Effects of a gluten-free diet on gut microbiota and immune function in healthy adult humans

Yolanda Sanz, Yolanda Sanz

Abstract

Diet is a major environmental factor influencing gut microbiota diversity and functionality, which might be relevant to subjects following dietary therapies. Celiac disease (CD) is an enteropathy caused by an aberrant immune response to cereal gluten proteins and the only therapy is the adherence to a gluten-free diet (GFD). In this context, a preliminary study was conducted to establish whether the GFD in itself could modify the composition and immune properties of the gut microbiota. The trial included 10 healthy subjects (30.3 years-old), which were submitted to a GFD over one month. Analysis of fecal microbiota and dietary intake indicated that numbers of healthy gut bacteria decreased, while numbers of unhealthy bacteria increased parallel to reductions in the intake of polysaccharides after following the GFD. Fecal samples of subjects under a GFD, which represent an altered microbiota, also exerted lower immune stimulatory effects on peripheral blood mononuclear cells than those of subjects on a regular gluten-containing diet. This addendum presents further discussion on the rationale behind these findings, limitations of the study and possible consequences of dietary counselling in the care process of celiac disease patients.

Keywords: celiac disease; gluten-free diet; gut microbiota; immunity; polysaccharides; prebiotics; probiotics.

Figures

Figure 1
Figure 1
Schematic representation of the possible interactions between the gluten-free diet and the gut microbiota.

References

    1. Martens EC, Koropatkin NM, Smith TJ, Gordon JI. Complex glycan catabolism by the human gut microbiota: the Bacteroidetes Sus-like paradigm. J Biol Chem. 2009;284:24673–24677.
    1. Ley RE, Lozupone CA, Hamady M, Knight R, Gordon JI. Worlds within worlds: evolution of the vertebrate gut microbiota. Nat Rev Microbiol. 2008;6:776–788.
    1. Liszt K, Zwielehner J, Handschur M, Hippe B, Thaler R, Haslberger AG. Characterization of bacteria, clostridia and bacteroides in faeces of vegetarians using qPCR and PCR-DGGE fingerprinting. Ann Nutr Metab. 2009;54:253–257.
    1. Meresse B, Ripoche J, Heyman M, Cerf-Bensussan N. Celiac disease: from oral tolerance to intestinal inflammation, autoimmunity and lymphomagenesis. Mucosal Immunol. 2009;2:8–23.
    1. Bürk K, Farecki ML, Lamprecht G, Roth G, Decker P, Weller M, et al. Neurological symptoms in patients with biopsy proven celiac disease. Mov Disord. 2009;24:2358–2362.
    1. Capriles VD, Martini LA, Arêas JA. Metabolic osteopathy in celiac disease: importance of a gluten-free diet. Nutr Rev. 2009;67:599–606.
    1. Malterre T. Digestive and nutritional considerations in celiac disease: could supplementation help? Altern Med Rev. 2009;14:247–257.
    1. Nadal I, Donat E, Ribes-Koninckx C, Calabuig M, Sanz Y. Imbalance in the composition of the duodenal microbiota of children with coeliac disease. J Med Microbiol. 2007;56:1669–1674.
    1. Collado MC, Donat E, Ribes-Koninckx C, Calabuig M, Sanz Y. Imbalances in faecal and duodenal Bifidobacterium species composition in active and non-active coeliac disease. BMC Microbiol. 2008;22:232.
    1. Collado MC, Donat E, Ribes-Koninckx C, Calabuig M, Sanz Y. Specific duodenal and faecal bacterial groups associated with paediatric coeliac disease. J Clin Pathol. 2009;62:264–269.
    1. De Palma G, Nadal I, Collado MC, Sanz Y. Effects of a gluten-free diet on gut microbiota and immune function in healthy adult human subjects. Br J Nutr. 2009;102:1154–1160.
    1. Hurrell E, Kucerova E, Loughlin M, Caubilla-Barron J, Hilton A, Armstrong R, et al. Neonatal enteral feeding tubes as loci for colonisation by members of the Enterobacteriaceae. BMC Infect Dis. 2009;1:146.
    1. Collins SM, Denou E, Verdu EF, Bercik P. The putative role of the intestinal microbiota in the irritable bowel syndrome. Dig Liver Dis. 2009;27:85–89.
    1. De Palma G, Cinova J, Stepankova R, Tuckova L, Sanz Y. Pivotal advance: Bifidobacteria and Gram-negative bacteria differentially influence immune responses in the pro-inflammatory milieu of coeliac disease. J Leukoc Biol. 2010;87:765–778.
    1. Medina M, Izquierdo E, Ennahar S, Sanz Y. Differential immunomodulatory properties of Bifidobacterium logum strains: relevance to probiotic selection and clinical applications. Clin Exp Immunol. 2007;150:531–538.
    1. Ménard O, Butel MJ, Gaboriau-Routhiau V, Waligora-Dupriet AJ. Gnotobiotic mouse immune response induced by Bifidobacterium sp. strains isolated from infants. Appl Environ Microbiol. 2008;74:660–666.
    1. Duncan SH, Belenguer A, Holtrop G, Johnstone AM, Flint HJ, Lobley GE. Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Appl Environ Microbiol. 2007;73:1073–1078.
    1. Flint HJ, Bayer EA, Rincon MT, Lamed R, White BA. Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nat Rev Microbiol. 2008;6:121–131.
    1. Barboza M, Sela DA, Pirim C, Locascio RG, Freeman SL, German JB, et al. Glycoprofiling bifidobacterial consumption of galacto-oligosaccharides by mass spectrometry reveals strain specific, preferential consumption of glycans. Appl Environ Microbiol. 2009;75:7319–7325.
    1. De Graaf AA, Venema K. Gaining insight into microbial physiology in the large intestine: a special role for stable isotopes. Adv Microb Physiol. 2008;53:73–168.
    1. Schell MA, Karmirantzou M, Snel B, Vilanova D, Berger B, Pessi G, et al. The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract. Proc Natl Acad Sci USA. 2002;99:14422–14427.
    1. Goodman AL, McNulty NP, Zhao Y, Leip D, Mitra RD, Lozupone CA, et al. Identifying genetic determinants needed to establish a human gut symbiont in its habitat. Cell Host Microbe. 2009;6:279–289.
    1. Hermes RG, Molist F, Ywazaki M, Nofrarías M, Gomez de Segura A, Gasa J, et al. Effect of dietary level of protein and fiber on the productive performance and health status of piglets. J Anim Sci. 2009;87:3569–3577.

Source: PubMed

3
S'abonner