Association of total antioxidants level with glaucoma type and severity

Ahmed Mousa, Altaf A Kondkar, Saleh A Al-Obeidan, Taif A Azad, Tahira Sultan, Essam Osman, Khaled K Abu-Amero, Ahmed Mousa, Altaf A Kondkar, Saleh A Al-Obeidan, Taif A Azad, Tahira Sultan, Essam Osman, Khaled K Abu-Amero

Abstract

Objectives: To compare the mean total antioxidant status (TAS) among 3 glaucoma types, namely: pseudoexfoliation glaucoma (PEG), primary open angle glaucoma (POAG), and primary angle closure glaucoma (PACG), and study its potential association with various clinical glaucoma-parameters.

Methods: In this case-control study, plasma samples were obtained between September 2013 and October 2014 from 340 glaucoma patients (PEG [n=54]; POAG [n=147]; PACG [n=139]), and 351 controls of matching age, gender, ethnicity, and 5 different systemic co-morbidities from King Abdulaziz University Hospital, Riyadh, Saudi Arabia. The TAS in all samples was determined by a colorimetric-based assay.

Results: The mean±standard deviation of TAS was significantly lower among cases: 0.77±0.32 than controls: 1.1±0.22, p less than 0.0001. Moreover, the TAS levels were significantly different across the 3 types of glaucoma: 0.86±0.24 in PEG, 0.47±0.32 in POAG, and 0.98±0.41 in PACG (all p less than 0.0001). In addition, there was a significant correlation between TAS and age at onset (Pearson correlation coefficient [R] 0.17, p less than 0.0001), cup/disc ratio (R: -0.13, p=0.004), and number of anti-glaucoma medications (R: -0.16, p=0.001).

Conclusion: Our findings provide evidence that plasma TAS levels are decreased in patients with glaucoma, more so in POAG and PEG than PACG, supporting the hypothesis that decreased antioxidative defense and/or increased oxidative stress may have a critical role in the pathogenesis of glaucoma.

Figures

Figure 1
Figure 1
Mean ± standard deviation of total antioxidant concentration for different types of glaucoma. PEG - pseudoexfoliation glaucoma, POAG - primary open angle glaucoma, PACG - primary angle closure glaucoma, TAS - total antioxidant status

References

    1. Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol. 2006;90:262–267.
    1. Krakau CE. Intraocular pressure elevation-cause or effect in chronic glaucoma? Ophthalmologica. 1981;182:141–147.
    1. Bonomi L, Marchini G, Marraffa M, Morbio R. The relationship between intraocular pressure and glaucoma in a defined population. Data from the Egna-Neumarkt Glaucoma Study. Ophthalmologica. 2001;215:34–38.
    1. Johnson TV, Tomarev SI. Rodent models of glaucoma. Brain Res Bull. 2010;81:349–358.
    1. Butt Z, O’Brien C, McKillop G, Aspinall P, Allan P. Color Doppler imaging in untreated high- and normal-pressure open-angle glaucoma. Invest Ophthalmol Vis Sci. 1997;38:690–696.
    1. Veach J. Functional dichotomy: glutathione and vitamin E in homeostasis relevant to primary open-angle glaucoma. Br J Nutr. 2004;91:809–829.
    1. Izzotti A, Saccà SC, Cartiglia C, De Flora S. Oxidative deoxyribonucleic acid damage in the eyes of glaucoma patients. Am J Med. 2003;114:638–646.
    1. Ohia SE, Opere CA, Leday AM. Pharmacological consequences of oxidative stress in ocular tissues. Mutat Res. 2005;579:22–36.
    1. Saccà SC, Pascotto A, Camicione P, Capris P, Izzotti A. Oxidative DNA damage in the human trabecular meshwork: clinical correlation in patients with primary open-angle glaucoma. Arch Ophthalmol. 2005;123:458–463.
    1. Abu-Amero KK, Morales J, Bosley TM. Mitochondrial abnormalities in patients with primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 2006;47:2533–2541.
    1. Abu-Amero KK, Cabrera VM, Larruga JM, Osman EA, González AM, Al-Obeidan SA. Eurasian and Sub-Saharan African mitochondrial DNA haplogroup influences pseudoexfoliation glaucoma development in Saudi patients. Mol Vis. 2011;17:543–547.
    1. Bosley TM, Hellani A, Spaeth GL, Myers J, Katz LJ, Moster MR, et al. Down-regulation of OPA1 in patients with primary open angle glaucoma. Mol Vis. 2011;17:1074–1079.
    1. Abu-Amero KK, Morales J, Mohamed GH, Osman MN, Bosley TM. Glutathione S-transferase M1 and T1 polymorphisms in Arab glaucoma patients. Mol Vis. 2008;14:425–430.
    1. Nucci C, Di Pierro D, Varesi C, Ciuffoletti E, Russo R, Gentile R, et al. Increased malondialdehyde concentration and reduced total antioxidant capacity in aqueous humor and blood samples from patients with glaucoma. Mol Vis. 2013;19:1841–1846.
    1. Erdurmuş M, Yağcı R, Atış Ö, Karadağ R, Akbaş A, Hepşen IF. Antioxidant status and oxidative stress in primary open angle glaucoma and pseudoexfoliative glaucoma. Curr Eye Res. 2011;36:713–718.
    1. Sorkhabi R, Ghorbanihaghjo A, Javadzadeh A, Rashtchizadeh N, Moharrery M. Oxidative DNA damage and total antioxidant status in glaucoma patients. Mol Vis. 2011;17:41–46.
    1. Engin KN, Yemişci B, Yiğit U, Ağaçhan A, Coşkun C. Variability of serum oxidative stress biomarkers relative to biochemical data and clinical parameters of glaucoma patients. Mol Vis. 2010;16:1260–1271.
    1. Abu-Amero KK, Kondkar AA, Mousa A, Osman EA, Al-Obeidan SA. Decreased total antioxidants status in the plasma of patients with pseudoexfoliation glaucoma. Mol Vis. 2011;17:2769–2775.
    1. Abu-Amero KK, Azad TA, Mousa A, Osman EA, Sultan T, Al-Obeidan SA. Total antioxidant level is correlated with intra-ocular pressure in patients with primary angle closure glaucoma. BMC Res Notes. 2014;7:163.
    1. Abu-Amero KK, Kondkar AA, Mousa A, Osman EA, Al-Obeidan SA. Decreased total antioxidants in patients with primary open angle glaucoma. Curr Eye Res. 2013;38:959–964.
    1. European Glaucoma Society. Terminology and guidelines for glaucoma. 3rd ed. [Updated: 2015; Accessed 2014 October 2014] Available from:
    1. Tulunoglu O, Demirtas S, Tulunoglu I. Total antioxidant levels of saliva in children related to caries, age, and gender. Int J Paediatr Dent. 2006;16:186–191.
    1. Abu-Amero KK, Bosley TM, Morales J. Analysis of nuclear and mitochondrial genes in patients with pseudoexfoliation glaucoma. Mol Vis. 2008;14:29–36.
    1. Ritch R, Shields M, Krupin T, editors. Angle-closure glaucoma: mechanisms and epidemiology. In: The Glaucomas. 2nd ed. St Louis (MO): Mosby; 1996. p. 801-819.
    1. Quigley HA, Friedman DS, Congdon NG. Possible mechanisms of primary angle-closure and malignant glaucoma. J Glaucoma. 2003;12:167–180.
    1. de Kater AW, Melamed S, Epstein DL. Patterns of aqueous humor outflow in glaucomatous and nonglaucomatous human eyes. A tracer study using cationized ferritin. Arch Ophthalmol. 1989;107:572–576.
    1. Quigley HA, Friedman DS, Congdon NG. Possible mechanisms of primary angle-closure and malignant glaucoma. J Glaucoma. 1997;6:123–132.
    1. Tezel G. Oxidative stress in glaucomatous neurodegeneration: mechanisms and consequences. Prog Retin Eye Res. 2006;25:490–513.
    1. Abu-Amero KK, Morales J, Osman MN, Bosley TM. Nuclear and mitochondrial analysis of patients with primary angle-closure glaucoma. Invest Ophthalmol Vis Sci. 2007;48:5591–5596.
    1. Gherghel D, Griffiths HR, Hilton EJ, Cunliffe IA, Hosking SL. Systemic reduction in glutathione levels occurs in patients with primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 2005;46:877–883.
    1. Zanon-Moreno V, Marco-Ventura P, Lleo-Perez A, Pons-Vazquez S, Garcia-Medina JJ, Vinuesa-Silva I, et al. Oxidative stress in primary open-angle glaucoma. J Glaucoma. 2008;17:263–268.

Source: PubMed

3
S'abonner