M., Sassower K. C., Staley K. J. (2009). Decreased seizure activity in a human neonate treated with bumetanide, an inhibitor of the Na(+)-K(+)-2Cl(-) cotransporter NKCC1. J. Child. Neurol. 24, 572–576 10.1177/0883073809333526
    1. Kahle K. T., Deeb T. Z., Puskarjov M., Silayeva L., Liang B., Kaila K., et al. (2013). Modulation of neuronal activity by phosphorylation of the K-Cl cotransporter KCC2. Trends Neurosci. 36, 726–737 10.1016/j.tins.2013.08.006
    1. Kahle K. T., Staley K. J. (2008). The bumetanide-sensitive Na-K-2Cl cotransporter NKCC1 as a potential target of a novel mechanism-based treatment strategy for neonatal seizures. Neurosurg. Focus. 25, E22 10.3171/FOC/2008/25/9/E22
    1. Kaibara T., Leung L. S. (1993). Basal versus apical dendritic long-term potentiation of commissural afferents to hippocampal CA1: a current-source density study. J. Neurosci. 13, 2391–2404
    1. Kaila K., Lamsa K., Smirnov S., Taira T., Voipio J. (1997). Long-lasting GABA-mediated depolarization evoked by high-frequency stimulation in pyramidal neurons of rat hippocampal slice is attributable to a network-driven, bicarbonate-dependent K+ transient. J. Neurosci. 17, 7662–7672
    1. Kalanithi P. S., Zheng W., Kataoka Y., Difiglia M., Grantz H., Saper C. B., et al. (2005). Altered parvalbumin-positive neuron distribution in basal ganglia of individuals with Tourette syndrome. Proc. Natl. Acad. Sci. U.S.A. 102, 13307–13312 10.1073/pnas.0502624102
    1. Kash S. F., Johnson R. S., Tecott L. H., Noebels J. L., Mayfield R. D., Hanahan D., et al. (1997). Epilepsy in mice deficient in the 65-kDa isoform of glutamic acid decarboxylase. Proc. Natl. Acad. Sci. U.S.A. 94, 14060–14065 10.1073/pnas.94.25.14060
    1. Kataoka Y., Kalanithi P. S., Grantz H., Schwartz M. L., Saper C., Leckman J. F., et al. (2010). Decreased number of parvalbumin and cholinergic interneurons in the striatum of individuals with Tourette syndrome. J. Comp. Neurol. 518, 277–291 10.1002/cne.22206
    1. Kaufman D. L., Houser C. R., Tobin A. J. (1991). Two forms of the gamma-aminobutyric acid synthetic enzyme glutamate decarboxylase have distinct intraneuronal distributions and cofactor interactions. J. Neurochem. 56, 720–723 10.1111/j.1471-4159.1991.tb08211.x
    1. Kerr B., Silva P. A., Walz K., Young J. I. (2010). Unconventional transcriptional response to environmental enrichment in a mouse model of Rett syndrome. PLoS ONE 5:e11534 10.1371/journal.pone.0011534
    1. Kersante F., Rowley S. C., Pavlov I., Gutierrez-Mecinas M., Semyanov A., Reul J. M., et al. (2013). A functional role for both -aminobutyric acid (GABA) transporter-1 and GABA transporter-3 in the modulation of extracellular GABA and GABAergic tonic conductances in the rat hippocampus. J. Physiol. 591, 2429–2441 10.1113/jphysiol.2012.246298
    1. Kim J. Y., Liu C. Y., Zhang F., Duan X., Wen Z., Song J., et al. (2012). Interplay between DISC1 and GABA signaling regulates neurogenesis in mice and risk for schizophrenia. Cell 148, 1051–1064 10.1016/j.cell.2011.12.037
    1. Kiser P. J., Cooper N. G., Mower G. D. (1998). Expression of two forms of glutamic acid decarboxylase (GAD67 and GAD65) during postnatal development of rat somatosensory barrel cortex. J. Comp. Neurol. 402, 62–74 10.1002/(SICI)1096-9861(19981207)402:1<62::AID-CNE5>;2-M
    1. Kittler J. T., Chen G., Kukhtina V., Vahedi-Faridi A., Gu Z., Tretter V., et al. (2008). Regulation of synaptic inhibition by phospho-dependent binding of the AP2 complex to a YECL motif in the GABAA receptor gamma2 subunit. Proc. Natl. Acad. Sci. U.S.A. 105, 3616–3621 10.1073/pnas.0707920105
    1. Kittler J. T., Delmas P., Jovanovic J. N., Brown D. A., Smart T. G., Moss S. J. (2000). Constitutive endocytosis of GABAA receptors by an association with the adaptin AP2 complex modulates inhibitory synaptic currents in hippocampal neurons. J. Neurosci. 20, 7972–7977
    1. Kittler J. T., Moss S. J. (2003). Modulation of GABAA receptor activity by phosphorylation and receptor trafficking: implications for the efficacy of synaptic inhibition. Curr. Opin. Neurobiol. 13, 341–347 10.1016/S0959-4388(03)00064-3
    1. Kleschevnikov A. M., Belichenko P. V., Gall J., George L., Nosheny R., Maloney M. T., et al. (2012). Increased efficiency of the GABAA and GABAB receptor-mediated neurotransmission in the Ts65Dn mouse model of Down syndrome. Neurobiol. Dis. 45, 683–691 10.1016/j.nbd.2011.10.009
    1. Kleschevnikov A. M., Belichenko P. V., Villar A. J., Epstein C. J., Malenka R. C., Mobley W. C. (2004). Hippocampal long-term potentiation suppressed by increased inhibition in the Ts65Dn mouse, a genetic model of Down syndrome. J. Neurosci. 24, 8153–8160 10.1523/JNEUROSCI.1766-04.2004
    1. Kobayashi K., Emson P. C., Mountjoy C. Q., Thornton S. N., Lawson D. E., Mann D. M. (1990). Cerebral cortical calbindin D28K and parvalbumin neurones in Down's syndrome. Neurosci. Lett. 113, 17–22 10.1016/0304-3940(90)90487-T
    1. Kondo M., Gray L. J., Pelka G. J., Christodoulou J., Tam P. P., Hannan A. J. (2008). Environmental enrichment ameliorates a motor coordination deficit in a mouse model of Rett syndrome–Mecp2 gene dosage effects and BDNF expression. Eur. J. Neurosci. 27, 3342–3350 10.1111/j.1460-9568.2008.06305.x
    1. Kullmann D. M., Ruiz A., Rusakov D. M., Scott R., Semyanov A., Walker M. C. (2005). Presynaptic, extrasynaptic and axonal GABAA receptors in the CNS: where and why? Prog. Biophys. Mol. Biol. 87, 33–46 10.1016/j.pbiomolbio.2004.06.003
    1. Lacaria M., Spencer C., Gu W., Paylor R., Lupski J. R. (2012). Enriched rearing improves behavioral responses of an animal model for CNV-based autistic-like traits. Hum. Mol. Genet. 21, 3083–3096 10.1093/hmg/dds124
    1. Laurie D. J., Wisden W., Seeburg P. H. (1992). The distribution of thirteen GABAA receptor subunit mRNAs in the rat brain. III. Embryonic and postnatal development. J. Neurosci. 12, 4151–4172
    1. Leblanc J. J., Fagiolini M. (2011). Autism: a “critical period” disorder? Neural Plast. 2011, 921680 10.1155/2011/921680
    1. Lee E. J., Gibo T. L., Grzywacz N. M. (2006a). Dark-rearing-induced reduction of GABA and GAD and prevention of the effect by BDNF in the mouse retina. Eur. J. Neurosci. 24, 2118–2134 10.1111/j.1460-9568.2006.05078.x
    1. Lee T. S., Bjornsen L. P., Paz C., Kim J. H., Spencer S. S., Spencer D. D., et al. (2006b). GAT1 and GAT3 expression are differently localized in the human epileptogenic hippocampus. Acta Neuropathol. 111, 351–363 10.1007/s00401-005-0017-9
    1. Lehman M. N., Silver R., Gladstone W. R., Kahn R. M., Gibson M., Bittman E. L. (1987). Circadian rhythmicity restored by neural transplant. Immunocytochemical characterization of the graft and its integration with the host brain. J. Neurosci. 7, 1626–1638
    1. Lemonnier E., Ben-Ari Y. (2010). The diuretic bumetanide decreases autistic behaviour in five infants treated during 3 months with no side effects. Acta Paediatr. 99, 1885–1888 10.1111/j.1651-2227.2010.01933.x
    1. Lemonnier E., Degrez C., Phelep M., Tyzio R., Josse F., Grandgeorge M., et al. (2012). A randomised controlled trial of bumetanide in the treatment of autism in children. Transl. Psychiatry 2, e202 10.1038/tp.2012.124
    1. Lemonnier E., Robin G., Degrez C., Tyzio R., Grandgeorge M., Ben-Ari Y. (2013). Treating Fragile X syndrome with the diuretic bumetanide: a case report. Acta Paediatr. 102, e288–e290 10.1111/apa.12235
    1. Lerner A., Bagic A., Simmons J. M., Mari Z., Bonne O., Xu B., et al. (2012). Widespread abnormality of the gamma-aminobutyric acid-ergic system in Tourette syndrome. Brain 135, 1926–1936 10.1093/brain/aws104
    1. Leschziner G. D., Golding J. F., Ferner R. E. (2013). Sleep disturbance as part of the neurofibromatosis type 1 phenotype in adults. Am. J. Med. Genet. A 161, 1319–1322 10.1002/ajmg.a.35915
    1. Levelt C. N., Hubener M. (2012). Critical-period plasticity in the visual cortex. Annu. Rev. Neurosci. 35, 309–330 10.1146/annurev-neuro-061010-113813
    1. Lewis D. A., Cho R. Y., Carter C. S., Eklund K., Forster S., Kelly M. A., et al. (2008). Subunit-selective modulation of GABA type A receptor neurotransmission and cognition in schizophrenia. Am. J. Psychiatry 165, 1585–1593 10.1176/appi.ajp.2008.08030395
    1. Lewis D. A., Curley A. A., Glausier J. R., Volk D. W. (2012). Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia. Trends Neurosci. 35, 57–67 10.1016/j.tins.2011.10.004
    1. Li L. B., Chang K. H., Wang P. R., Hirata R. K., Papayannopoulou T., Russell D. W. (2012). Trisomy correction in Down syndrome induced pluripotent stem cells. Cell Stem. Cell 11, 615–619 10.1016/j.stem.2012.08.004
    1. Lindefors N. (1993). Dopaminergic regulation of glutamic acid decarboxylase mRNA expression and GABA release in the striatum: a review. Prog. Neuropsychopharmacol. Biol. Psychiatry 17, 887–903 10.1016/0278-5846(93)90018-N
    1. Liou S. Y., Albers H. E. (1990). Single unit response of neurons within the hamster suprachiasmatic nucleus to GABA and low chloride perfusate during the day and night. Brain Res. Bull. 25, 93–98 10.1016/0361-9230(90)90257-Z
    1. Lipska B. K., Lerman D. N., Khaing Z. Z., Weickert C. S., Weinberger D. R. (2003). Gene expression in dopamine and GABA systems in an animal model of schizophrenia: effects of antipsychotic drugs. Eur. J. Neurosci. 18, 391–402 10.1046/j.1460-9568.2003.02738.x
    1. Liu X., Novosedlik N., Wang A., Hudson M. L., Cohen I. L., Chudley A. E., et al. (2009). The DLX1and DLX2 genes and susceptibility to autism spectrum disorders. Eur. J. Hum. Genet. 17, 228–235 10.1038/ejhg.2008.148
    1. Lonetti G., Angelucci A., Morando L., Boggio E. M., Giustetto M., Pizzorusso T. (2010). Early environmental enrichment moderates the behavioral and synaptic phenotype of MeCP2 null mice. Biol. Psychiatry 67, 657–665 10.1016/j.biopsych.2009.12.022
    1. Loscher W., Puskarjov M., Kaila K. (2013). Cation-chloride cotransporters NKCC1 and KCC2 as potential targets for novel antiepileptic and antiepileptogenic treatments. Neuropharmacology 69, 62–74 10.1016/j.neuropharm.2012.05.045
    1. Lu Y. M., Mansuy I. M., Kandel E. R., Roder J. (2000). Calcineurin-mediated LTD of GABAergic inhibition underlies the increased excitability of CA1 neurons associated with LTP. Neuron 26, 197–205 10.1016/S0896-6273(00)81150-2
    1. Luscher B., Fuchs T., Kilpatrick C. L. (2011). GABAA receptor trafficking-mediated plasticity of inhibitory synapses. Neuron 70, 385–409 10.1016/j.neuron.2011.03.024
    1. Ma D. Q., Whitehead P. L., Menold M. M., Martin E. R., Ashley-Koch A. E., Mei H., et al. (2005). Identification of significant association and gene-gene interaction of GABA receptor subunit genes in autism. Am. J. Hum. Genet. 77, 377–388 10.1086/433195
    1. Maa E. H., Kahle K. T., Walcott B. P., Spitz M. C., Staley K. J. (2011). Diuretics and epilepsy: will the past and present meet? Epilepsia 52, 1559–1569 10.1111/j.1528-1167.2011.03203.x
    1. Marchetto M. C., Carromeu C., Acab A., Yu D., Yeo G. W., Mu Y., et al. (2010). A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell 143, 527–539 10.1016/j.cell.2010.10.016
    1. Marrosu F., Marrosu G., Rachel M. G., Biggio G. (1987). Paradoxical reactions elicited by diazepam in children with classic autism. Funct. Neurol. 2, 355–361
    1. Martinez-Cue C., Martinez P., Rueda N., Vidal R., Garcia S., Vidal V., et al. (2013). Reducing GABAA alpha5 receptor-mediated inhibition rescues functional and neuromorphological deficits in a mouse model of down syndrome. J. Neurosci. 33, 3953–3966 10.1523/JNEUROSCI.1203-12.2013
    1. Martinez-Granero M. A., Garcia-Perez A., Montanes F. (2010). Levetiracetam as an alternative therapy for Tourette syndrome. Neuropsychiatr. Dis. Treat. 6, 309–316 10.2147/NDT.S6371
    1. Matsuyama S., Taniguchi T., Kadoyama K., Matsumoto A. (2008). Long-term potentiation-like facilitation through GABAA receptor blockade in the mouse dentate gyrus in vivo. Neuroreport 19, 1809–1813 10.1097/WNR.0b013e328319ab94
    1. Mazzuca M., Minlebaev M., Shakirzyanova A., Tyzio R., Taccola G., Janackova S., et al. (2011). Newborn Analgesia Mediated by Oxytocin during Delivery. Front. Cell Neurosci. 5:3 10.3389/fncel.2011.00003
    1. McCairn K. W., Bronfeld M., Belelovsky K., Bar-Gad I. (2009). The neurophysiological correlates of motor tics following focal striatal disinhibition. Brain 132, 2125–2138 10.1093/brain/awp142
    1. McCauley J. L., Olson L. M., Delahanty R., Amin T., Nurmi E. L., Organ E. L., et al. (2004). A linkage disequilibrium map of the 1-Mb 15q12 GABA(A) receptor subunit cluster and association to autism. Am. J. Med. Genet. B Neuropsychiatr. Genet. 131B, 51–59 10.1002/ajmg.b.30038
    1. McDonald B. J., Amato A., Connolly C. N., Benke D., Moss S. J., Smart T. G. (1998). Adjacent phosphorylation sites on GABAA receptor beta subunits determine regulation by cAMP-dependent protein kinase. Nat. Neurosci. 1, 23–28 10.1038/223
    1. McNaught K. S., Mink J. W. (2011). Advances in understanding and treatment of Tourette syndrome. Nat. Rev. Neurol. 7, 667–676 10.1038/nrneurol.2011.167
    1. McOmish C. E., Burrows E., Howard M., Scarr E., Kim D., Shin H. S., et al. (2008). Phospholipase C-beta1 knockout mice exhibit endophenotypes modeling schizophrenia which are rescued by environmental enrichment and clozapine administration. Mol. Psychiatry 13, 661–672 10.1038/sj.mp.4002046
    1. Medrihan L., Tantalaki E., Aramuni G., Sargsyan V., Dudanova I., Missler M., et al. (2008). Early defects of GABAergic synapses in the brain stem of a MeCP2 mouse model of Rett syndrome. J. Neurophysiol. 99, 112–121 10.1152/jn.00826.2007
    1. Mendez M. A., Horder J., Myers J., Coghlan S., Stokes P., Erritzoe D., et al. (2013). The brain GABA-benzodiazepine receptor alpha-5 subtype in autism spectrum disorder: a pilot [(11)C]Ro15-4513 positron emission tomography study. Neuropharmacology 68, 195–201 10.1016/j.neuropharm.2012.04.008
    1. Mendez P., Pazienti A., Szabo G., Bacci A. (2012). Direct alteration of a specific inhibitory circuit of the hippocampus by antidepressants. J. Neurosci. 32, 16616–16628 10.1523/JNEUROSCI.1720-12.2012
    1. Menold M. M., Shao Y., Wolpert C. M., Donnelly S. L., Raiford K. L., Martin E. R., et al. (2001). Association analysis of chromosome 15 gabaa receptor subunit genes in autistic disorder. J. Neurogenet. 15, 245–259 10.3109/01677060109167380
    1. Minelli A., Brecha N. C., Karschin C., Debiasi S., Conti F. (1995). GAT-1, a high-affinity GABA plasma membrane transporter, is localized to neurons and astroglia in the cerebral cortex. J. Neurosci. 15, 7734–7746
    1. Ming G. L., Song H. (2011). Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 70, 687–702 10.1016/j.neuron.2011.05.001
    1. Mitra A., Blank M., Madison D. V. (2012). Developmentally altered inhibition in Ts65Dn, a mouse model of Down syndrome. Brain Res. 1440, 1–8 10.1016/j.brainres.2011.12.034
    1. Mohler H. (2007). Molecular regulation of cognitive functions and developmental plasticity: impact of GABAA receptors. J. Neurochem. 102, 1–12 10.1111/j.1471-4159.2007.04454.x
    1. Mohler H. (2011). The rise of a new GABA pharmacology. Neuropharmacology 60, 1042–1049 10.1016/j.neuropharm.2010.10.020
    1. Mori T., Mori K., Fujii E., Toda Y., Miyazaki M., Harada M., et al. (2012). Evaluation of the GABAergic nervous system in autistic brain: (123)I-iomazenil SPECT study. Brain Dev. 34, 648–654 10.1016/j.braindev.2011.10.007
    1. Morita Y., Callicott J. H., Testa L. R., Mighdoll M. I., Dickinson D., Chen Q., et al. (2014). Characteristics of the cation cotransporter NKCC1 in human brain: alternate transcripts, expression in development, and potential relationships to brain function and schizophrenia. J. Neurosci. 34, 4929–4940 10.1523/JNEUROSCI.1423-13.2014
    1. Morrow B. A., Elsworth J. D., Roth R. H. (2007). Repeated phencyclidine in monkeys results in loss of parvalbumin-containing axo-axonic projections in the prefrontal cortex. Psychopharmacology (Berl.) 192, 283–290 10.1007/s00213-007-0708-0
    1. Morrow E. M., Yoo S. Y., Flavell S. W., Kim T. K., Lin Y., Hill R. S., et al. (2008). Identifying autism loci and genes by tracing recent shared ancestry. Science 321, 218–223 10.1126/science.1157657
    1. Muir J., Arancibia-Carcamo I. L., Macaskill A. F., Smith K. R., Griffin L. D., Kittler J. T. (2010). NMDA receptors regulate GABAA receptor lateral mobility and clustering at inhibitory synapses through serine 327 on the gamma2 subunit. Proc. Natl. Acad. Sci. U.S.A. 107, 16679–16684 10.1073/pnas.1000589107
    1. Nag N., Moriuchi J. M., Peitzman C. G., Ward B. C., Kolodny N. H., Berger-Sweeney J. E. (2009). Environmental enrichment alters locomotor behaviour and ventricular volume in Mecp2 1lox mice. Behav. Brain Res. 196, 44–48 10.1016/j.bbr.2008.07.008
    1. Nakatani J., Tamada K., Hatanaka F., Ise S., Ohta H., Inoue K., et al. (2009). Abnormal behavior in a chromosome-engineered mouse model for human 15q11-13 duplication seen in autism. Cell 137, 1235–1246 10.1016/j.cell.2009.04.024
    1. Namchuk M., Lindsay L., Turck C. W., Kanaani J., Baekkeskov S. (1997). Phosphorylation of serine residues 3, 6, 10, and 13 distinguishes membrane anchored from soluble glutamic acid decarboxylase 65 and is restricted to glutamic acid decarboxylase 65alpha. J. Biol. Chem. 272, 1548–1557 10.1074/jbc.272.3.1548
    1. Nithianantharajah J., Hannan A. J. (2006). Enriched environments, experience-dependent plasticity and disorders of the nervous system. Nat. Rev. Neurosci. 7, 697–709 10.1038/nrn1970
    1. Nunez J. L., McCarthy M. M. (2007). Evidence for an extended duration of GABA-mediated excitation in the developing male versus female hippocampus. Dev. Neurobiol. 67, 1879–1890 10.1002/dneu.20567
    1. Olmos-Serrano J. L., Corbin J. G., Burns M. P. (2011). The GABA(A) receptor agonist THIP ameliorates specific behavioral deficits in the mouse model of fragile X syndrome. Dev. Neurosci. 33, 395–403 10.1159/000332884
    1. Olmos-Serrano J. L., Paluszkiewicz S. M., Martin B. S., Kaufmann W. E., Corbin J. G., Huntsman M. M. (2010). Defective GABAergic neurotransmission and pharmacological rescue of neuronal hyperexcitability in the amygdala in a mouse model of fragile X syndrome. J. Neurosci. 30, 9929–9938 10.1523/JNEUROSCI.1714-10.2010
    1. Ongur D., Prescot A. P., McCarthy J., Cohen B. M., Renshaw P. F. (2010). Elevated gamma-aminobutyric acid levels in chronic schizophrenia. Biol. Psychiatry 68, 667–670 10.1016/j.biopsych.2010.05.016
    1. Ostendorf A. P., Gutmann D. H., Weisenberg J. L. (2013). Epilepsy in individuals with neurofibromatosis type 1. Epilepsia 54, 1810–1814 10.1111/epi.12348
    1. Pallotto M., Nissant A., Fritschy J. M., Rudolph U., Sassoe-Pognetto M., Panzanelli P., et al. (2012). Early formation of GABAergic synapses governs the development of adult-born neurons in the olfactory bulb. J. Neurosci. 32, 9103–9115 10.1523/JNEUROSCI.0214-12.2012
    1. Paluszkiewicz S. M., Olmos-Serrano J. L., Corbin J. G., Huntsman M. M. (2011). Impaired inhibitory control of cortical synchronization in fragile X syndrome. J. Neurophysiol. 106, 2264–2272 10.1152/jn.00421.2011
    1. Pearl P. L., Shukla L., Theodore W. H., Jakobs C., Michael Gibson K. (2011). Epilepsy in succinic semialdehyde dehydrogenase deficiency, a disorder of GABA metabolism. Brain Dev. 33, 796–805 10.1016/j.braindev.2011.04.013
    1. Penagarikano O., Abrahams B. S., Herman E. I., Winden K. D., Gdalyahu A., Dong H., et al. (2011). Absence of CNTNAP2 leads to epilepsy, neuronal migration abnormalities, and core autism-related deficits. Cell 147, 235–246 10.1016/j.cell.2011.08.040
    1. Perez-Cremades D., Hernandez S., Blasco-Ibanez J. M., Crespo C., Nacher J., Varea E. (2010). Alteration of inhibitory circuits in the somatosensory cortex of Ts65Dn mice, a model for Down's syndrome. J. Neural Transm. 117, 445–455 10.1007/s00702-010-0376-9
    1. Petrini E. M., Lu J., Cognet L., Lounis B., Ehlers M. D., Choquet D. (2009). Endocytic trafficking and recycling maintain a pool of mobile surface AMPA receptors required for synaptic potentiation. Neuron 63, 92–105 10.1016/j.neuron.2009.05.025
    1. Pierri J. N., Chaudry A. S., Woo T. U., Lewis D. A. (1999). Alterations in chandelier neuron axon terminals in the prefrontal cortex of schizophrenic subjects. Am. J. Psychiatry 156, 1709–1719
    1. Pinal C. S., Tobin A. J. (1998). Uniqueness and redundancy in GABA production. Perspect. Dev. Neurobiol. 5, 109–118
    1. Pizzarelli R., Cherubini E. (2011). Alterations of GABAergic signaling in autism spectrum disorders. Neural Plast. 2011, 297153 10.1155/2011/297153
    1. Popp A., Urbach A., Witte O. W., Frahm C. (2009). Adult and embryonic GAD transcripts are spatiotemporally regulated during postnatal development in the rat brain. PLoS ONE 4:e4371 10.1371/journal.pone.0004371
    1. Potier M. C., Braudeau J., Dauphinot L., Delatour B. (2014). Reducing GABAergic inhibition restores cognitive functions in a mouse model of Down syndrome. CNS Neurol. Disord. Drug Targets 13, 8–15 10.2174/18715273113126660185
    1. Potkin S. G., Turner J. A., Guffanti G., Lakatos A., Fallon J. H., Nguyen D. D., et al. (2009). A genome-wide association study of schizophrenia using brain activation as a quantitative phenotype. Schizophr. Bull. 35, 96–108 10.1093/schbul/sbn155
    1. Pouille F., Scanziani M. (2001). Enforcement of temporal fidelity in pyramidal cells by somatic feed-forward inhibition. Science 293, 1159–1163 10.1126/science.1060342
    1. Poulter M. O., Barker J. L., O'Carroll A. M., Lolait S. J., Mahan L. C. (1992). Differential and transient expression of GABAA receptor alpha-subunit mRNAs in the developing rat CNS. J. Neurosci. 12, 2888–2900
    1. Pueschel S. M., Louis S., McKnight P. (1991). Seizure disorders in Down syndrome. Arch. Neurol. 48, 318–320 10.1001/archneur.1991.00530150088024
    1. Ramos B., Lopez-Tellez J. F., Vela J., Baglietto-Vargas D., Del Rio J. C., Ruano D., et al. (2004). Expression of alpha 5 GABAA receptor subunit in developing rat hippocampus. Brain Res. Dev. Brain Res. 151, 87–98 10.1016/j.devbrainres.2004.04.003
    1. Restivo L., Ferrari F., Passino E., Sgobio C., Bock J., Oostra B. A., et al. (2005). Enriched environment promotes behavioral and morphological recovery in a mouse model for the fragile X syndrome. Proc. Natl. Acad. Sci. U.S.A. 102, 11557–11562 10.1073/pnas.0504984102
    1. Reynolds G. P., Warner C. E. (1988). Amino acid neurotransmitter deficits in adult Down's syndrome brain tissue. Neurosci. Lett. 94, 224–227 10.1016/0304-3940(88)90299-6
    1. Reynolds S., Urruela M., Devine D. P. (2013). Effects of environmental enrichment on repetitive behaviors in the BTBR T+tf/J mouse model of autism. Autism Res. 6, 337–343 10.1002/aur.1298
    1. Rissman R. A., Mobley W. C. (2011). Implications for treatment: GABAA receptors in aging, Down syndrome and Alzheimer's disease. J. Neurochem. 117, 613–622 10.1111/j.1471-4159.2011.07237.x
    1. Rivera C., Voipio J., Payne J. A., Ruusuvuori E., Lahtinen H., Lamsa K., et al. (1999). The K+/Cl- co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature 397, 251–255 10.1038/16697
    1. Roberts E., Krause D. N. (1982). Gamma-Aminobutyric acid system in cardiovascular and cerebrovascular function. Isr. J. Med. Sci. 18, 75–81
    1. Rojas D. C., Singel D., Steinmetz S., Hepburn S., Brown M. S. (2013). Decreased left perisylvian GABA concentration in children with autism and unaffected siblings. Neuroimage 86, 28–34 10.1016/j.neuroimage.2013.01.045
    1. Rosenzweig M. R., Bennett E. L., Hebert M., Morimoto H. (1978). Social grouping cannot account for cerebral effects of enriched environments. Brain Res. 153, 563–576 10.1016/0006-8993(78)90340-2
    1. Roth F. C., Draguhn A. (2012). GABA metabolism and transport: effects on synaptic efficacy. Neural Plast. 2012:805830 10.1155/2012/805830
    1. Roth T. C., 2nd., Ladage L. D., Freas C. A., Pravosudov V. V. (2012). Variation in memory and the hippocampus across populations from different climates: a common garden approach. Proc. Biol. Sci. 279, 402–410 10.1098/rspb.2011.1020
    1. Rudolph U., Crestani F., Benke D., Brunig I., Benson J. A., Fritschy J. M., et al. (1999). Benzodiazepine actions mediated by specific gamma-aminobutyric acid(A) receptor subtypes. Nature 401, 796–800 10.1038/44579
    1. Rueda N., Florez J., Martinez-Cue C. (2008). Chronic pentylenetetrazole but not donepezil treatment rescues spatial cognition in Ts65Dn mice, a model for Down syndrome. Neurosci. Lett. 433, 22–27 10.1016/j.neulet.2007.12.039
    1. Rueda N., Mostany R., Pazos A., Florez J., Martinez-Cue C. (2005). Cell proliferation is reduced in the dentate gyrus of aged but not young Ts65Dn mice, a model of Down syndrome. Neurosci. Lett. 380, 197–201 10.1016/j.neulet.2005.01.039
    1. Sale A., Berardi N., Maffei L. (2014). Environment and brain plasticity: towards an endogenous pharmacotherapy. Physiol. Rev. 94, 189–234 10.1152/physrev.00036.2012
    1. Sale A., Berardi N., Spolidoro M., Baroncelli L., Maffei L. (2010). GABAergic inhibition in visual cortical plasticity. Front. Cell Neurosci. 4:10 10.3389/fncel.2010.00010
    1. Saliba R. S., Kretschmannova K., Moss S. J. (2012). Activity-dependent phosphorylation of GABAA receptors regulates receptor insertion and tonic current. EMBO J. 31, 2937–2951 10.1038/emboj.2012.109
    1. Saliba R. S., Michels G., Jacob T. C., Pangalos M. N., Moss S. J. (2007). Activity-dependent ubiquitination of GABA(A) receptors regulates their accumulation at synaptic sites. J. Neurosci. 27, 13341–13351 10.1523/JNEUROSCI.3277-07.2007
    1. Sankar R., Painter M. J. (2005). Neonatal seizures: after all these years we still love what doesn't work. Neurology 64, 776–777 10.1212/01.WNL.0000157320.78071.6D
    1. Schmidt M. J., Mirnics K. (2012). Modeling interneuron dysfunction in schizophrenia. Dev. Neurosci. 34, 152–158 10.1159/000336731
    1. Schneider T., Turczak J., Przewlocki R. (2006). Environmental enrichment reverses behavioral alterations in rats prenatally exposed to valproic acid: issues for a therapeutic approach in autism. Neuropsychopharmacology 31, 36–46 10.1038/sj.npp.1300767
    1. Seidl R., Cairns N., Singewald N., Kaehler S. T., Lubec G. (2001). Differences between GABA levels in Alzheimer's disease and Down syndrome with Alzheimer-like neuropathology. Naunyn. Schmiedebergs Arch. Pharmacol. 363, 139–145 10.1007/s002100000346
    1. Selby L., Zhang C., Sun Q. Q. (2007). Major defects in neocortical GABAergic inhibitory circuits in mice lacking the fragile X mental retardation protein. Neurosci. Lett. 412, 227–232 10.1016/j.neulet.2006.11.062
    1. Semyanov A., Walker M. C., Kullmann D. M. (2003). GABA uptake regulates cortical excitability via cell type-specific tonic inhibition. Nat. Neurosci. 6, 484–490 10.1038/nn1043
    1. Sernagor E., Chabrol F., Bony G., Cancedda L. (2010). GABAergic control of neurite outgrowth and remodeling during development and adult neurogenesis: general rules and differences in diverse systems. Front. Cell Neurosci. 4:11 10.3389/fncel.2010.00011
    1. Shao Y., Cuccaro M. L., Hauser E. R., Raiford K. L., Menold M. M., Wolpert C. M., et al. (2003). Fine mapping of autistic disorder to chromosome 15q11-q13 by use of phenotypic subtypes. Am. J. Hum. Genet. 72, 539–548 10.1086/367846
    1. Shilyansky C., Karlsgodt K. H., Cummings D. M., Sidiropoulou K., Hardt M., James A. S., et al. (2010). Neurofibromin regulates corticostriatal inhibitory networks during working memory performance. Proc. Natl. Acad. Sci. U.S.A. 107, 13141–13146 10.1073/pnas.1004829107
    1. Shprecher D., Kurlan R. (2009). The management of tics. Mov. Disord. 24, 15–24 10.1002/mds.22378
    1. Siarey R. J., Carlson E. J., Epstein C. J., Balbo A., Rapoport S. I., Galdzicki Z. (1999). Increased synaptic depression in the Ts65Dn mouse, a model for mental retardation in Down syndrome. Neuropharmacology 38, 1917–1920 10.1016/S0028-3908(99)00083-0
    1. Sihra T. S., Rodriguez-Moreno A. (2011). Metabotropic actions of kainate receptors in the control of GABA release. Adv. Exp. Med. Biol. 717, 1–10 10.1007/978-1-4419-9557-5_1
    1. Simon J., Wakimoto H., Fujita N., Lalande M., Barnard E. A. (2004). Analysis of the set of GABA(A) receptor genes in the human genome. J. Biol. Chem. 279, 41422–41435 10.1074/jbc.M401354200
    1. Smigielska-Kuzia J., Bockowski L., Sobaniec W., Kulak W., Sendrowski K. (2010). Amino acid metabolic processes in the temporal lobes assessed by proton magnetic resonance spectroscopy (1H MRS) in children with Down syndrome. Pharmacol. Rep. 62, 1070–1077 10.1016/S1734-1140(10)70369-8
    1. Song J., Zhong C., Bonaguidi M. A., Sun G. J., Hsu D., Gu Y., et al. (2012). Neuronal circuitry mechanism regulating adult quiescent neural stem-cell fate decision. Nature 489, 150–154 10.1038/nature11306
    1. Stagni F., Magistretti J., Guidi S., Ciani E., Mangano C., Calza L., et al. (2013). Pharmacotherapy with fluoxetine restores functional connectivity from the dentate gyrus to field CA3 in the Ts65Dn mouse model of down syndrome. PLoS ONE 8:e61689 10.1371/journal.pone.0061689
    1. Succol F., Fiumelli H., Benfenati F., Cancedda L., Barberis A. (2012). Intracellular chloride concentration influences the GABAA receptor subunit composition. Nat. Commun. 3, 738 10.1038/ncomms1744
    1. Sur C., Quirk K., Dewar D., Atack J., McKernan R. (1998). Rat and human hippocampal alpha5 subunit-containing gamma-aminobutyric AcidA receptors have alpha5 beta3 gamma2 pharmacological characteristics. Mol. Pharmacol. 54, 928–933
    1. Tabuchi K., Blundell J., Etherton M. R., Hammer R. E., Liu X., Powell C. M., et al. (2007). A neuroligin-3 mutation implicated in autism increases inhibitory synaptic transmission in mice. Science 318, 71–76 10.1126/science.1146221
    1. Talos D. M., Sun H., Kosaras B., Joseph A., Folkerth R. D., Poduri A., et al. (2012). Altered inhibition in tuberous sclerosis and type IIb cortical dysplasia. Ann. Neurol. 71, 539–551 10.1002/ana.22696
    1. Tao R., Li C., Newburn E. N., Ye T., Lipska B. K., Herman M. M., et al. (2012). Transcript-specific associations of SLC12A5 (KCC2) in human prefrontal cortex with development, schizophrenia, and affective disorders. J. Neurosci. 32, 5216–5222 10.1523/JNEUROSCI.4626-11.2012
    1. Tarasenko A., Krupko O., Himmelreich N. (2014). New insights into molecular mechanism(s) underlying the presynaptic action of nitric oxide on GABA release. Biochim. Biophys. Acta. 1840, 1923–1932 10.1016/j.bbagen.2014.01.030
    1. Terunuma M., Jang I. S., Ha S. H., Kittler J. T., Kanematsu T., Jovanovic J. N., et al. (2004). GABAA receptor phospho-dependent modulation is regulated by phospholipase C-related inactive protein type 1, a novel protein phosphatase 1 anchoring protein. J. Neurosci. 24, 7074–7084 10.1523/JNEUROSCI.1323-04.2004
    1. Tian N., Petersen C., Kash S., Baekkeskov S., Copenhagen D., Nicoll R. (1999). The role of the synthetic enzyme GAD65 in the control of neuronal gamma-aminobutyric acid release. Proc. Natl. Acad. Sci. U.S.A. 96, 12911–12916 10.1073/pnas.96.22.12911
    1. Tian Y., Gunther J. R., Liao I. H., Liu D., Ander B. P., Stamova B. S., et al. (2011). GABA- and acetylcholine-related gene expression in blood correlate with tic severity and microarray evidence for alternative splicing in Tourette syndrome: a pilot study. Brain Res. 1381, 228–236 10.1016/j.brainres.2011.01.026
    1. Tollner K., Brandt C., Topfer M., Brunhofer G., Erker T., Gabriel M., et al. (2014). A novel prodrug-based strategy to increase effects of bumetanide in epilepsy. Ann Neurol. 75, 550–562 10.1002/ana.24124
    1. Triller A., Choquet D. (2005). Surface trafficking of receptors between synaptic and extrasynaptic membranes: and yet they do move! Trends Neurosci. 28, 133–139 10.1016/j.tins.2005.01.001
    1. Tyzio R., Cossart R., Khalilov I., Minlebaev M., Hubner C. A., Represa A., et al. (2006). Maternal oxytocin triggers a transient inhibitory switch in GABA signaling in the fetal brain during delivery. Science 314, 1788–1792 10.1126/science.1133212
    1. Tyzio R., Nardou R., Ferrari D. C., Tsintsadze T., Shahrokhi A., Eftekhari S., et al. (2014). Oxytocin-mediated GABA inhibition during delivery attenuates autism pathogenesis in rodent offspring. Science 343, 675–679 10.1126/science.1247190
    1. Urbach A., Bar-Nur O., Daley G. Q., Benvenisty N. (2010). Differential modeling of fragile X syndrome by human embryonic stem cells and induced pluripotent stem cells. Cell Stem. Cell 6, 407–411 10.1016/j.stem.2010.04.005
    1. Uusi-Oukari M., Korpi E. R. (2010). Regulation of GABA(A) receptor subunit expression by pharmacological agents. Pharmacol. Rev. 62, 97–135 10.1124/pr.109.002063
    1. Varju P., Katarova Z., Madarasz E., Szabo G. (2002). Sequential induction of embryonic and adult forms of glutamic acid decarboxylase during in vitro-induced neurogenesis in cloned neuroectodermal cell-line, NE-7C2. J. Neurochem. 80, 605–615 10.1046/j.0022-3042.2001.00733.x
    1. Violante I. R., Ribeiro M. J., Edden R. A., Guimaraes P., Bernardino I., Rebola J., et al. (2013). GABA deficit in the visual cortex of patients with neurofibromatosis type 1: genotype-phenotype correlations and functional impact. Brain 136, 918–925 10.1093/brain/aws368
    1. Vithlani M., Terunuma M., Moss S. J. (2011). The dynamic modulation of GABA(A) receptor trafficking and its role in regulating the plasticity of inhibitory synapses. Physiol. Rev. 91, 1009–1022 10.1152/physrev.00015.2010
    1. Vogel K. R., Pearl P. L., Theodore W. H., McCarter R. C., Jakobs C., Gibson K. M. (2013). Thirty years beyond discovery—clinical trials in succinic semialdehyde dehydrogenase deficiency, a disorder of GABA metabolism. J. Inherit. Metab. Dis. 36, 401–410 10.1007/s10545-012-9499-5
    1. Voituron N., Hilaire G. (2011). The benzodiazepine Midazolam mitigates the breathing defects of Mecp2-deficient mice. Respir. Physiol. Neurobiol. 177, 56–60 10.1016/j.resp.2011.02.002
    1. Volk D. W., Pierri J. N., Fritschy J. M., Auh S., Sampson A. R., Lewis D. A. (2002). Reciprocal alterations in pre- and postsynaptic inhibitory markers at chandelier cell inputs to pyramidal neurons in schizophrenia. Cereb. Cortex 12, 1063–1070 10.1093/cercor/12.10.1063
    1. Volpe J. J. (2008). Neurology of the Newborn. Philadelphia: Saunders/Elsevier
    1. Volpe J. J. (2009). Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol. 8, 110–124 10.1016/S1474-4422(08)70294-1
    1. Wagner S., Castel M., Gainer H., Yarom Y. (1997). GABA in the mammalian suprachiasmatic nucleus and its role in diurnal rhythmicity. Nature 387, 598–603 10.1038/42468
    1. Walker M. C., Semyanov A. (2008). Regulation of excitability by extrasynaptic GABA(A) receptors. Results Probl. Cell Differ. 44, 29–48 10.1007/400_2007_030
    1. Wang D. D., Kriegstein A. R. (2009). Defining the role of GABA in cortical development. J. Physiol. 587, 1873–1879 10.1113/jphysiol.2008.167635
    1. Wang D. D., Krueger D. D., Bordey A. (2003a). GABA depolarizes neuronal progenitors of the postnatal subventricular zone via GABAA receptor activation. J. Physiol. 550, 785–800 10.1113/jphysiol.2003.042572
    1. Wang J., Liu S., Haditsch U., Tu W., Cochrane K., Ahmadian G., et al. (2003b). Interaction of calcineurin and type-A GABA receptor gamma 2 subunits produces long-term depression at CA1 inhibitory synapses. J. Neurosci. 23, 826–836
    1. Wang L., Kitai S. T., Xiang Z. (2006a). Activity-dependent bidirectional modification of inhibitory synaptic transmission in rat subthalamic neurons. J. Neurosci. 26, 7321–7327 10.1523/JNEUROSCI.4656-05.2006
    1. Wang Q., Liu L., Pei L., Ju W., Ahmadian G., Lu J., et al. (2003c). Control of synaptic strength, a novel function of Akt. Neuron 38, 915–928 10.1016/S0896-6273(03)00356-8
    1. Wang W., Gong N., Xu T. L. (2006b). Downregulation of KCC2 following LTP contributes to EPSP-spike potentiation in rat hippocampus. Biochem. Biophys. Res. Commun. 343, 1209–1215 10.1016/j.bbrc.2006.03.038
    1. Watanabe M., Maemura K., Kanbara K., Tamayama T., Hayasaki H. (2002). GABA and GABA receptors in the central nervous system and other organs. Int. Rev. Cytol. 213, 1–47 10.1016/S0074-7696(02)13011-7
    1. Westmark C. J., Westmark P. R., Malter J. S. (2010). Alzheimer's disease and Down syndrome rodent models exhibit audiogenic seizures. J. Alzheimers Dis. 20, 1009–1013 10.3233/JAD-2010-100087
    1. Whittington M. A., Cunningham M. O., Lebeau F. E., Racca C., Traub R. D. (2011). Multiple origins of the cortical gamma rhythm. Dev. Neurobiol. 71, 92–106 10.1002/dneu.20814
    1. Whittle N., Sartori S. B., Dierssen M., Lubec G., Singewald N. (2007). Fetal Down syndrome brains exhibit aberrant levels of neurotransmitters critical for normal brain development. Pediatrics 120, e1465–e1471 10.1542/peds.2006-3448
    1. Wigstrom H., Gustafsson B. (1983). Large long-lasting potentiation in the dentate gyrus in vitro during blockade of inhibition. Brain Res. 275, 153–158 10.1016/0006-8993(83)90428-6
    1. Williams D., Stern J. S., Grabecki K., Simmons H., Robertson M. M. (2013). Epilepsy in Tourette Syndrome. J. Neurol. Neurosurg. Psychiatry 84:e1 10.1136/jnnp-2013-306103.31
    1. Wojcik S. M., Katsurabayashi S., Guillemin I., Friauf E., Rosenmund C., Brose N., et al. (2006). A shared vesicular carrier allows synaptic corelease of GABA and glycine. Neuron 50, 575–587 10.1016/j.neuron.2006.04.016
    1. Wolkowitz O. M., Pickar D. (1991). Benzodiazepines in the treatment of schizophrenia: a review and reappraisal. Am. J. Psychiatry 148, 714–726
    1. Woo C. C., Leon M. (2013). Environmental enrichment as an effective treatment for autism: a randomized controlled trial. Behav. Neurosci. 127, 487–497 10.1037/a0033010
    1. Woo T. U., Whitehead R. E., Melchitzky D. S., Lewis D. A. (1998). A subclass of prefrontal gamma-aminobutyric acid axon terminals are selectively altered in schizophrenia. Proc. Natl. Acad. Sci. U.S.A. 95, 5341–5346 10.1073/pnas.95.9.5341
    1. Woodin M. A., Ganguly K., Poo M. M. (2003). Coincident pre- and postsynaptic activity modifies GABAergic synapses by postsynaptic changes in Cl- transporter activity. Neuron 39, 807–820 10.1016/S0896-6273(03)00507-5
    1. Worbe Y., Baup N., Grabli D., Chaigneau M., Mounayar S., McCairn K., et al. (2009). Behavioral and movement disorders induced by local inhibitory dysfunction in primate striatum. Cereb. Cortex 19, 1844–1856 10.1093/cercor/bhn214
    1. Wu Y., Wang W., Diez-Sampedro A., Richerson G. B. (2007). Nonvesicular inhibitory neurotransmission via reversal of the GABA transporter GAT-1. Neuron 56, 851–865 10.1016/j.neuron.2007.10.021
    1. Xu J. Y., Sastry B. R. (2007). Theta-bursts induce a shift in reversal potentials for GABA-A receptor-mediated postsynaptic currents in rat hippocampal CA1 neurons. Exp. Neurol. 204, 836–839 10.1016/j.expneurol.2007.01.004
    1. Xu X., Wells A. B., O'Brien D. R., Nehorai A., Dougherty J. D. (2014). Cell type-specific expression analysis to identify putative cellular mechanisms for neurogenetic disorders. J. Neurosci. 34, 1420–1431 10.1523/JNEUROSCI.4488-13.2014
    1. Yamashita Y., Matsuishi T., Ishibashi M., Kimura A., Onishi Y., Yonekura Y., et al. (1998). Decrease in benzodiazepine receptor binding in the brains of adult patients with Rett syndrome. J. Neurol. Sci. 154, 146–150 10.1016/S0022-510X(97)00223-2
    1. Yoon J. H., Maddock R. J., Rokem A., Silver M. A., Minzenberg M. J., Ragland J. D., S., et al. (2010). GABA concentration is reduced in visual cortex in schizophrenia and correlates with orientation-specific surround suppression. J. Neurosci. 30, 3777–3781 10.1523/JNEUROSCI.6158-09.2010
    1. Young S. Z., Platel J. C., Nielsen J. V., Jensen N. A., Bordey A. (2010). GABA(A) increases calcium in subventricular zone astrocyte-like cells through L- and T-type voltage-gated calcium channels. Front. Cell Neurosci. 4:8 10.3389/fncel.2010.00008
    1. Young S. Z., Taylor M. M., Wu S., Ikeda-Matsuo Y., Kubera C., Bordey A. (2012). NKCC1 knockdown decreases neuron production through GABA(A)-regulated neural progenitor proliferation and delays dendrite development. J. Neurosci. 32, 13630–13638 10.1523/JNEUROSCI.2864-12.2012
    1. Yu Z., Fang Q., Xiao X., Wang Y. Z., Cai Y. Q., Cao H., et al. (2013). GABA transporter-1 deficiency confers schizophrenia-like behavioral phenotypes. PLoS ONE 8:e69883 10.1371/journal.pone.0069883
    1. Zafeiriou D. I., Ververi A., Dafoulis V., Kalyva E., Vargiami E. (2013). Autism spectrum disorders: the quest for genetic syndromes. Am. J. Med. Genet. B Neuropsychiatr. Genet. 162B, 327–366 10.1002/ajmg.b.32152
    1. Zhang W., Peterson M., Beyer B., Frankel W. N., Zhang Z. W. (2014). Loss of MeCP2 from forebrain excitatory neurons leads to cortical hyperexcitation and seizures. J. Neurosci. 34, 2754–2763 10.1523/JNEUROSCI.4900-12.2014
    1. Zhang Z. W., Zak J. D., Liu H. (2010). MeCP2 is required for normal development of GABAergic circuits in the thalamus. J. Neurophysiol. 103, 2470–2481 10.1152/jn.00601.2009
    1. Zhou Y., Danbolt N. C. (2013). GABA and glutamate transporters in brain. Front. Endocrinol. (Lausanne) 4:165 10.3389/fendo.2013.00165

Source: PubMed

3
S'abonner