Concomitant Use of Transcranial Direct Current Stimulation and Computer-Assisted Training for the Rehabilitation of Attention in Traumatic Brain Injured Patients: Behavioral and Neuroimaging Results

Katiuscia Sacco, Valentina Galetto, Danilo Dimitri, Elisabetta Geda, Francesca Perotti, Marina Zettin, Giuliano C Geminiani, Katiuscia Sacco, Valentina Galetto, Danilo Dimitri, Elisabetta Geda, Francesca Perotti, Marina Zettin, Giuliano C Geminiani

Abstract

Divided attention (DA), the ability to distribute cognitive resources among two or more simultaneous tasks, may be severely compromised after traumatic brain injury (TBI), resulting in problems with numerous activities involved with daily living. So far, no research has investigated whether the use of non-invasive brain stimulation associated with neuropsychological rehabilitation might contribute to the recovery of such cognitive function. The main purpose of this study was to assess the effectiveness of 10 transcranial direct current stimulation (tDCS) sessions combined with computer-assisted training; it also intended to explore the neural modifications induced by the treatment. Thirty-two patients with severe TBI participated in the study: 16 were part of the experimental group, and 16 part of the control group. The treatment included 20' of tDCS, administered twice a day for 5 days. The electrodes were placed on the dorso-lateral prefrontal cortex. Their location varied across patients and it depended on each participant's specific area of damage. The control group received sham tDCS. After each tDCS session, the patient received computer-assisted cognitive training on DA for 40'. The results showed that the experimental group significantly improved in DA performance between pre- and post-treatment, showing faster reaction times (RTs), and fewer omissions. No improvement was detected between the baseline assessment (i.e., 1 month before treatment) and the pre-training assessment, or within the control group. Functional magnetic resonance imaging (fMRI) data, obtained on the experimental group during a DA task, showed post-treatment lower cerebral activations in the right superior temporal gyrus (BA 42), right and left middle frontal gyrus (BA 6), right postcentral gyrus (BA 3) and left inferior frontal gyrus (BA 9). We interpreted such neural changes as normalization of previously abnormal hyperactivations.

Keywords: attention; cerebral plasticity; cognitive rehabilitation; functional magnetic resonance imaging (fMRI); transcranial direct current stimulation (tDCS); traumatic brain injury (TBI).

Figures

Figure 1
Figure 1
Experimental design. DA, Divided Attention; RBANS, Repeatable Battery for the Assessment of the Neuropsychological Status; BDI, Beck’s Depression Inventory; AES, Apathy Evaluation Scale.
Figure 2
Figure 2
Divided Attention (DA): Average scores obtained at T0 (Baseline), T1 (pre-Treatment) and T2 (post-Treatment) by the experimental group and the control group. Reaction time (RT) is expressed in milliseconds. RT; OE, Omission Errors. Asterisks indicate when the difference between performances is statistically significant.
Figure 3
Figure 3
Results of pre-treatment functional magnetic resonance imaging (fMRI) analysis (N = 11; p < 2.3965e−10).
Figure 4
Figure 4
Results of post-minus pre-treatment fMRI analysis (N = 11; p < 0.000002).

References

    1. Andelic N., Hammergren N., Bautz-Holter E., Sveen U., Brunborg C., Røe C. (2009). Functional outcome and health-related quality of life 10 years after moderate-to-severe traumatic brain injury. Acta Neurol. Scand. 120, 16–23. 10.1111/j.1600-0404.2008.01116.x
    1. Asloun S., Soury S., Couillet J., Giroire J. M., Joseph P. A., Mazaux J. M., et al. . (2008). Interactions between divided attention and working-memory load in patients with severe traumatic brain injury. J. Clin. Exp. Neuropsychol. 30, 481–490. 10.1080/13803390701550144
    1. Azouvi P., Couillet J., Leclercq M., Martin Y., Asloun S., Rousseaux M. (2004). Divided attention and mental effort after severe traumatic brain injury. Neuropsychologia 42, 1260–1268. 10.1016/j.neuropsychologia.2004.01.001
    1. Beck A. T., Ward C. H., Mendelson M. D., Mock J., Erbaugh J. (1961). Beck depression inventory (BDI). Arch. Gen. Psychiatry 4, 561–571. 10.1001/archpsyc.1961.01710120031004
    1. Bikson M., Datta A., Rahman A., Scaturro J. (2010). Electrode montages for tDCS and weak transcranial electrical stimulation: role of “return” electrode’s position and size. Clin. Neurophysiol. 121, 1976–1978. 10.1016/j.clinph.2010.05.020
    1. Bikson M., Rahman A., Datta A., Fregni F., Merabet L. (2012). High-resolution modeling assisted design of customized and individualized transcranial direct current stimulation protocols. Neuromodulation 15, 306–315. 10.1111/j.1525-1403.2012.00481.x
    1. Brouwer W., Verzendaal M., van der Naalt J., Smit J., van Zomeren E. (2001). Divided attention years after severe closed head injury: the effect of dependencies between the subtasks. Brain Cogn. 46, 54–56. 10.1016/s0278-2626(01)80033-6
    1. Brouwer W. H., Withaar F. K., Tant M. L., van Zomeren A. H. (2002). Attention and driving in traumatic brain injury: a question of coping with time-pressure. J. Head Trauma Rehabil. 17, 1–15. 10.1097/00001199-200202000-00003
    1. Brunoni A. R., Nitsche M. A., Bolognini N., Bikson M., Wagner T., Merabet L., et al. . (2012). Clinical research with transcranial direct current stimulation (tDCS): challenges and future directions. Brain Stimul. 5, 175–195. 10.1016/j.brs.2011.03.002
    1. Cernich A. N., Kurtz S. M., Mordecai K. L., Ryan P. B. (2010). Cognitive rehabilitation in traumatic brain injury. Curr. Treat. Options Neurol. 12, 412–423. 10.1007/s11940-010-0085-6
    1. Cicerone K. D., Langenbahn D. M., Braden C., Malec J. F., Kalmar K., Fraas M., et al. . (2011). Evidence-based cognitive rehabilitation: updated review of the literature from 2003 through 2008. Arch. Phys. Med. Rehabil. 92, 519–530. 10.1016/j.apmr.2010.11.015
    1. Clark V. P., Parasuraman R. (2014). Neuroenhancement: enhancing brain and mind in health and in disease. Neuroimage 85, 889–894. 10.1016/j.neuroimage.2013.08.071
    1. Collette F., Olivier L., Van der Linden M., Laureys S., Delfiore G., Luxen A., et al. . (2005). Involvement of both prefrontal and inferior parietal cortex in dual-task performance. Brain Res. Cogn. Brain Res. 24, 237–251. 10.1016/j.cogbrainres.2005.01.023
    1. Couillet J., Soury S., Lebornec G., Asloun S., Joseph P. A., Mazaux J. M., et al. . (2010). Rehabilitation of divided attention after severe traumatic brain injury: a randomised trial. Neuropsychol. Rehabil. 20, 321–339. 10.1080/09602010903467746
    1. Cyr A. A., Stinchcombe A., Gagnon S., Marshall S., Hing M. M., Finestone H. (2009). Driving difficulties of brain-injured drivers in reaction to high-crash-risk simulated road events: a question of impaired divided attention? J. Clin. Exp. Neuropsychol. 31, 472–482. 10.1080/13803390802255627
    1. De Luca R., Calabrò R. S., Gervasi G., De Salvo S., Bonanno L., Corallo F., et al. . (2014). Is computer-assisted training effective in improving rehabilitative outcomes after brain injury? A case-control hospital-based study. Disabil. Health J. 7, 356–360. 10.1016/j.dhjo.2014.04.003
    1. De Renzi E., Vignolo L. A. (1962). The token test: a sensitive test to detect receptive disturbances in aphasics. Brain 85, 665–678. 10.1093/brain/85.4.665
    1. Flöel A. (2014). tDCS-enhanced motor and cognitive function in neurological diseases. Neuroimage 85, 934–947. 10.1016/j.neuroimage.2013.05.098
    1. Folstein M. F., Folstein S. E., McHugh P. R. (1975). “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 12, 189–198. 10.1016/0022-3956(75)90026-6
    1. Herath P., Klingberg T., Young J., Amunts K., Roland P. (2001). Neural correlates of dual task interference can be dissociated from those of divided attention: an fMRI study. Cereb. Cortex 11, 796–805. 10.1093/cercor/11.9.796
    1. Jackson M. L., Hughes M. E., Croft R. J., Howard M. E., Crewther D., Kennedy G. A., et al. . (2011). The effect of sleep deprivation on BOLD activity elicited by a divided attention task. Brain Imaging Behav. 5, 97–108. 10.1007/s11682-011-9115-6
    1. Johnson J. A., Strafella A. P., Zatorre R. J. (2007). The role of the dorsolateral prefrontal cortex in bimodal divided attention: two transcranial magnetic stimulation studies. J. Cogn. Neurosci. 19, 907–920. 10.1162/jocn.2007.19.6.907
    1. Johnson J. A., Zatorre R. J. (2005). Attention to simultaneous unrelated auditory and visual events: behavioral and neural correlates. Cereb. Cortex 15, 1609–1620. 10.1093/cercor/bhi039
    1. Johnson J. A., Zatorre R. J. (2006). Neural substrates for dividing and focusing attention between simultaneous auditory and visual events. Neuroimage 31, 1673–1681. 10.1016/j.neuroimage.2006.02.026
    1. Kang E. K., Kim D. Y., Paik N. J. (2012). Transcranial direct current stimulation of the left prefrontal cortex improves attention in patients with traumatic brain injury: a pilot study. J. Rehabil. Med. 44, 346–350. 10.2340/16501977-0947
    1. Klingberg T. (2000). Limitations in information processing in the human brain: neuroimaging of dual task performance and working memory tasks. Prog. Brain Res. 126, 95–102. 10.1016/s0079-6123(00)26009-3
    1. Leclercq M., Azouvi P. (2002). “Attention after traumatic brain injury,” in Applied Neuropsychology of Attention: Theory Diagnosis, and Rehabilitation, eds Leclercq M., Zimmermann P. (New York, NY: Psychology Press; ), 257–279.
    1. Leśniak M., Polanowska K., Seniów J., Członkowska A. (2014). Effects of repeated anodal tDCS coupled with cognitive training for patients with severe traumatic brain injury: a pilot randomized controlled trial. J. Head Trauma Rehabil. 29, E20–E29. 10.1097/HTR.0b013e318292a4c2
    1. Loose R., Kaufmann C., Auer D. P., Lange K. W. (2003). Human prefrontal and sensory cortical activity during divided attention tasks. Hum. Brain Mapp. 18, 249–259. 10.1002/hbm.10082
    1. Marin R. S., Biedrzycki R. C., Firinciogullari S. (1991). Reliability and validity of the apathy evaluation scale. Psychiatry Res. 38, 143–162. 10.1016/0165-1781(91)90040-v
    1. Masson M., Michael G. A., Désert J. F., Rhein F., Foubert L., Colliot P. (2013). Specific attention disorders in drivers with traumatic brain injury. Brain Inj. 27, 538–547. 10.3109/02699052.2013.766926
    1. Miniussi C., Cappa S. F., Cohen L. G., Floel A., Fregni F., Nitsche M. A., et al. . (2008). Efficacy of repetitive transcranial magnetic stimulation/transcranial direct current stimulation in cognitive neurorehabilitation. Brain Stimul. 1, 326–336. 10.1016/j.brs.2008.07.002
    1. Montani V., De Filippo De Grazia M., Zorzi M. (2014). A new adaptive videogame for training attention and executive functions: design principles and initial validation. Front. Psychol. 5:409. 10.3389/fpsyg.2014.00409
    1. Nebel K., Wiese H., Stude P., de Greiff A., Diener H. C., Keidel M. (2005). On the neural basis of focused and divided attention. Brain Res. Cogn. Brain Res. 25, 760–776. 10.1016/j.cogbrainres.2005.09.011
    1. Park S. H., Koh E. J., Choi H. Y., Ko M. H. (2013). A double-blind, sham-controlled, pilot study to assess the effects of the concomitant use of transcranial direct current stimulation with the computer assisted cognitive rehabilitation to the prefrontal cortex on cognitive functions in patients with stroke. J. Korean Neurosurg. Soc. 54, 484–488. 10.3340/jkns.2013.54.6.484
    1. Park N. W., Moscovitch M., Robertson I. H. (1999). Divided attention impairments after traumatic brain injury. Neuropsychologia 37, 1119–1133. 10.1016/s0028-3932(99)00034-2
    1. Ponsford A., Clements R. (1991). A modified view of the facial bones in the seriously injured. Radiogr. Today 57, 10–12.
    1. Poreisz C., Boros K., Antal A., Paulus W. (2007). Safety aspects of transcranial direct current stimulation concerning healthy subjects and patients. Brain Res. Bull. 72, 208–214. 10.1016/j.brainresbull.2007.01.004
    1. Randolph C., Tierney M. C., Mohr E., Chase T. N. (1998). The repeatable battery for the assessment of neuropsychological Status (RBANS): preliminary clinical validity. J. Clin. Exp. Neuropsychol. 20, 310–319. 10.1076/jcen.20.3.310.823
    1. Rasmussen I. A., Xu J., Antonsen I. K., Brunner J., Skandsen T., Axelson D. E., et al. . (2008). Simple dual tasking recruits prefrontal cortices in chronic severe traumatic brain injury patients, but not in controls. J. Neurotrauma 25, 1057–1070. 10.1089/neu.2008.0520
    1. Scelzo E., Ferrucci R., Bortolomasi M., Giacopuzzi M., Priori A. (2011). Transcranial direct current stimulation (TDCS) for severe drug resistent major depression: a ten days treatment protocol. Eur. Psychiatry 26:1154 10.1016/s0924-9338(11)72859-0
    1. Schulz R., Gerloff C., Hummel F. C. (2013). Non-invasive brain stimulation in neurological diseases. Neuropharmacology 64, 579–587. 10.1016/j.neuropharm.2012.05.016
    1. Serino A., Ciaramelli E., Santantonio A. D., Malagù S., Servadei F., Làdavas E. (2007). A pilot study for rehabilitation of central executive deficits after traumatic brain injury. Brain Inj. 21, 11–19. 10.1080/02699050601151811
    1. Shin Y. I., Foerster A., Nitsche M. A. (2015). Transcranial direct current stimulation (tDCS) - Application in neuropsychology. Neuropsychologia 69, 154–175. 10.1016/j.neuropsychologia.2015.02.002
    1. Sozda C. N., Larson M. J., Kaufman D. A., Schmalfuss I. M., Perlstein W. M. (2011). Error-related processing following severe traumatic brain injury: an event-related functional magnetic resonance imaging (fMRI) study. Int. J. Psychophysiol. 82, 97–106. 10.1016/j.ijpsycho.2011.06.019
    1. Tachibana A., Noah J. A., Bronner S., Ono Y., Hirano Y., Niwa M., et al. . (2012). Activation of dorsolateral prefrontal cortex in a dual neuropsychological screening test: an fMRI approach. Behav. Brain Funct. 8:26. 10.1186/1744-9081-8-26
    1. Toyokura M., Nishimura Y., Akutsu I., Mizuno R., Watanabe F. (2012). Selective deficit of divided attention following traumatic brain injury: case reports. Tokai J. Exp. Clin. Med. 37, 19–24.
    1. Ulam F., Shelton C., Richards L., Davis L., Hunter B., Fregni F., et al. . (2015). Cumulative effects of transcranial direct current stimulation on EEG oscillations and attention/working memory during subacute neurorehabilitation of traumatic brain injury. Clin. Neurophysiol. 126, 486–496. 10.1016/j.clinph.2014.05.015
    1. van Zomeren A., van den Burg W. (1985). Residual complaints of patients two years after severe head injury. J. Neurol. Neurosurg. Psychiatry 48, 21–28. 10.1136/jnnp.48.1.21
    1. Villamar M. F., Santos Portilla A., Fregni F., Zafonte R. (2012). Noninvasive brain stimulation to modulate neuroplasticity in traumatic brain injury. Neuromodulation 15, 326–338. 10.1111/j.1525-1403.2012.00474.x
    1. Wagner M., Rihs T. A., Mosimann U. P., Fisch H. U., Schlaepfer T. E. (2006). Repetitive transcranial magnetic stimulation of the dorsolateral prefrontal cortex affects divided attention immediately after cessation of stimulation. J. Psychiatr. Res. 40, 315–321. 10.1016/j.jpsychires.2005.06.001
    1. Withaar F. K., Brouwer W. H., van Zomeren A. H. (2000). Fitness to drive in older drivers with cognitive impairment. J. Int. Neuropsychol. Soc. 6, 480–490. 10.1017/s1355617700644065
    1. Zimmermann P., Fimm B. (2002). “A test battery for attentional performance,” in Applied Neurophyschology of Attention: Theory, Diagnosis and Rehabilitation, eds Leclercq M., Zimmerman P. (London: Psychology Press; ), 110–151.

Source: PubMed

3
S'abonner