Inhibition of Lateral Prefrontal Cortex Produces Emotionally Biased First Impressions: A Transcranial Magnetic Stimulation and Electroencephalography Study

Regina C Lapate, Jason Samaha, Bas Rokers, Hamdi Hamzah, Bradley R Postle, Richard J Davidson, Regina C Lapate, Jason Samaha, Bas Rokers, Hamdi Hamzah, Bradley R Postle, Richard J Davidson

Abstract

Optimal functioning in everyday life requires the ability to override reflexive emotional responses and prevent affective spillover to situations or people unrelated to the source of emotion. In the current study, we investigated whether the lateral prefrontal cortex (lPFC) causally regulates the influence of emotional information on subsequent judgments. We disrupted left lPFC function using transcranial magnetic stimulation (TMS) and recorded electroencephalography (EEG) before and after. Subjects evaluated the likeability of novel neutral faces after a brief exposure to a happy or fearful face. We found that lPFC inhibition biased evaluations of novel faces according to the previously processed emotional expression. Greater frontal EEG alpha power, reflecting increased inhibition by TMS, predicted increased behavioral bias. TMS-induced affective misattribution was long-lasting: Emotionally biased first impressions formed during lPFC inhibition were still detectable outside of the laboratory 3 days later. These findings indicate that lPFC serves an important emotion-regulation function by preventing incidental emotional encoding from automatically biasing subsequent appraisals.

Keywords: causality; emotional control; facial expressions; frontal lobe; open materials; priming.

Conflict of interest statement

Declaration of Conflicting Interests: R. J. Davidson serves on the board of directors for two nonprofit organizations: The Mind and Life Institute and Healthy Minds Innovations. The authors declared that they had no other conflicts of interest with respect to their authorship or the publication of this article.<?release-delay 12|0>

Figures

Fig. 1.
Fig. 1.
Experimental design of the transcranial magnetic stimulation (TMS) and electroencephalography (EEG) session. The brain images (a) show the lateral prefrontal cortex (lPFC) and control (primary somatosensory cortex, or S1) regions targeted during the administration of continuous theta-burst stimulation (cTBS). The target regions are overlaid on a representative subject’s T1-weighted image in native space. Each subject received TMS at both sites during the session. The timeline for each cTBS administration is shown in (b). After cTBS was administered to either left lPFC or to left S1 for 20 s, subjects completed the affective-coloring task. EEG recordings, which provided a neurophysiological index of cortical excitability, were conducted twice for each cTBS administration, before and after completion of the affective-coloring task. The trial structure for the affective-coloring task is shown in the bracketed area above the timeline. Subjects were informed that the task measured the formation of first impressions in the presence of emotional distractors. After the brief presentation of a happy or fearful face, subjects evaluated novel individuals for their likeability.
Fig. 2.
Fig. 2.
Impact of inhibition of lateral prefrontal cortex (lPFC) by continuous theta-burst stimulation (cTBS) on evaluative behavior after emotional processing. The bar graph (a) shows neutral-face likeability separately for faces presented after cTBS to the lPFC and S1, following the presentation of positively and negatively valenced emotional expressions. The error bars represent ±1SEM of the within-subjects difference between valence conditions. The asterisks indicate significant differences (p < .05). The scatterplot (with best-fitting regression line; b) shows the relationship between change in neutral-face likeability after cTBS administration to lPFC and power in the alpha band (controlling for alpha and behavioral responses in the control condition). Power was measured over the electrode (F7) closest to the location of the transcranial magnetic stimulation coil on lPFC. Plotted on both axes are the residuals saved from linear regressions in which responses recorded in the control condition were regressed out of responses in the lPFC condition. Each data point denotes results for a single subject. (For the scalp topography of this correlation, see Fig. S2 in the Supplemental Material.)
Fig. 3.
Fig. 3.
Setup for online ratings task and longevity of first impressions formed during the transcranial magnetic stimulation (TMS) session. Three days after the TMS session in the lab, subjects were asked to complete an online rating task (a) in which they evaluated the likeability of the 144 neutral faces (first encountered during the TMS session). These faces were intermixed with 36 foils. Subjects used a continuous scale unanchored by numbers and were given unlimited time to respond. The bar graph (b) shows the neutral-face likeability ratings outside of the lab, separately for faces that had been presented in the TMS session after continuous theta-burst stimulation (cTBS) to the lateral prefrontal cortex (lPFC) or to S1, following the presentation of positively or negatively valenced emotional expressions. The error bars represent ±1SEM of the within-subjects difference between valence conditions. The asterisk indicates a significant difference (p < .05).

References

    1. Almeida J., Pajtas P. E., Mahon B. Z., Nakayama K., Caramazza A. (2013). Affect of the unconscious: Visually suppressed angry faces modulate our decisions. Cognitive, Affective, & Behavioral Neuroscience, 13, 94–101. doi:10.3758/s13415-012-0133-7
    1. Arnsten A. F. T. (2009). Stress signalling pathways that impair prefrontal cortex structure and function. Nature Reviews Neuroscience, 10, 410–422. doi:10.1038/nrn2648
    1. Birn R. M., Shackman A. J., Oler J. A., Williams L. E., McFarlin D. R., Rogers G. M., . . . Kalin N. H. (2014). Evolutionarily conserved prefrontal-amygdalar dysfunction in early-life anxiety. Molecular Psychiatry, 19, 915–922. doi:10.1038/mp.2014.46
    1. Bishop S., Duncan J., Brett M., Lawrence A. D. (2004). Prefrontal cortical function and anxiety: Controlling attention to threat-related stimuli. Nature Neuroscience, 7, 184–188. doi:10.1038/nn1173
    1. Buhle J. T., Silvers J. A., Wager T. D., Lopez R., Onyemekwu C., Kober H., . . . Ochsner K. N. (2014). Cognitive reappraisal of emotion: A meta-analysis of human neuroimaging studies. Cerebral Cortex, 24, 2981–2990. doi:10.1093/cercor/bht154
    1. Canty A., Ripley B. (2016). boot: Bootstrap functions (Version 1.3-18) [Software]. Retrieved from
    1. D’Esposito M., Postle B. R. (2015). The cognitive neuroscience of working memory. Annual Review of Psychology, 66, 115–142. doi:10.1146/annurev-psych-010814-015031
    1. Figner B., Knoch D., Johnson E. J., Krosch A. R., Lisanby S. H., Fehr E., Weber E. U. (2010). Lateral prefrontal cortex and self-control in intertemporal choice. Nature Neu-roscience, 13, 538–539. doi:10.1038/nn.2516
    1. Fox M. D., Buckner R. L., White M. P., Greicius M. D., Pascual-Leone A. (2012). Efficacy of transcranial magnetic stimulation targets for depression is related to intrinsic functional connectivity with the subgenual cingulate. Biological Psychiatry, 72, 595–603. doi:10.1016/j.biopsych.2012.04.028
    1. Gawronski B., Ye Y. (2014). What drives priming effects in the affect misattribution procedure? Personality and Social Psychology Bulletin, 40, 3–15. doi:10.1177/0146167213502548
    1. Gratton C., Lee T. G., Nomura E. M., D’Esposito M. (2013). The effect of theta-burst TMS on cognitive control networks measured with resting state fMRI. Frontiers in Systems Neuroscience, 7, Article 124. doi:10.3389/fnsys.2013.00124
    1. Gratton C., Lee T. G., Nomura E. M., D’Esposito M. (2014). Perfusion MRI indexes variability in the functional brain effects of theta-burst transcranial magnetic stimulation. PLoS ONE, 9(7), Article e101430. doi:10.1371/journal.pone.0101430
    1. Hamidi M., Slagter H. A., Tononi G., Postle B. R. (2009). Repetitive transcranial magnetic stimulation affects behavior by biasing endogenous cortical oscillations. Frontiers in Integrative Neuroscience, 3, Article 14. doi:10.3389/neuro.07.014.2009
    1. Hare T. A., Camerer C. F., Rangel A. (2009). Self-control in decision-making involves modulation of the vmPFC valu-ation system. Science, 324, 646–648. doi:10.1126/science.1168450
    1. Hooker C. I., Gyurak A., Verosky S. C., Miyakawa A., Ayduk Ö. (2010). Neural activity to a partner’s facial expression predicts self-regulation after conflict. Biological Psychiatry, 67, 406–413. doi:10.1016/j.biopsych.2009.10.014
    1. Huang Y.-Z., Edwards M. J., Rounis E., Bhatia K. P., Rothwell J. C. (2005). Theta burst stimulation of the human motor cortex. Neuron, 45, 201–206. doi:10.1016/j.neuron.2004.12.033
    1. Jones C. R., Fazio R. H., Olson M. A. (2009). Implicit misattribution as a mechanism underlying evaluative conditioning. Journal of Personality and Social Psychology, 96, 933–948. doi:10.1037/a0014747
    1. Kim M. J., Gee D. G., Loucks R. A., Davis F. C., Whalen P. J. (2011). Anxiety dissociates dorsal and ventral medial prefrontal cortex functional connectivity with the amygdala at rest. Cerebral Cortex, 21, 1667–1673. doi:10.1093/cercor/bhq237
    1. Knight R. T., D’Esposito M. (2003). Lateral prefrontal syndrome: A disorder of executive control. In D’Esposito M. (Ed.), Neurological foundations of cognitive neuroscience (pp. 259–281). Cambridge, MA: MIT Press.
    1. Knoch D., Schneider F., Schunk D., Hohmann M., Fehr E. (2009). Disrupting the prefrontal cortex diminishes the human ability to build a good reputation. Proceedings of the National Academy of Sciences, USA, 106, 20895–20899. doi:10.1073/pnas.0911619106
    1. Koenigs M., Huey E. D., Calamia M., Raymont V., Tranel D., Grafman J. (2008). Distinct regions of prefrontal cortex mediate resistance and vulnerability to depression. The Journal of Neuroscience, 28, 12341–12348. doi:10.1523/JNEUROSCI.2324-08.2008
    1. Lapate R. C., Rokers B., Li T., Davidson R. J. (2014). Nonconscious emotional activation colors first impressions: A regulatory role for conscious awareness. Psychological Science, 25, 349–357. doi:10.1177/0956797613503175
    1. Lapate R. C., Rokers B., Tromp D. P. M., Orfali N. S., Oler J. A., Doran S. T., . . . Davidson R. J. (2016). Awareness of emotional stimuli determines the behavioral consequences of amygdala activation and amygdala-prefrontal connectivity. Scientific Reports, 6, Article 25826. doi:10.1038/srep25826
    1. Lhermitte F., Pillon B., Serdaru M. (1986). Human autonomy and the frontal lobes. Part I: Imitation and utilization behavior: A neuropsychological study of 75 patients. Annals of Neurology, 9, 326–334.
    1. Li W., Moallem I., Paller K. A., Gottfried J. A. (2007). Subliminal smells can guide social preferences. Psychological Science, 18, 1044–1049. doi:10.1111/j.1467-9280.2007.02023.x
    1. Mayberg H. S., Lozano A. M., Voon V., McNeely H. E., Seminowicz D., Hamani C., . . . Kennedy S. H. (2005). Deep brain stimulation for treatment-resistant depression. Neuron, 45, 651–660. doi:10.1016/j.neuron.2005.02.014
    1. Messer K., Matas J., Kittler J., Luettin J., Maitre G. (1999). XM2VTSbd: The extended M2VTS database. In Proceedings of the 2nd Conference on Audio and Video-Based Biometric Personal Authentication (pp. 72–77). New York, NY: Springer Verlag.
    1. Miller E. K., Cohen J. D. (2001). An integrative theory of prefrontal cortex. Annual Review of Neuroscience, 24, 167–202. doi:10.1146/annurev.neuro.24.1.167
    1. Murphy S. T., Zajonc R. B. (1993). Affect, cognition, and awareness: Affective priming with optimal and suboptimal stimulus exposures. Journal of Personality and Social Psychology, 64, 723–739.
    1. Payne B. K., Cheng C. M., Govorun O., Stewart B. D. (2005). An inkblot for attitudes: Affect misattribution as implicit measurement. Journal of Personality and Social Psychology, 89, 277–293. doi:10.1037/0022-3514.89.3.277
    1. Peirce J. W. (2007). PsychoPy–Psychophysics software in Python. Journal of Neuroscience Methods, 162, 8–13.
    1. Petrides M., Pandya D. N. (1999). Dorsolateral prefrontal cortex: Comparative cytoarchitectonic analysis in the human and the macaque brain and corticocortical connection patterns. European Journal of Neuroscience, 11, 1011–1036.
    1. Pfurtscheller G., Stancák A., Neuper C. (1996). Event-related synchronization (ERS) in the alpha band—an electrophysiological correlate of cortical idling: A review. International Journal of Psychophysiology, 24, 39–46. doi:10.1016/S0167-8760(96)00066-9
    1. Quirin M., Bode R. C. (2014). An alternative to self-reports of trait and state affect: The Implicit Positive and Negative Affect Test (IPANAT). European Journal of Psychological Assessment, 30, 231–237. doi:10.1027/1015-5759/a000190
    1. Ray R. D., Zald D. H. (2012). Anatomical insights into the interaction of emotion and cognition in the prefrontal cortex. Neuroscience & Biobehavioral Reviews, 36, 479–501. doi:10.1016/j.neubiorev.2011.08.005
    1. R Development Core Team. (2014). R: A language and environment for statistical computing (Version 3.0.2) [Computer software]. Retrieved from
    1. Rotteveel M., de Groot P., Geutskens A., Phaf R. H. (2001). Stronger suboptimal than optimal affective priming? Emo-tion, 1, 348–364. doi:10.1037/1528-3542.1.4.348
    1. Ruys K. I., Aarts H., Papies E. K., Oikawa M., Oikawa H. (2012). Perceiving an exclusive cause of affect prevents misattribution. Consciousness and Cognition, 21, 1009–1015. doi:10.1016/j.concog.2012.03.002
    1. Sakai K., Passingham R. E. (2006). Prefrontal set activity predicts rule-specific neural processing during subsequent cognitive performance. The Journal of Neuroscience, 26, 1211–1218. doi:10.1523/JNEUROSCI.3887-05.2006
    1. Siegle G. J., Thompson W., Carter C. S., Steinhauer S. R., Thase M. E. (2007). Increased amygdala and decreased dorsolateral prefrontal BOLD responses in unipolar depression: Related and independent features. Biological Psychiatry, 61, 198–209. doi:10.1016/j.biopsych.2006.05.048
    1. Spielberger C. D. (1989). State-trait anxiety inventory: Bibliography (2nd ed.). Palo Alto, CA: Consulting Psychologists Press.
    1. Tucker L. R., Damarin F., Messick S. (1966). A base-free measure of change. Psychometrika, 31, 457–473.
    1. Watson D., Clark L. A., Tellegen A. (1988). Development and validation of brief measures of positive and negative affect: the PANAS scales. Journal of Personality and Social Psychology, 54, 1063–1070.
    1. Wise S. P. (2008). Forward frontal fields: Phylogeny and fundamental function. Trends in Neurosciences, 31, 599–608. doi:10.1016/j.tins.2008.08.008

Source: PubMed

3
S'abonner