Global epidemiology, health burden and effective interventions for elevated blood pressure and hypertension

Bin Zhou, Pablo Perel, George A Mensah, Majid Ezzati, Bin Zhou, Pablo Perel, George A Mensah, Majid Ezzati

Abstract

High blood pressure is one of the most important risk factors for ischaemic heart disease, stroke, other cardiovascular diseases, chronic kidney disease and dementia. Mean blood pressure and the prevalence of raised blood pressure have declined substantially in high-income regions since at least the 1970s. By contrast, blood pressure has risen in East, South and Southeast Asia, Oceania and sub-Saharan Africa. Given these trends, the prevalence of hypertension is now higher in low-income and middle-income countries than in high-income countries. In 2015, an estimated 8.5 million deaths were attributable to systolic blood pressure >115 mmHg, 88% of which were in low-income and middle-income countries. Measures such as increasing the availability and affordability of fresh fruits and vegetables, lowering the sodium content of packaged and prepared food and staples such as bread, and improving the availability of dietary salt substitutes can help lower blood pressure in the entire population. The use and effectiveness of hypertension treatment vary substantially across countries. Factors influencing this variation include a country's financial resources, the extent of health insurance and health facilities, how frequently people interact with physicians and non-physician health personnel, whether a clear and widely adopted clinical guideline exists and the availability of medicines. Scaling up treatment coverage and improving its community effectiveness can substantially reduce the health burden of hypertension.

Conflict of interest statement

M.E. reports a charitable grant from the AstraZeneca Young Health Programme and personal fees from Prudential, unrelated to this Review. The other authors declare no competing interests.

© 2021. Springer Nature Limited.

Figures

Fig. 1. Changes in blood pressure by…
Fig. 1. Changes in blood pressure by region.
Changes in age-standardized mean systolic and diastolic blood pressure between 1975 and 2015 by region. The start and end points of each arrow represent the levels of blood pressure in 1975 and 2015, respectively. Rightward arrows indicate an increase in blood pressure, and leftward arrows indicate a decrease.
Fig. 2. Worldwide systolic blood pressure.
Fig. 2. Worldwide systolic blood pressure.
Age-standardized mean systolic blood pressure by country in 2015. Adapted from (ref.), CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/).
Fig. 3. Worldwide diastolic blood pressure.
Fig. 3. Worldwide diastolic blood pressure.
Age-standardized mean diastolic blood pressure by country in 2015 (ref.).
Fig. 4. Worldwide prevalence of raised blood…
Fig. 4. Worldwide prevalence of raised blood pressure.
Age-standardized prevalence of raised blood pressure by country in 2015 (ref.).
Fig. 5. Association between country characteristics and…
Fig. 5. Association between country characteristics and blood pressure.
a | Relationship between mean systolic and diastolic blood pressure and per capita gross domestic product (GDP) for 1975 and 2015. b | Relationship between mean systolic and diastolic blood pressure and the proportion of the population living in urban areas for 1975 and 2015. c | Relationship between mean systolic and diastolic blood pressure and mean BMI for 1975 and 2015. In 1975, mean systolic and diastolic blood pressure were positively correlated with GDP, the proportion of the population living in urban areas and mean BMI. In 2015, mean blood pressure was no longer correlated with these country characteristics for men and negatively correlated with GDP and the proportion of the population living in urban areas for women. Each point shows one country, coloured by region.
Fig. 6. Comparison of female and male…
Fig. 6. Comparison of female and male blood pressures.
Comparison of female and male blood pressures in people aged 18–49 years and ≥50 years in 2015. Each point shows one country, coloured by region. The interaction between sex and age group was significant (P < 0.0001 for systolic and diastolic blood pressure) in an analysis of variance in a model with blood pressure as a dependent variable and sex, age group and their interaction as independent variables. Men aged 18–49 years have higher blood pressure levels than women of the same age in most countries, and men and women aged ≥50 years have on average similar blood pressure levels.
Fig. 7. Deaths attributable to high blood…
Fig. 7. Deaths attributable to high blood pressure.
Deaths attributable to high systolic blood pressure (SBP) in 1990 and 2015, coloured by region (part a) and cause of death (part b).

References

    1. Olsen MH, et al. A call to action and a lifecourse strategy to address the global burden of raised blood pressure on current and future generations: the Lancet Commission on hypertension. Lancet. 2016;388:2665–2712. doi: 10.1016/S0140-6736(16)31134-5.
    1. Xie X, et al. Effects of intensive blood pressure lowering on cardiovascular and renal outcomes: updated systematic review and meta-analysis. Lancet. 2016;387:435–443. doi: 10.1016/S0140-6736(15)00805-3.
    1. Bundy JD, et al. Systolic blood pressure reduction and risk of cardiovascular disease and mortality: a systematic review and network meta-analysis. JAMA Cardiol. 2017;2:775–781. doi: 10.1001/jamacardio.2017.1421.
    1. Ettehad D, et al. Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis. Lancet. 2016;387:957–967. doi: 10.1016/S0140-6736(15)01225-8.
    1. Lewington S, et al. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet. 2002;360:1903–1913. doi: 10.1016/S0140-6736(02)11911-8.
    1. Lawes CMM, et al. Blood pressure and cardiovascular disease in the Asia Pacific region. J. Hypertens. 2003;21:707–716. doi: 10.1097/00004872-200304000-00013.
    1. Czernichow S, et al. The effects of blood pressure reduction and of different blood pressure-lowering regimens on major cardiovascular events according to baseline blood pressure: meta-analysis of randomized trials. J. Hypertens. 2011;29:4–16. doi: 10.1097/HJH.0b013e32834000be.
    1. Singh GM, et al. The age-specific quantitative effects of metabolic risk factors on cardiovascular diseases and diabetes: a pooled analysis. PLoS ONE. 2013;8:e65174. doi: 10.1371/journal.pone.0065174.
    1. Kennelly SP, Lawlor BA, Kenny RA. Blood pressure and dementia – a comprehensive review. Ther. Adv. Neurol. Disord. 2009;2:241–260. doi: 10.1177/1756285609103483.
    1. Sharp SI, et al. Hypertension is a potential risk factor for vascular dementia: systematic review. Int. J. Geriatr. Psychiatry. 2011;26:661–669. doi: 10.1002/gps.2572.
    1. Global Burden of Metabolic Risk Factors for Chronic Diseases Collaboration Cardiovascular disease, chronic kidney disease, and diabetes mortality burden of cardiometabolic risk factors from 1980 to 2010: a comparative risk assessment. Lancet Diabetes Endocrinol. 2014;2:634–647. doi: 10.1016/S2213-8587(14)70102-0.
    1. Kontis V, et al. Contribution of six risk factors to achieving the 25×25 non-communicable disease mortality reduction target: a modelling study. Lancet. 2014;384:427–437. doi: 10.1016/S0140-6736(14)60616-4.
    1. Kontis V, et al. Regional contributions of six preventable risk factors to achieving the 25 × 25 non-communicable disease mortality reduction target: a modelling study. Lancet Glob. Health. 2015;3:e746–e757. doi: 10.1016/S2214-109X(15)00179-5.
    1. World Health Organization. NCD global monitoring framework (WHO, 2013).
    1. Ni, M. The Yellow Emperor’s Classic of Medicine: A New Translation of the Neijing Suwen with Commentary (Shambhala, 1995).
    1. Freis, E. D. in Hypertension: Pathophysiology, Diagnosis and Management Ch. 164 (eds Laragh, J. H. & Brenner, B. M.) 2741–2751 (Raven, 1995).
    1. Beevers, D. G. & Robertson, J. I. S. in Comprehensive hypertension (eds Lip, G. Y. H. & Hall, J. E.) 3–20 (Elsevier, 2007).
    1. Esunge PM. From blood pressure to hypertension: the history of research. J. R. Soc. Med. 1991;84:621. doi: 10.1177/014107689108401019.
    1. Ghasemzadeh N, Zafari AM. A brief journey into the history of the arterial pulse. Cardiol. Res. Pract. 2011;2011:164832. doi: 10.4061/2011/164832.
    1. Aird WC. Discovery of the cardiovascular system: from Galen to William Harvey. J. Thromb. Haemost. 2011;9(Suppl 1):118–129. doi: 10.1111/j.1538-7836.2011.04312.x.
    1. Cameron JS, Hicks J. Frederick Akbar Mahomed and his role in the description of hypertension at Guy’s Hospital. Kidney Int. 1996;49:1488–1506. doi: 10.1038/ki.1996.209.
    1. Booth J. A short history of blood pressure measurement. Proc. R. Soc. Med. 1977;70:793–799.
    1. O’Brien E, Fitzgerald D. The history of blood pressure measurement. J. Hum. Hypertens. 1994;8:73–84.
    1. Fisher JW. The diagnostic value of the sphygmomanometer in examinations for life insurance. JAMA. 1914;LXIII:1752–1754. doi: 10.1001/jama.1914.02570200046013.
    1. Tzoulaki I, Elliott P, Kontis V, Ezzati M. Worldwide exposures to cardiovascular risk factors and associated health effects: current knowledge and data gaps. Circulation. 2016;133:2314–2333. doi: 10.1161/CIRCULATIONAHA.115.008718.
    1. Kotchen TA. Historical trends and milestones in hypertension research: a model of the process of translational research. Hypertension. 2011;58:522–538. doi: 10.1161/HYPERTENSIONAHA.111.177766.
    1. Kannel WB, Dawber TR, Kagan A, Revotskie N, Stokes J., 3rd Factors of risk in the development of coronary heart disease–six year follow-up experience. The Framingham Study. Ann. Intern. Med. 1961;55:33–50. doi: 10.7326/0003-4819-55-1-33.
    1. Vasan RS, et al. Impact of high-normal blood pressure on the risk of cardiovascular disease. N. Engl. J. Med. 2001;345:1291–1297. doi: 10.1056/NEJMoa003417.
    1. [No authors listed] Effects of treatment on morbidity in hypertension. Results in patients with diastolic blood pressures averaging 115 through 129 mm Hg. JAMA. 1967;202:1028–1034. doi: 10.1001/jama.1967.03130240070013.
    1. [No authors listed] Effects of treatment on morbidity in hypertension. II. Results in patients with diastolic blood pressure averaging 90 through 114 mm Hg. JAMA. 1970;213:1143–1152. doi: 10.1001/jama.1970.03170330025003.
    1. Stamler J, Stamler R, Neaton JD. Blood pressure, systolic and diastolic, and cardiovascular risks. US population data. Arch. Intern. Med. 1993;153:598–615. doi: 10.1001/archinte.1993.00410050036006.
    1. Turnbull F, et al. Effects of different blood pressure-lowering regimens on major cardiovascular events in individuals with and without diabetes mellitus: results of prospectively designed overviews of randomized trials. Arch. Intern. Med. 2005;165:1410–1419. doi: 10.1001/archinte.165.12.1410.
    1. Blood Pressure Lowering Treatment Trialists Collaboration Blood pressure-lowering treatment based on cardiovascular risk: a meta-analysis of individual patient data. Lancet. 2014;384:591–598. doi: 10.1016/S0140-6736(14)61212-5.
    1. Karmali KN, et al. Blood pressure-lowering treatment strategies based on cardiovascular risk versus blood pressure: a meta-analysis of individual participant data. PLoS Med. 2018;15:e1002538. doi: 10.1371/journal.pmed.1002538.
    1. SPRINT Research Group et al. A randomized trial of intensive versus standard blood-pressure control. N. Engl. J. Med. 2015;373:2103–2116. doi: 10.1056/NEJMoa1511939.
    1. Brouwer TF, et al. Intensive blood pressure lowering in patients with and patients without type 2 diabetes: a pooled analysis from two randomized trials. Diabetes Care. 2018;41:1142–1148. doi: 10.2337/dc17-1722.
    1. Verdecchia P, Angeli F, Gentile G, Reboldi G. More versus less intensive blood pressure-lowering strategy: cumulative evidence and trial sequential analysis. Hypertension. 2016;68:642–653. doi: 10.1161/HYPERTENSIONAHA.116.07608.
    1. Wallner A, Hirz A, Schober E, Harbich H, Waldhoer T. Evolution of cardiovascular risk factors among 18-year-old males in Austria between 1986 and 2005. Wien. Klin. Wochenschr. 2010;122:152–158. doi: 10.1007/s00508-010-1305-5.
    1. Ulmer H, Kelleher CC, Fitz-Simon N, Diem G, Concin H. Secular trends in cardiovascular risk factors: an age-period cohort analysis of 698,954 health examinations in 181,350 Austrian men and women. J. Intern. Med. 2007;261:566–576. doi: 10.1111/j.1365-2796.2007.01779.x.
    1. Joossens JV, Kesteloot H. Trends in systolic blood pressure, 24-hour sodium excretion, and stroke mortality in the elderly in Belgium. Am. J. Med. 1991;90:5S–11S. doi: 10.1016/0002-9343(91)90428-Z.
    1. McAlister FA, et al. Changes in the rates of awareness, treatment and control of hypertension in Canada over the past two decades. CMAJ. 2011;183:1007–1013. doi: 10.1503/cmaj.101767.
    1. Andersen UO, Jensen G. Decreasing population blood pressure: 15 years of follow-up in the Copenhagen City Heart Study (CCHS) Blood Press. 2004;13:176–182. doi: 10.1080/08037050410015006.
    1. Borodulin K, et al. Forty-year trends in cardiovascular risk factors in Finland. Eur. J. Public. Health. 2015;25:539–546. doi: 10.1093/eurpub/cku174.
    1. Nuotio J, et al. Cardiovascular risk factors in 2011 and secular trends since 2007: the Cardiovascular Risk in Young Finns Study. Scand. J. Public Health. 2014;42:563–571. doi: 10.1177/1403494814541597.
    1. Heinemann L, Barth W, Hoffmeister H. Trend of cardiovascular risk factors in the East German population 1968-1992. J. Clin. Epidemiol. 1995;48:787–795. doi: 10.1016/0895-4356(94)00179-T.
    1. Di Lonardo A, Donfrancesco C, Palmieri L, Vanuzzo D, Giampaoli S. Time trends of high blood pressure prevalence, awareness and control in the Italian general population: surveys of the National Institute of Health. High Blood Press. Cardiovasc. Prev. 2017;24:193–200. doi: 10.1007/s40292-017-0201-8.
    1. Ueshima H, Tatara K, Asakura S, Okamoto M. Declining trends in blood pressure level and the prevalence of hypertension, and changes in related factors in Japan, 1956–1980. J. Chronic Dis. 1987;40:137–147. doi: 10.1016/0021-9681(87)90065-8.
    1. Miura K. Epidemiology and prevention of hypertension in Japanese: how could Japan get longevity? EPMA J. 2011;2:59–64. doi: 10.1007/s13167-011-0069-y.
    1. Hopstock LA, et al. Longitudinal and secular trends in blood pressure among women and men in birth cohorts born between 1905 and 1977: the Tromsø Study 1979 to 2008. Hypertension. 2015;66:496–501. doi: 10.1161/HYPERTENSIONAHA.115.05925.
    1. Pereira M, et al. Trends in hypertension prevalence (1990-2005) and mean blood pressure (1975-2005) in Portugal: a systematic review. Blood Press. 2012;21:220–226. doi: 10.3109/08037051.2012.666380.
    1. Bjorkelund C, et al. Secular trends in cardiovascular risk factors with a 36-year perspective: observations from 38- and 50-year-olds in the Population Study of Women in Gothenburg. Scand. J. Prim. Health Care. 2008;26:140–146. doi: 10.1080/02813430802088403.
    1. Rosengren A, et al. Secular changes in cardiovascular risk factors over 30 years in Swedish men aged 50: the study of men born in 1913, 1923, 1933 and 1943. J. Intern. Med. 2000;247:111–118. doi: 10.1046/j.1365-2796.2000.00589.x.
    1. Falaschetti E, Mindell J, Knott C, Poulter N. Hypertension management in England: a serial cross-sectional study from 1994 to 2011. Lancet. 2014;383:1912–1919. doi: 10.1016/S0140-6736(14)60688-7.
    1. Drizd T, Dannenberg AL, Engel A. Blood pressure levels in persons 18-74 years of age in 1976-80, and trends in blood pressure from 1960 to 1980 in the United States. Vital. Health Stat. 1986;11:1–68.
    1. Kumanyika SK, Landis JR, Matthews-Cook YL, Almy SL, Boehmer SJ. Systolic blood pressure trends in US adults between 1960 and 1980: influence of antihypertensive drug therapy. Am. J. Epidemiol. 1998;148:528–538. doi: 10.1093/oxfordjournals.aje.a009678.
    1. Burt VL, et al. Trends in the prevalence, awareness, treatment, and control of hypertension in the adult US population. Data from the health examination surveys, 1960 to 1991. Hypertension. 1995;26:60–69. doi: 10.1161/01.HYP.26.1.60.
    1. Egan BM, Zhao Y, Axon RN. US trends in prevalence, awareness, treatment, and control of hypertension, 1988-2008. JAMA. 2010;303:2043–2050. doi: 10.1001/jama.2010.650.
    1. Goff DC, Gillespie C, Howard G, Labarthe DR. Is the obesity epidemic reversing favorable trends in blood pressure? Evidence from cohorts born between 1890 and 1990 in the United States. Ann. Epidemiol. 2012;22:554–561. doi: 10.1016/j.annepidem.2012.04.021.
    1. Bromfield SG, et al. Trends in hypertension prevalence, awareness, treatment, and control among US adults 80 years and older, 1988-2010. J. Clin. Hypertens. 2014;16:270–276. doi: 10.1111/jch.12281.
    1. Cifkova R, et al. Longitudinal trends in cardiovascular mortality and blood pressure levels, prevalence, awareness, treatment, and control of hypertension in the Czech population from 1985 to 2007/2008. J. Hypertens. 2010;28:2196–2203. doi: 10.1097/HJH.0b013e32833d4451.
    1. Heiniger S, Viswanathan B, Gedeon J, Paccaud F, Bovet P. Trends in prevalence, awareness, treatment and control of high blood pressure in the Seychelles between 1989 and 2013. J. Hypertens. 2017;35:1465–1473. doi: 10.1097/HJH.0000000000001358.
    1. Diaz A, Ferrante D. Trends in prevalence of hypertension in Argentina in the last 25 years: a systematic review of observational studies. Rev. Panam. Salud Publica. 2015;38:496–503.
    1. Guo J, et al. The dynamics of hypertension prevalence, awareness, treatment, control and associated factors in Chinese adults: results from CHNS 1991-2011. J. Hypertens. 2015;33:1688–1696. doi: 10.1097/HJH.0000000000000594.
    1. Bosu WK. Epidemic of hypertension in Ghana: a systematic review. BMC Public Health. 2010;10:418. doi: 10.1186/1471-2458-10-418.
    1. Gupta R. Trends in hypertension epidemiology in India. J. Hum. Hypertens. 2004;18:73–78. doi: 10.1038/sj.jhh.1001633.
    1. Ogah OS, et al. Blood pressure, prevalence of hypertension and hypertension related complications in Nigerian Africans: a review. World J. Cardiol. 2012;4:327–340. doi: 10.4330/wjc.v4.i12.327.
    1. Zerba KE, Friedlaender JS, Sing CF. Heterogeneity of the blood pressure distribution among Solomon Islands societies with increasing acculturation. Am. J. Phys. Anthropol. 1990;81:493–511. doi: 10.1002/ajpa.1330810406.
    1. Lanti M, et al. Long-term trends in major cardiovascular risk factors in cohorts of aging men in the European cohorts of the Seven Countries Study. Aging Clin. Exp. Res. 2005;17:306–315. doi: 10.1007/BF03324615.
    1. [No authors listed] Intersalt: an international study of electrolyte excretion and blood pressure. Results for 24 hour urinary sodium and potassium excretion. Intersalt Cooperative Research Group. BMJ. 1988;297:319–328. doi: 10.1136/bmj.297.6644.319.
    1. Evans A, et al. Trends in coronary risk factors in the WHO MONICA project. Int. J. Epidemiol. 2001;30(Suppl 1):35–40. doi: 10.1093/ije/30.suppl_1.S35.
    1. Tunstall-Pedoe H, Connaghan J, Woodward M, Tolonen H, Kuulasmaa K. Pattern of declining blood pressure across replicate population surveys of the WHO MONICA project, mid-1980s to mid-1990s, and the role of medication. BMJ. 2006;332:629–635. doi: 10.1136/.
    1. Antikainen RL, et al. Trends in the prevalence, awareness, treatment and control of hypertension: the WHO MONICA Project. Eur. J. Cardiovasc. Prev. Rehabil. 2006;13:13–29.
    1. Chow CK, et al. Prevalence, awareness, treatment, and control of hypertension in rural and urban communities in high-, middle-, and low-income countries. JAMA. 2013;310:959–968. doi: 10.1001/jama.2013.184182.
    1. Basu S, Millett C. Social epidemiology of hypertension in middle-income countries: determinants of prevalence, diagnosis, treatment, and control in the WHO SAGE study. Hypertension. 2013;62:18–26. doi: 10.1161/HYPERTENSIONAHA.113.01374.
    1. Lloyd-Sherlock P, Beard J, Minicuci N, Ebrahim S, Chatterji S. Hypertension among older adults in low- and middle-income countries: prevalence, awareness and control. Int. J. Epidemiol. 2014;43:116–128. doi: 10.1093/ije/dyt215.
    1. Rubinstein AL, et al. Prevalence, awareness, treatment, and control of hypertension in the Southern Cone of Latin America. Am. J. Hypertens. 2016;29:1343–1352.
    1. Whelton PK, He J, Muntner P. Prevalence, awareness, treatment and control of hypertension in North America, North Africa and Asia. J. Hum. Hypertens. 2004;18:545–551. doi: 10.1038/sj.jhh.1001701.
    1. Hernandez-Hernandez R, Armas-Padilla MC, Armas-Hernandez MJ, Velasco M. Hypertension and cardiovascular health in Venezuela and Latin American countries. J. Hum. Hypertens. 2000;14(Suppl 1):2–5. doi: 10.1038/sj.jhh.1000978.
    1. Sozmen K, et al. Cardiovascular risk factor trends in the Eastern Mediterranean region: evidence from four countries is alarming. Int. J. Public. Health. 2015;60(Suppl 1):3–11. doi: 10.1007/s00038-014-0610-6.
    1. Xi B, et al. Recent blood pressure trends in adolescents from China, Korea, Seychelles and the United States of America, 1997-2012. J. Hypertens. 2016;34:1948–1958. doi: 10.1097/HJH.0000000000001058.
    1. Joffres M, et al. Hypertension prevalence, awareness, treatment and control in national surveys from England, the USA and Canada, and correlation with stroke and ischaemic heart disease mortality: a cross-sectional study. BMJ Open. 2013;3:e003423. doi: 10.1136/bmjopen-2013-003423.
    1. Motlagh B, O’Donnell M, Yusuf S. Prevalence of cardiovascular risk factors in the Middle East: a systematic review. Eur. J. Cardiovasc. Prev. Rehabil. 2009;16:268–280. doi: 10.1097/HJR.0b013e328322ca1b.
    1. Adeloye D, Basquill C. Estimating the prevalence and awareness rates of hypertension in Africa: a systematic analysis. PLoS ONE. 2014;9:e104300. doi: 10.1371/journal.pone.0104300.
    1. Ogah OS, Rayner BL. Recent advances in hypertension in sub-Saharan Africa. Heart. 2013;99:1390–1397. doi: 10.1136/heartjnl-2012-303227.
    1. Ataklte F, et al. Burden of undiagnosed hypertension in sub-Saharan Africa: a systematic review and meta-analysis. Hypertension. 2015;65:291–298. doi: 10.1161/HYPERTENSIONAHA.114.04394.
    1. Burroughs Pena MS, Mendes Abdala CV, Silva LC, Ordunez P. Usefulness for surveillance of hypertension prevalence studies in Latin America and the Caribbean: the past 10 years. Rev. Panam. Salud Publica. 2012;32:15–21. doi: 10.1590/S1020-49892012000700003.
    1. Pereira M, Lunet N, Azevedo A, Barros H. Differences in prevalence, awareness, treatment and control of hypertension between developing and developed countries. J. Hypertens. 2009;27:963–975. doi: 10.1097/HJH.0b013e3283282f65.
    1. Ikeda N, et al. Control of hypertension with medication: a comparative analysis of national surveys in 20 countries. Bull. World Health Organ. 2014;92:10–19C. doi: 10.2471/BLT.13.121954.
    1. Yang F, et al. Prevalence, awareness, treatment, and control of hypertension in the older population: results from the multiple national studies on ageing. J. Am. Soc. Hypertens. 2016;10:140–148. doi: 10.1016/j.jash.2015.11.016.
    1. Roulet C, et al. Secular trends in blood pressure in children: a systematic review. J. Clin. Hypertens. 2017;19:488–497. doi: 10.1111/jch.12955.
    1. Irazola VE, et al. Hypertension prevalence, awareness, treatment, and control in selected LMIC communities: results from the NHLBI/UHG network of Centers of Excellence for Chronic Diseases. Glob. Heart. 2016;11:47–59. doi: 10.1016/j.gheart.2015.12.008.
    1. Geldsetzer P, et al. The state of hypertension care in 44 low-income and middle-income countries: a cross-sectional study of nationally representative individual-level data from 1.1 million adults. Lancet. 2019;394:652–662. doi: 10.1016/S0140-6736(19)30955-9.
    1. McCarron P, Smith GD, Okasha M. Secular changes in blood pressure in childhood, adolescence and young adulthood: systematic review of trends from 1948 to 1998. J. Hum. Hypertens. 2002;16:677–689. doi: 10.1038/sj.jhh.1001471.
    1. Wolf-Maier K, et al. Hypertension prevalence and blood pressure levels in 6 European countries, Canada, and the United States. JAMA. 2003;289:2363–2369. doi: 10.1001/jama.289.18.2363.
    1. NCD Risk Factor Collaboration (NCD-RisC) Long-term and recent trends in hypertension awareness, treatment, and control in 12 high-income countries: an analysis of 123 nationally representative surveys. Lancet. 2019;394:639–651. doi: 10.1016/S0140-6736(19)31145-6.
    1. Kearney PM, Whelton M, Reynolds K, Whelton PK, He J. Worldwide prevalence of hypertension: a systematic review. J. Hypertens. 2004;22:11–19. doi: 10.1097/00004872-200401000-00003.
    1. Kearney PM, et al. Global burden of hypertension: analysis of worldwide data. Lancet. 2005;365:217–223. doi: 10.1016/S0140-6736(05)17741-1.
    1. Mills KT, et al. Global disparities of hypertension prevalence and control: a systematic analysis of population-based studies from 90 countries. Circulation. 2016;134:441–450. doi: 10.1161/CIRCULATIONAHA.115.018912.
    1. Lawes CM, et al. Blood pressure and the global burden of disease 2000. Part 1: estimates of blood pressure levels. J. Hypertens. 2006;24:413–422. doi: 10.1097/01.hjh.0000199801.72563.6f.
    1. Danaei G, et al. National, regional, and global trends in systolic blood pressure since 1980: systematic analysis of health examination surveys and epidemiological studies with 786 country-years and 5.4 million participants. Lancet. 2011;377:568–577. doi: 10.1016/S0140-6736(10)62036-3.
    1. Forouzanfar MH, et al. Global burden of hypertension and systolic blood pressure of at least 110 to 115 mm Hg, 1990-2015. JAMA. 2017;317:165–182. doi: 10.1001/jama.2016.19043.
    1. NCD Risk Factor Collaboration (NCD-RisC) Worldwide trends in blood pressure from 1975 to 2015: a pooled analysis of 1479 population-based measurement studies with 19.1 million participants. Lancet. 2017;389:37–55. doi: 10.1016/S0140-6736(16)31919-5.
    1. Sacks FM, Campos H. Dietary therapy in hypertension. N. Engl. J. Med. 2010;362:2102–2112. doi: 10.1056/NEJMct0911013.
    1. Danaei G, et al. The global cardiovascular risk transition: associations of four metabolic risk factors with national income, urbanization, and Western diet in 1980 and 2008. Circulation. 2013;127:1493–1502. doi: 10.1161/CIRCULATIONAHA.113.001470.
    1. Ezzati M, et al. Rethinking the “diseases of affluence” paradigm: global patterns of nutritional risks in relation to economic development. PLoS Med. 2005;2:e133. doi: 10.1371/journal.pmed.0020133.
    1. Bentham J, et al. Multidimensional characterization of global food supply from 1961 to 2013. Nat. Food. 2020;1:70–75. doi: 10.1038/s43016-019-0012-2.
    1. Gregg EW, et al. Secular trends in cardiovascular disease risk factors according to body mass index in US adults. JAMA. 2005;293:1868–1874. doi: 10.1001/jama.293.15.1868.
    1. Micha R, et al. Global, regional and national consumption of major food groups in 1990 and 2010: a systematic analysis including 266 country-specific nutrition surveys worldwide. BMJ Open. 2015;5:e008705. doi: 10.1136/bmjopen-2015-008705.
    1. Powles J, et al. Global, regional and national sodium intakes in 1990 and 2010: a systematic analysis of 24 h urinary sodium excretion and dietary surveys worldwide. BMJ Open. 2013;3:e003733. doi: 10.1136/bmjopen-2013-003733.
    1. NCD Risk Factor Collaboration (NCD-RisC) Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults. Lancet. 2017;390:2627–2642. doi: 10.1016/S0140-6736(17)32129-3.
    1. Stevens GA, et al. Trends in mild, moderate, and severe stunting and underweight, and progress towards MDG 1 in 141 developing countries: a systematic analysis of population representative data. Lancet. 2012;380:824–834. doi: 10.1016/S0140-6736(12)60647-3.
    1. NCD Risk Factor Collaboration (NCD-RisC) A century of trends in adult human height. eLife. 2016;5:e13410. doi: 10.7554/eLife.13410.
    1. Victora CG, et al. Maternal and child undernutrition: consequences for adult health and human capital. Lancet. 2008;371:340–357. doi: 10.1016/S0140-6736(07)61692-4.
    1. He FJ, Li J, Macgregor GA. Effect of longer term modest salt reduction on blood pressure: Cochrane systematic review and meta-analysis of randomised trials. BMJ. 2013;346:f1325. doi: 10.1136/bmj.f1325.
    1. Aburto NJ, et al. Effect of increased potassium intake on cardiovascular risk factors and disease: systematic review and meta-analyses. BMJ. 2013;346:f1378. doi: 10.1136/bmj.f1378.
    1. Roerecke M, et al. The effect of a reduction in alcohol consumption on blood pressure: a systematic review and meta-analysis. Lancet Public Health. 2017;2:e108–e120. doi: 10.1016/S2468-2667(17)30003-8.
    1. Virdis A, Giannarelli C, Neves MF, Taddei S, Ghiadoni L. Cigarette smoking and hypertension. Curr. Pharm. Des. 2010;16:2518–2525. doi: 10.2174/138161210792062920.
    1. Cornelissen VA, Smart NA. Exercise training for blood pressure: a systematic review and meta-analysis. J. Am. Heart Assoc. 2013;2:e004473. doi: 10.1161/JAHA.112.004473.
    1. Cai Y, et al. Associations of short-term and long-term exposure to ambient air pollutants with hypertension: a systematic review and meta-analysis. Hypertension. 2016;68:62–70. doi: 10.1161/HYPERTENSIONAHA.116.07218.
    1. Munzel T, Gori T, Babisch W, Basner M. Cardiovascular effects of environmental noise exposure. Eur. Heart J. 2014;35:829–836. doi: 10.1093/eurheartj/ehu030.
    1. Gasperin D, Netuveli G, Dias-da-Costa JS, Pattussi MP. Effect of psychological stress on blood pressure increase: a meta-analysis of cohort studies. Cad. Saude Publica. 2009;25:715–726. doi: 10.1590/S0102-311X2009000400002.
    1. NCD Risk Factor Collaboration (NCD-RisC) Contributions of mean and shape of blood pressure distribution to worldwide trends and variations in raised blood pressure: a pooled analysis of 1018 population-based measurement studies with 88.6 million participants. Int. J. Epidemiol. 2018;47:872–883i. doi: 10.1093/ije/dyy016.
    1. He FJ, Pombo-Rodrigues S, Macgregor GA. Salt reduction in England from 2003 to 2011: its relationship to blood pressure, stroke and ischaemic heart disease mortality. BMJ Open. 2014;4:e004549. doi: 10.1136/bmjopen-2013-004549.
    1. Ikeda N, Gakidou E, Hasegawa T, Murray CJ. Understanding the decline of mean systolic blood pressure in Japan: an analysis of pooled data from the National Nutrition Survey, 1986-2002. Bull. World Health Organ. 2008;86:978–988. doi: 10.2471/BLT.07.050195.
    1. Laatikainen T, et al. Sodium in the Finnish diet: 20-year trends in urinary sodium excretion among the adult population. Eur. J. Clin. Nutr. 2006;60:965–970. doi: 10.1038/sj.ejcn.1602406.
    1. Du S, et al. Understanding the patterns and trends of sodium intake, potassium intake, and sodium to potassium ratio and their effect on hypertension in China. Am. J. Clin. Nutr. 2014;99:334–343. doi: 10.3945/ajcn.113.059121.
    1. Bernstein AM, Willett WC. Trends in 24-h urinary sodium excretion in the United States, 1957-2003: a systematic review. Am. J. Clin. Nutr. 2010;92:1172–1180. doi: 10.3945/ajcn.2010.29367.
    1. Lee HS, Duffey KJ, Popkin BM. Sodium and potassium intake patterns and trends in South Korea. J. Hum. Hypertens. 2013;27:298–303. doi: 10.1038/jhh.2012.43.
    1. Johnson C, et al. Mean population salt consumption in India: a systematic review. J. Hypertens. 2017;35:3–9. doi: 10.1097/HJH.0000000000001141.
    1. Sarno F, Claro RM, Levy RB, Bandoni DH, Monteiro CA. Estimated sodium intake for the Brazilian population, 2008-2009 [Portuguese] Rev. Saude Publica. 2013;47:571–578. doi: 10.1590/S0034-8910.2013047004418.
    1. Bilano V, et al. Global trends and projections for tobacco use, 1990-2025: an analysis of smoking indicators from the WHO Comprehensive Information Systems for Tobacco Control. Lancet. 2015;385:966–976. doi: 10.1016/S0140-6736(15)60264-1.
    1. World Health Organization. Global status report on slcohol and health (WHO, 2014).
    1. Lewington S, et al. Seasonal variation in blood pressure and its relationship with outdoor temperature in 10 diverse regions of China: the China Kadoorie Biobank. J. Hypertens. 2012;30:1383–1391. doi: 10.1097/HJH.0b013e32835465b5.
    1. Saeki K, et al. Influence of room heating on ambulatory blood pressure in winter: a randomised controlled study. J. Epidemiol. Community Health. 2013;67:484–490. doi: 10.1136/jech-2012-201883.
    1. Wang Q, et al. Environmental ambient temperature and blood pressure in adults: a systematic review and meta-analysis. Sci. Total Environ. 2017;575:276–286. doi: 10.1016/j.scitotenv.2016.10.019.
    1. Dong B, Wang Z, Song Y, Wang HJ, Ma J. Understanding trends in blood pressure and their associations with body mass index in Chinese children, from 1985 to 2010: a cross-sectional observational study. BMJ Open. 2015;5:e009050. doi: 10.1136/bmjopen-2015-009050.
    1. Khang YH, Lynch JW. Exploring determinants of secular decreases in childhood blood pressure and hypertension. Circulation. 2011;124:397–405. doi: 10.1161/CIRCULATIONAHA.110.014399.
    1. Chiolero A, et al. Discordant secular trends in elevated blood pressure and obesity in children and adolescents in a rapidly developing country. Circulation. 2009;119:558–565. doi: 10.1161/CIRCULATIONAHA.108.796276.
    1. Xi B, et al. Trends in elevated blood pressure among US children and adolescents: 1999-2012. Am. J. Hypertens. 2016;29:217–225. doi: 10.1093/ajh/hpv091.
    1. Reckelhoff JF. Gender differences in the regulation of blood pressure. Hypertension. 2001;37:1199–1208. doi: 10.1161/01.HYP.37.5.1199.
    1. Marmot MG, et al. Health inequalities among British civil servants: the Whitehall II study. Lancet. 1991;337:1387–1393. doi: 10.1016/0140-6736(91)93068-K.
    1. Colhoun HM, Hemingway H, Poulter NR. Socio-economic status and blood pressure: an overview analysis. J. Hum. Hypertens. 1998;12:91–110. doi: 10.1038/sj.jhh.1000558.
    1. Ezzati M, Oza S, Danaei G, Murray CJ. Trends and cardiovascular mortality effects of state-level blood pressure and uncontrolled hypertension in the United States. Circulation. 2008;117:905–914. doi: 10.1161/CIRCULATIONAHA.107.732131.
    1. Danaei G, et al. The promise of prevention: the effects of four preventable risk factors on national life expectancy and life expectancy disparities by race and county in the United States. PLoS Med. 2010;7:e1000248. doi: 10.1371/journal.pmed.1000248.
    1. Di Cesare M, et al. Inequalities in non-communicable diseases and effective responses. Lancet. 2013;381:585–597. doi: 10.1016/S0140-6736(12)61851-0.
    1. Bennett S. Cardiovascular risk factors in Australia: trends in socioeconomic inequalities. J. Epidemiol. Community Health. 1995;49:363–372. doi: 10.1136/jech.49.4.363.
    1. Peltonen M, Huhtasaari F, Stegmayr B, Lundberg V, Asplund K. Secular trends in social patterning of cardiovascular risk factor levels in Sweden. The Northern Sweden MONICA Study 1986-1994. Multinational Monitoring of Trends and Determinants in Cardiovascular Disease. J. Intern. Med. 1998;244:1–9. doi: 10.1046/j.1365-2796.1998.00289.x.
    1. Bartley M, Fitzpatrick R, Firth D, Marmot M. Social distribution of cardiovascular disease risk factors: change among men in England 1984-1993. J. Epidemiol. Community Health. 2000;54:806–814. doi: 10.1136/jech.54.11.806.
    1. Ferrario M, et al. Time trends of major coronary risk factors in a northern Italian population (1986-1994). How remarkable are socioeconomic differences in an industrialized low CHD incidence country? Int. J. Epidemiol. 2001;30:285–297. doi: 10.1093/ije/30.2.285.
    1. Galobardes B, Costanza MC, Bernstein MS, Delhumeau C, Morabia A. Trends in risk factors for lifestyle-related diseases by socioeconomic position in Geneva, Switzerland, 1993-2000: health inequalities persist. Am. J. Public Health. 2003;93:1302–1309. doi: 10.2105/AJPH.93.8.1302.
    1. Kanjilal S, et al. Socioeconomic status and trends in disparities in 4 major risk factors for cardiovascular disease among US adults, 1971-2002. Arch. Intern. Med. 2006;166:2348–2355. doi: 10.1001/archinte.166.21.2348.
    1. Scholes S, et al. Persistent socioeconomic inequalities in cardiovascular risk factors in England over 1994-2008: a time-trend analysis of repeated cross-sectional data. BMC Public Health. 2012;12:129. doi: 10.1186/1471-2458-12-129.
    1. Bleich SN, Jarlenski MP, Bell CN, LaVeist TA. Health inequalities: trends, progress, and policy. Annu. Rev. Public Health. 2012;33:7–40. doi: 10.1146/annurev-publhealth-031811-124658.
    1. SarrafZadegan N, AminiNik S. Blood pressure pattern in urban and rural areas in Isfahan, Iran. J. Hum. Hypertens. 1997;11:425–428. doi: 10.1038/sj.jhh.1000448.
    1. Agyemang C. Rural and urban differences in blood pressure and hypertension in Ghana, West Africa. Public Health. 2006;120:525–533. doi: 10.1016/j.puhe.2006.02.002.
    1. Addo J, Smeeth L, Leon DA. Hypertension in sub-saharan Africa: a systematic review. Hypertension. 2007;50:1012–1018. doi: 10.1161/HYPERTENSIONAHA.107.093336.
    1. Conen D, Glynn RJ, Ridker PM, Buring JE, Albert MA. Socioeconomic status, blood pressure progression, and incident hypertension in a prospective cohort of female health professionals. Eur. Heart J. 2009;30:1378–1384. doi: 10.1093/eurheartj/ehp072.
    1. Brummett BH, et al. Systolic blood pressure, socioeconomic status, and biobehavioral risk factors in a nationally representative US young adult sample. Hypertension. 2011;58:161–166. doi: 10.1161/HYPERTENSIONAHA.111.171272.
    1. Cois A, Ehrlich R. Analysing the socioeconomic determinants of hypertension in South Africa: a structural equation modelling approach. BMC Public Health. 2014;14:414. doi: 10.1186/1471-2458-14-414.
    1. Li J, et al. Urban-rural disparities in hypertension prevalence, detection, and medication use among Chinese adults from 1993 to 2011. Int. J. Equity Health. 2017;16:50. doi: 10.1186/s12939-017-0545-7.
    1. Osler M, et al. Socioeconomic status and trends in risk factors for cardiovascular diseases in the Danish MONICA population, 1982-1992. J. Epidemiol. Community Health. 2000;54:108–113. doi: 10.1136/jech.54.2.108.
    1. Damasceno A, et al. Hypertension prevalence, awareness, treatment, and control in Mozambique: urban/rural gap during epidemiological transition. Hypertension. 2009;54:77–83. doi: 10.1161/HYPERTENSIONAHA.109.132423.
    1. Stringhini S, Viswanathan B, Gedeon J, Paccaud F, Bovet P. The social transition of risk factors for cardiovascular disease in the African region: evidence from three cross-sectional surveys in the Seychelles. Int. J. Cardiol. 2013;168:1201–1206. doi: 10.1016/j.ijcard.2012.11.064.
    1. Basit A, Tanveer S, Fawwad A, Naeem N. NDSP Members. Prevalence and contributing risk factors for hypertension in urban and rural areas of Pakistan; a study from second National Diabetes Survey of Pakistan (NDSP) 2016–2017. Clin. Exp. Hypertens. 2020;42:218–224. doi: 10.1080/10641963.2019.1619753.
    1. Padmavati S, Gupta S. Blood pressure studies in rural and urban groups in Delhi. Circulation. 1959;19:395–405. doi: 10.1161/01.CIR.19.3.395.
    1. Shaper AG. Cardiovascular disease in the tropics. 3. Blood pressure and hypertension. Br. Med. J. 1972;3:805–807. doi: 10.1136/bmj.3.5830.805.
    1. Sarki AM, Nduka CU, Stranges S, Kandala NB, Uthman OA. Prevalence of hypertension in low- and middle-income countries: a systematic review and meta-analysis. Medicine. 2015;94:e1959. doi: 10.1097/MD.0000000000001959.
    1. Leng B, Jin Y, Li G, Chen L, Jin N. Socioeconomic status and hypertension: a meta-analysis. J. Hypertens. 2015;33:221–229. doi: 10.1097/HJH.0000000000000428.
    1. Murray CJ, Lopez AD. Global mortality, disability, and the contribution of risk factors: Global Burden of Disease Study. Lancet. 1997;349:1436–1442. doi: 10.1016/S0140-6736(96)07495-8.
    1. Ezzati M, Lopez AD, Rodgers A, Vander Hoorn S, Murray CJ. Selected major risk factors and global and regional burden of disease. Lancet. 2002;360:1347–1360. doi: 10.1016/S0140-6736(02)11403-6.
    1. Lim SS, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2224–2260. doi: 10.1016/S0140-6736(12)61766-8.
    1. GBD Risk Factor Collaborators Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392:1923–1994. doi: 10.1016/S0140-6736(18)32225-6.
    1. Labarthe D, Ayala C. Nondrug interventions in hypertension prevention and control. Cardiol. Clin. 2002;20:249–263. doi: 10.1016/S0733-8651(01)00003-0.
    1. Asaria P, Chisholm D, Mathers C, Ezzati M, Beaglehole R. Chronic disease prevention: health effects and financial costs of strategies to reduce salt intake and control tobacco use. Lancet. 2007;370:2044–2053. doi: 10.1016/S0140-6736(07)61698-5.
    1. Prabhakaran D, et al. Cardiovascular, respiratory, and related disorders: key messages from Disease Control Priorities, 3rd edition. Lancet. 2018;391:1224–1236. doi: 10.1016/S0140-6736(17)32471-6.
    1. World Health Organization. Global action plan for the prevention and control of noncommunicable diseases 2013–2020 (WHO, 2013).
    1. Rabi DM, et al. Hypertension Canada’s 2020 comprehensive guidelines for the prevention, diagnosis, risk assessment, and treatment of hypertension in adults and children. Can. J. Cardiol. 2020;36:596–624. doi: 10.1016/j.cjca.2020.02.086.
    1. Williams B, et al. 2018 ESC/ESH guidelines for the management of arterial hypertension. Eur. Heart J. 2018;39:3021–3104. doi: 10.1093/eurheartj/ehy339.
    1. Carey RM, Muntner P, Bosworth HB, Whelton PK. Prevention and control of hypertension: JACC Health Promotion Series. J. Am. Coll. Cardiol. 2018;72:1278–1293. doi: 10.1016/j.jacc.2018.07.008.
    1. Wilson E, et al. Platform for international action on cardiovascular disease. Prev. Control. 2005;1:185–217.
    1. Jorgensen T, et al. Population-level changes to promote cardiovascular health. Eur. J. Prev. Cardiol. 2013;20:409–421. doi: 10.1177/2047487312441726.
    1. He FJ, MacGregor GA. Role of salt intake in prevention of cardiovascular disease: controversies and challenges. Nat. Rev. Cardiol. 2018;15:371–377. doi: 10.1038/s41569-018-0004-1.
    1. Thomopoulos C, Parati G, Zanchetti A. Effects of blood pressure lowering on outcome incidence in hypertension. 1. Overview, meta-analyses, and meta-regression analyses of randomized trials. J. Hypertens. 2014;32:2285–2295. doi: 10.1097/HJH.0000000000000378.
    1. Unger T, et al. 2020 International Society of Hypertension global hypertension practice guidelines. Hypertension. 2020;75:1334–1357. doi: 10.1161/HYPERTENSIONAHA.120.15026.
    1. Joint Committee for Guideline Revision 2018 Chinese guidelines for prevention and treatment of hypertension–A report of the Revision Committee of Chinese Guidelines for Prevention and Treatment of Hypertension. J. Geriatr. Cardiol. 2019;16:182–241.
    1. Shah SN, et al. Indian guidelines on hypertension-IV (2019) J. Hum. Hypertens. 2020;34:745–758. doi: 10.1038/s41371-020-0349-x.
    1. Division of Non-Communicable Diseases. Kenya national guidelines for cardiovascular diseases management (Ministry of Health, 2018).
    1. National Institute for Health and Clinical Excellence. Hypertension in adults: diagnosis and management. NICE guideline [NG136] (NICE, 2019).
    1. Whelton PK, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: Executive Summary: a report of the American College of Cardiology/American Heart Association Task Force. Hypertension. 2018;71:1269–1324. doi: 10.1161/HYP.0000000000000066.
    1. Wald DS, Law M, Morris JK, Bestwick JP, Wald NJ. Combination therapy versus monotherapy in reducing blood pressure: meta-analysis on 11,000 participants from 42 trials. Am. J. Med. 2009;122:290–300. doi: 10.1016/j.amjmed.2008.09.038.
    1. Gupta AK, Arshad S, Poulter NR. Compliance, safety, and effectiveness of fixed-dose combinations of antihypertensive agents: a meta-analysis. Hypertension. 2010;55:399–407. doi: 10.1161/HYPERTENSIONAHA.109.139816.
    1. Kaptoge S, et al. World Health Organization cardiovascular disease risk charts: revised models to estimate risk in 21 global regions. Lancet Glob. Health. 2019;7:e1332–e1345. doi: 10.1016/S2214-109X(19)30318-3.
    1. Vedanthan R, et al. Innovative approaches to hypertension control in low- and middle-income countries. Cardiol. Clin. 2017;35:99–115. doi: 10.1016/j.ccl.2016.08.010.
    1. Feldman RD, et al. A simplified approach to the treatment of uncomplicated hypertension: a cluster randomized, controlled trial. Hypertension. 2009;53:646–653. doi: 10.1161/HYPERTENSIONAHA.108.123455.
    1. Angell SY, De Cock KM, Frieden TR. A public health approach to global management of hypertension. Lancet. 2015;385:825–827. doi: 10.1016/S0140-6736(14)62256-X.
    1. Patel P, et al. Improved blood pressure control to reduce cardiovascular disease morbidity and mortality: the Standardized Hypertension Treatment and Prevention Project. J. Clin. Hypertens. 2016;18:1284–1294. doi: 10.1111/jch.12861.
    1. Attaei MW, et al. Availability and affordability of blood pressure-lowering medicines and the effect on blood pressure control in high-income, middle-income, and low-income countries: an analysis of the PURE study data. Lancet Public Health. 2017;2:e411–e419. doi: 10.1016/S2468-2667(17)30141-X.
    1. Jaffe MG, Lee GA, Young JD, Sidney S, Go AS. Improved blood pressure control associated with a large-scale hypertension program. JAMA. 2013;310:699–705. doi: 10.1001/jama.2013.108769.
    1. Padwal RS, Bienek A, McAlister FA, Campbell NR, Outcomes Research Task Force of the Canadian Hypertension Education Program Epidemiology of hypertension in Canada: an update. Can. J. Cardiol. 2016;32:687–694. doi: 10.1016/j.cjca.2015.07.734.
    1. Campbell NR, Sheldon T. The Canadian effort to prevent and control hypertension: can other countries adopt Canadian strategies? Curr. Opin. Cardiol. 2010;25:366–372. doi: 10.1097/HCO.0b013e32833a3632.
    1. Anand TN, Joseph LM, Geetha AV, Prabhakaran D, Jeemon P. Task sharing with non-physician health-care workers for management of blood pressure in low-income and middle-income countries: a systematic review and meta-analysis. Lancet Glob. Health. 2019;7:e761–e771. doi: 10.1016/S2214-109X(19)30077-4.
    1. McAlister FA. The Canadian Hypertension Education Program–a unique Canadian initiative. Can. J. Cardiol. 2006;22:559–564. doi: 10.1016/S0828-282X(06)70277-X.
    1. He J, et al. Effect of a community health worker-led multicomponent intervention on blood pressure control in low-income patients in Argentina: a randomized clinical trial. JAMA. 2017;318:1016–1025. doi: 10.1001/jama.2017.11358.
    1. Victor RG, et al. A cluster-randomized trial of blood-pressure reduction in black barbershops. N. Engl. J. Med. 2018;378:1291–1301. doi: 10.1056/NEJMoa1717250.
    1. Lu X, et al. Interactive mobile health intervention and blood pressure management in adults. Hypertension. 2019;74:697–704. doi: 10.1161/HYPERTENSIONAHA.119.13273.
    1. Schwalm J-D, et al. A community-based comprehensive intervention to reduce cardiovascular risk in hypertension (HOPE 4): a cluster-randomised controlled trial. Lancet. 2019;394:1231–1242. doi: 10.1016/S0140-6736(19)31949-X.
    1. Shariful Islam SM, et al. Mobile phone text-messaging interventions aimed to prevent cardiovascular diseases (Text2PreventCVD): systematic review and individual patient data meta-analysis. Open. Heart. 2019;6:e001017. doi: 10.1136/openhrt-2019-001017.
    1. Jafar TH, et al. A community-based intervention for managing hypertension in rural South Asia. N. Engl. J. Med. 2020;382:717–726. doi: 10.1056/NEJMoa1911965.
    1. Sherrill B, Halpern M, Khan S, Zhang J, Panjabi S. Single-pill vs free-equivalent combination therapies for hypertension: a meta-analysis of health care costs and adherence. J. Clin. Hypertens. 2011;13:898–909. doi: 10.1111/j.1751-7176.2011.00550.x.
    1. Chow CK, et al. Quarter-dose quadruple combination therapy for initial treatment of hypertension: placebo-controlled, crossover, randomised trial and systematic review. Lancet. 2017;389:1035–1042. doi: 10.1016/S0140-6736(17)30260-X.
    1. Noah B, et al. Impact of remote patient monitoring on clinical outcomes: an updated meta-analysis of randomized controlled trials. NPJ Digit. Med. 2018;1:20172. doi: 10.1038/s41746-017-0002-4.
    1. Timpel P, Oswald S, Schwarz PEH, Harst L. Mapping the evidence on the effectiveness of telemedicine interventions in diabetes, dyslipidemia, and hypertension: an umbrella review of systematic reviews and meta-analyses. J. Med. Internet Res. 2020;22:e16791. doi: 10.2196/16791.
    1. Zullig LL, Melnyk SD, Goldstein K, Shaw RJ, Bosworth HB. The role of home blood pressure telemonitoring in managing hypertensive populations. Curr. Hypertens. Rep. 2013;15:346–355. doi: 10.1007/s11906-013-0351-6.
    1. Alessa T, Hawley MS, Hock ES, de Witte L. Smartphone apps to support self-management of hypertension: review and content analysis. JMIR Mhealth Uhealth. 2019;7:e13645. doi: 10.2196/13645.
    1. Kitt J, Fox R, Tucker KL, McManus RJ. New approaches in hypertension management: a review of current and developing technologies and their potential impact on hypertension care. Curr. Hypertens. Rep. 2019;21:44. doi: 10.1007/s11906-019-0949-4.
    1. Li R, Liang N, Bu F, Hesketh T. The effectiveness of self-management of hypertension in adults using mobile health: systematic review and meta-analysis. JMIR Mhealth Uhealth. 2020;8:e17776. doi: 10.2196/17776.
    1. World Health Organization. Global Hearts Initiative, working together to promote cardiovascular health (WHO, 2018).
    1. Adler AJ, et al. Reducing cardiovascular mortality through prevention and management of raised blood pressure: a World Heart Federation roadmap. Glob. Heart. 2015;10:111–122. doi: 10.1016/j.gheart.2015.04.006.
    1. Dzudie A, et al. Roadmap to achieve 25% hypertension control in Africa by 2025. Cardiovasc. J. Afr. 2017;28:262–272. doi: 10.5830/CVJA-2017-040.
    1. Frieden TR, Bloomberg MR. Saving an additional 100 million lives. Lancet. 2018;391:709–712. doi: 10.1016/S0140-6736(17)32443-1.
    1. The World Bank. Tracking universal health coverage: 2017 global monitoring report (The World Bank, 2017).
    1. Guan WJ, et al. Comorbidity and its impact on 1590 patients with COVID-19 in China: a nationwide analysis. Eur. Respir. J. 2020;55:2000547. doi: 10.1183/13993003.00547-2020.
    1. Zhou F, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395:1054–1062. doi: 10.1016/S0140-6736(20)30566-3.
    1. Chudasama YV, et al. Multimorbidity and SARS-CoV-2 infection in UK Biobank. Diabetes Metab. Syndr. 2020;14:775–776. doi: 10.1016/j.dsx.2020.06.003.
    1. Richardson S, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA. 2020;323:2052–2059. doi: 10.1001/jama.2020.6775.
    1. Rodriguez-Morales AJ, et al. Clinical, laboratory and imaging features of COVID-19: a systematic review and meta-analysis. Travel Med. Infect. Dis. 2020;34:101623. doi: 10.1016/j.tmaid.2020.101623.
    1. Yang J, et al. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: a systematic review and meta-analysis. Int. J. Infect. Dis. 2020;94:91–95. doi: 10.1016/j.ijid.2020.03.017.
    1. Garg S, et al. Hospitalization rates and characteristics of patients hospitalized with laboratory-confirmed coronavirus disease 2019 – COVID-NET, 14 states, March 1–30, 2020. MMWR. 2020;69:458–464.
    1. Singh AK, et al. Prevalence of co-morbidities and their association with mortality in patients with COVID-19: a systematic review and meta-analysis. Diabetes Obes. Metab. 2020;22:1915–1924. doi: 10.1111/dom.14124.
    1. Hamer M, Gale CR, Kivimaki M, Batty GD. Overweight, obesity, and risk of hospitalization for COVID-19: a community-based cohort study of adults in the United Kingdom. Proc. Natl Acad. Sci. USA. 2020;117:21011–21013. doi: 10.1073/pnas.2011086117.
    1. Gao C, et al. Association of hypertension and antihypertensive treatment with COVID-19 mortality: a retrospective observational study. Eur. Heart J. 2020;41:2058–2066. doi: 10.1093/eurheartj/ehaa433.
    1. Atkins JL, et al. Preexisting comorbidities predicting COVID-19 and mortality in the UK Biobank Community Cohort. J. Gerontol. A. 2020;75:2224–2230. doi: 10.1093/gerona/glaa183.
    1. Williamson EJ, et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature. 2020;584:430–436. doi: 10.1038/s41586-020-2521-4.
    1. Iaccarino G, et al. Age and multimorbidity predict death among COVID-19 patients: results of the SARS-RAS study of the Italian Society of Hypertension. Hypertension. 2020;76:366–372. doi: 10.1161/HYPERTENSIONAHA.120.15324.
    1. Schiffrin EL, Flack JM, Ito S, Muntner P, Webb RC. Hypertension and COVID-19. Am. J. Hypertens. 2020;33:373–374. doi: 10.1093/ajh/hpaa057.
    1. Cariou B, et al. Phenotypic characteristics and prognosis of inpatients with COVID-19 and diabetes: the CORONADO study. Diabetologia. 2020;63:1500–1515. doi: 10.1007/s00125-020-05180-x.
    1. Zheng Z, et al. Risk factors of critical & mortal COVID-19 cases: a systematic literature review and meta-analysis. J. Infect. 2020;81:e16–e25. doi: 10.1016/j.jinf.2020.04.021.
    1. Wrapp D, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367:1260–1263. doi: 10.1126/science.abb2507.
    1. Fang L, Karakiulakis G, Roth M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir. Med. 2020;8:e21. doi: 10.1016/S2213-2600(20)30116-8.
    1. de Abajo FJ, et al. Use of renin–angiotensin–aldosterone system inhibitors and risk of COVID-19 requiring admission to hospital: a case-population study. Lancet. 2020;395:1705–1714. doi: 10.1016/S0140-6736(20)31030-8.
    1. Mehta N, et al. Association of use of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers with testing positive for coronavirus disease 2019 (COVID-19) JAMA Cardiol. 2020;5:1020–1026. doi: 10.1001/jamacardio.2020.1855.
    1. Hypertension Canada. Hypertension Canada’s statement on: hypertension, ACE-inhibitors and angiotensin receptor blockers and COVID-19. Hypertension Canada (2020).
    1. Kario K, et al. COVID-19 and hypertension-evidence and practical management: Guidance from the HOPE Asia Network. J. Clin. Hypertens. 2020;22:1109–1119. doi: 10.1111/jch.13917.
    1. Shibata S, et al. Hypertension and related diseases in the era of COVID-19: a report from the Japanese Society of Hypertension Task Force on COVID-19. Hypertens. Res. 2020;43:1028–1046. doi: 10.1038/s41440-020-0515-0.
    1. American College of Cardiology. HFSA/ACC/AHA Statement addresses concerns re: using RAAS antagonists in COVID-19 (ACC, 2020).
    1. European Society of Cardiology. Position statement of the ESC Council on hypertension on ACE-inhibitors and angiotensin receptor blockers (ESC, 2020).
    1. Kreutz R, et al. Hypertension, the renin-angiotensin system, and the risk of lower respiratory tract infections and lung injury: implications for COVID-19. Cardiovasc. Res. 2020;116:1688–1699. doi: 10.1093/cvr/cvaa097.
    1. National Institute for Health and Clinical Excellence. Angiotensin converting enzyme inhibitors (ACEIs) or angiotensin receptor blockers (ARBs) in people with or at risk of COVID-19 (NICE, 2020).
    1. Baral R, White M, Vassiliou VS. Effect of renin-angiotensin-aldosterone system inhibitors in patients with COVID-19: a systematic review and meta-analysis of 28,872 patients. Curr. Atheroscler. Rep. 2020;22:61. doi: 10.1007/s11883-020-00880-6.
    1. Hippisley-Cox J, et al. Risk of severe COVID-19 disease with ACE inhibitors and angiotensin receptor blockers: cohort study including 8.3 million people. Heart. 2020;106:1503–1511. doi: 10.1136/heartjnl-2020-317393.
    1. Mancia G, Rea F, Ludergnani M, Apolone G, Corrao G. Renin-angiotensin-aldosterone system blockers and the risk of Covid-19. N. Engl. J. Med. 2020;382:2431–2440. doi: 10.1056/NEJMoa2006923.
    1. Wang JJ, et al. Good or bad: application of RAAS inhibitors in COVID-19 patients with cardiovascular comorbidities. Pharmacol. Ther. 2020;215:107628. doi: 10.1016/j.pharmthera.2020.107628.
    1. Kluge HHP, et al. Prevention and control of non-communicable diseases in the COVID-19 response. Lancet. 2020;395:1678–1680. doi: 10.1016/S0140-6736(20)31067-9.
    1. Nadar SK, Tayebjee MH, Stowasser M, Byrd JB. Managing hypertension during the COVID-19 pandemic. J. Hum. Hypertens. 2020;34:415–417. doi: 10.1038/s41371-020-0356-y.
    1. Chudasama YV, et al. Impact of COVID-19 on routine care for chronic diseases: a global survey of views from healthcare professionals. Diabetes Metab. Syndr. 2020;14:965–967. doi: 10.1016/j.dsx.2020.06.042.
    1. World Health Organization. The impact of the COVID-19 pandemic on noncommunicable disease resources and services: results of a rapid assessment (WHO, 2020).
    1. Wright A, Salazar A, Mirica M, Volk LA, Schiff GD. The invisible epidemic: neglected chronic disease management during COVID-19. J. Gen. Intern. Med. 2020;35:2816–2817. doi: 10.1007/s11606-020-06025-4.
    1. British Medical Association. The hidden impact of COVID-19 on patient care in the NHS in England (BMA, 2020).
    1. Douglas M, Katikireddi SV, Taulbut M, McKee M, McCartney G. Mitigating the wider health effects of covid-19 pandemic response. BMJ. 2020;369:m1557. doi: 10.1136/bmj.m1557.
    1. Tison GH, et al. Worldwide effect of COVID-19 on physical activity: a descriptive study. Ann. Intern. Med. 2020;173:767–770. doi: 10.7326/M20-2665.
    1. Kontis V, et al. Magnitude, demographics and dynamics of the effect of the first wave of the COVID-19 pandemic on all-cause mortality in 21 industrialized countries. Nat. Med. 2020;26:1919–1928. doi: 10.1038/s41591-020-1112-0.

Source: PubMed

3
S'abonner