Shift Work and Serum Vitamin D Levels: A Systematic Review and Meta-Analysis

Margherita Martelli, Gianmaria Salvio, Lory Santarelli, Massimo Bracci, Margherita Martelli, Gianmaria Salvio, Lory Santarelli, Massimo Bracci

Abstract

Vitamin D deficiency and insufficiency are highly prevalent conditions worldwide due to several factors, including poor sun exposure. Shift workers may be exposed to the risk of hypovitaminosis D due to fewer opportunities for sunlight exposure compared to day workers. A systematic review of the PubMed, SCOPUS, and EMBASE databases was conducted according to the Preferred Reporting Items for Systemic Reviews and Meta-Analyses (PRISMA) statement to investigate the effect of shift work on vitamin D levels. Mean differences (MD) and 95% confidence intervals (CI) of serum 25-OH-D levels in shift workers and non-shift workers were calculated. A total of 13 cross-sectional studies were included in the meta-analysis. We found significantly lower levels of serum 25-OH-D in shift workers compared with non-shift workers (MD: −1.85, 95% CI [−2.49 to −1.21]). Heterogeneity among included studies was high (I2 = 89%, p < 0.0001), and neither subgroup analysis nor meta-regression were able to identify specific sources of the heterogeneity that may be related to the different characteristics of shift work among studies. The monitoring of serum vitamin D levels and prompt correction of any deficiencies should be considered in shift workers. Notably, since a large part of the observations are derived from Koreans, larger epidemiological studies are needed in other populations.

Keywords: circadian rhythm; job; night work; shift work; vitamin D; workers.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P) flowchart.
Figure 2
Figure 2
Forest plot showing mean differences in serum 25-hydroxyvitamin D (25-OH-D) levels (ng/mL) in shift workers and non-shift workers [12,24,25,26,27,28,29,30,31,32,33,34,35].
Figure 3
Figure 3
Funnel plot of the included studies showing no significant asymmetry.
Figure 4
Figure 4
Forest plots showing mean differences in serum 25-hydroxyvitamin D (25-OH-D) levels (ng/mL) in shift workers and non-shift workers (subgroup 1: methods of vitamin D measurement) [12,24,25,26,27,28,29,30,31,32,33,34,35].
Figure 5
Figure 5
Forest plots showing mean differences in serum 25-hydroxyvitamin D (25-OH-D) levels (ng/mL) in shift workers and non-shift workers (omitting unspecified methods of vitamin D measurement) [12,24,25,27,29,31,32,33,34,35].
Figure 6
Figure 6
Forest plots showing mean differences in serum 25-hydroxyvitamin D (25-OH-D) levels (ng/mL) in shift workers and non-shift workers (subgroup 2: gender prevalence) [12,24,25,26,27,28,29,30,31,32,33,34,35].
Figure 7
Figure 7
Meta-regression analysis performed for mean differences in serum vitamin D levels between shift and non-shift workers, with age (A) and BMI (B) as covariates.

References

    1. Xenos K., Papasavva M., Raptis A., Katsarou M.-S., Drakoulis N. Vitamin D Supplementation and Genetic Polymorphisms Impact on Weight Loss Diet Outcomes in Caucasians: A Randomized Double-Blind Placebo-Controlled Clinical Study. Front. Med. 2022;9:811326. doi: 10.3389/fmed.2022.811326.
    1. Holick M.F., Binkley N.C., Bischoff-Ferrari H.A., Gordon C.M., Hanley D.A., Heaney R.P., Murad M.H., Weaver C.M. Evaluation, treatment, and prevention of vitamin D deficiency: An endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 2011;96:1911–1930. doi: 10.1210/jc.2011-0385.
    1. Pfotenhauer K.M., Shubrook J.H. Vitamin D deficiency, its role in health and disease, and current supplementation recommendations. J. Am. Osteopath. Assoc. 2017;117:301–305. doi: 10.7556/jaoa.2017.055.
    1. El-Hajj Fuleihan G., Bouillon R., Clarke B., Chakhtoura M., Cooper C., McClung M., Singh R.J. Serum 25-Hydroxyvitamin D Levels: Variability, Knowledge Gaps, and the Concept of a Desirable Range. J. Bone Miner. Res. 2015;30:1119–1133. doi: 10.1002/jbmr.2536.
    1. Passeron T., Bouillon R., Callender V., Cestari T., Diepgen T.L., Green A.C., van der Pols J.C., Bernard B.A., Ly F., Bernerd F., et al. Sunscreen photoprotection and vitamin D status. Br. J. Dermatol. 2019;181:916–931. doi: 10.1111/bjd.17992.
    1. Chang S.W., Lee H.C. Vitamin D and health—The missing vitamin in humans. Pediatr. Neonatol. 2019;60:237–244. doi: 10.1016/j.pedneo.2019.04.007.
    1. Borel P., Caillaud D., Cano N.J. Vitamin D Bioavailability: State of the Art. Crit. Rev. Food Sci. Nutr. 2015;55:1193–1205. doi: 10.1080/10408398.2012.688897.
    1. Vanhevel J., Verlinden L., Doms S., Wildiers H., Verstuyf A. The role of vitamin D in breast cancer risk and progression. Endocr. Relat. Cancer. 2022;29:R33–R55. doi: 10.1530/ERC-21-0182.
    1. Holick M.F., Chen T.C. Vitamin D deficiency: A worldwide problem with health consequences. Am. J. Clin. Nutr. 2008;87:1080–1086. doi: 10.1093/ajcn/87.4.1080S.
    1. Sowah D., Fan X., Dennett L., Hagtvedt R., Straube S. Vitamin D levels and deficiency with different occupations: A systematic review. BMC Public Health. 2017;17:519. doi: 10.1186/s12889-017-4436-z.
    1. Holick M.F. The vitamin D deficiency pandemic: Approaches for diagnosis, treatment and prevention. Rev. Endocr. Metab. Disord. 2017;18:153–165. doi: 10.1007/s11154-017-9424-1.
    1. Stevens R.G., Hansen J., Costa G., Haus E., Kauppinen T., Aronson K.J., Castaño-Vinyals G., Davis S., Frings-Dresen M.H., Fritschi L., et al. Considerations of circadian impact for defining ‘shift work’ in cancer studies: IARC Working Group Report. Occup. Environ. Med. 2011;68:154–162. doi: 10.1136/oem.2009.053512.
    1. Lee H.J., Choi H., Yoon I.Y. Impacts of serum Vitamin D levels on sleep and daytime sleepiness according to working conditions. J. Clin. Sleep Med. 2020;16:1045–1054. doi: 10.5664/jcsm.8390.
    1. Daugaard S., Garde A.H., Hansen Å.M., Vistisen H.T., Rejnmark L., Kolstad H.A. Indoor, outdoor, and night work and blood concentrations of vitamin d and parathyroid hormone. Scand. J. Work. Environ. Health. 2018;44:647–657. doi: 10.5271/sjweh.3745.
    1. Kang M.-Y., Jang T.-W., Lee H.-E., Lee D.-W., Storz M.A., Rizzo G., Lombardo M. Shiftwork Is Associated with Higher Food Insecurity in U.S. Workers: Findings from a Cross-Sectional Study (NHANES) Int. J. Environ. Res. Public Health. 2022;19:2847. doi: 10.3390/ijerph19052847.
    1. Barbadoro P., Santarelli L., Croce N., Bracci M., Vincitorio D., Prospero E., Minelli A. Rotating Shift-Work as an Independent Risk Factor for Overweight Italian Workers: A Cross-Sectional Study. PLoS ONE. 2013;8:e63289. doi: 10.1371/annotation/2f0fb30e-1db9-4d28-97aa-eaf0a55cfa2c.
    1. Croce N., Bracci M., Ceccarelli G., Barbadoro P., Prospero E., Santarellia L. Body mass index in shift workers: Relation to diet and physical activity. G. Ital. Di Med. Del Lav. Ed Ergon. 2007;29:488–489.
    1. Copertaro A., Bracci M., Barbaresi M. Assessment of plasma homocysteine levels in shift healthcare workers. Monaldi Arch. Chest Dis.-Card. Ser. 2008;70:24–28. doi: 10.4081/monaldi.2008.432.
    1. Shah A., Turkistani A., Luenam K., Yaqub S., Ananias P., Jose A.M., Melo J.P., Mohammed L. Is Shift Work Sleep Disorder a Risk Factor for Metabolic Syndrome and Its Components? A Systematic Review of Cross-Sectional Studies. Metab. Syndr. Relat. Disord. 2022;20:1–10. doi: 10.1089/met.2021.0070.
    1. Khodabakhshi A., Mahmoudabadi M., Vahid F. The role of serum 25 (OH) vitamin D level in the correlation between lipid profile, body mass index (BMI), and blood pressure. Clin. Nutr. ESPEN. 2022;48:421–426. doi: 10.1016/j.clnesp.2022.01.007.
    1. Cheng S., Massaro J.M., Fox C.S., Larson M.G., Keyes M.J., McCabe E.L., Robins S.J., O’Donnell C.J., Hoffmann U., Jacques P.F., et al. Adiposity, cardiometabolic risk, and vitamin D status: The framingham heart study. Diabetes. 2010;59:242–248. doi: 10.2337/db09-1011.
    1. Page M.J., McKenzie J.E., Bossuyt P.M., Boutron I., Hoffmann T.C., Mulrow C.D., Shamseer L., Tetzlaff J.M., Moher D. Updating guidance for reporting systematic reviews: Development of the PRISMA 2020 statement. J. Clin. Epidemiol. 2021;134:103–112. doi: 10.1016/j.jclinepi.2021.02.003.
    1. Murray J., Farrington D.P., Eisner M.P. Drawing conclusions about causes from systematic reviews of risk factors: The Cambridge Quality Checklists. J. Exp. Criminol. 2009;5:1–23. doi: 10.1007/s11292-008-9066-0.
    1. Yang Z.Y., Wang C.C., Chen Y.J., Tsai C.K., Li P.F., Peng T.C., Sun Y.S., Chen W.L. Exploring the relationship between serum Vitamin D and shift work. J. Med. Sci. 2021;41:179–185. doi: 10.4103/jmedsci.jmedsci_223_20.
    1. Kantermann T., Duboutay F., Haubruge D., Hampton S., Darling A.L., Berry J.L., Kerkhofs M., Boudjeltia K.Z., Skene D.J. The direction of shift-work rotation impacts metabolic risk independent of chronotype and social jetlag—An exploratory pilot study. Chronobiol. Int. 2014;31:1139–1145. doi: 10.3109/07420528.2014.957295.
    1. Jeong H., Hong S., Heo Y., Chun H., Kim D., Park J., Kang M.-Y. Vitamin D status and associated occupational factors in Korean wage workers: Data from the 5th Korea national health and nutrition examination survey (KNHANES 2010-2012) Ann. Occup. Environ. Med. 2014;26:28. doi: 10.1186/s40557-014-0028-x.
    1. Kim B.K., Choi Y.J., Chung Y.S. Other than daytime working is associated with lower bone mineral density: The Korea national health and nutrition examination survey 2009. Calcif. Tissue Int. 2013;93:495–501. doi: 10.1007/s00223-013-9779-6.
    1. Park H.Y., Lim Y.H., Park J.B., Rhie J., Lee S.J. Environmental and occupation factors associated with vitamin d deficiency in korean adults: The korea national health and nutrition examination survey (knhanes) 2010–2014. Int. J. Environ. Res. Public Health. 2020;17:9166. doi: 10.3390/ijerph17249166.
    1. Rizza S., Pietroiusti A., Farcomeni A., Mina G.G., Caruso M., Virgilio M., Magrini A., Federici M., Coppeta L. Monthly fluctuations in 25-hydroxy-vitamin D levels in day and rotating night shift hospital workers. J. Endocrinol. Investig. 2020;43:1655–1660. doi: 10.1007/s40618-020-01265-x.
    1. Park H., Suh B., Lee S.J. Shift work and depressive symptoms: The mediating effect of vitamin D and sleep quality. Chronobiol. Int. 2019;36:689–697. doi: 10.1080/07420528.2019.1585367.
    1. Alefishat E., Farha R.A. Determinants of Vitamin D status among Jordanian employees: Focus on the night shift effect. Int. J. Occup. Med. Environ. Health. 2016;29:859–870. doi: 10.13075/ijomeh.1896.00657.
    1. Erden G., Ozdemir S., Ozturk G., Erden I., Kara D., Isik S., Ergil J., Vural C., Arzuhal A. Vitamin D Levels of Anesthesia Personnel, Office Workers and Outdoor Workers in Ankara, Turkey. Clin. Lab. 2016;62:2003–2005. doi: 10.7754/Clin.Lab.2015.151003.
    1. Romano A., Vigna L., Belluigi V., Conti D.M., Barberi C.E., Tomaino L., Consonni D., Riboldi L., Tirelli A.S., Andersen L.L. Shift work and serum 25-OH vitamin D status among factory workers in Northern Italy: Cross-sectional study. Chronobiol. Int. 2015;32:842–847. doi: 10.3109/07420528.2015.1048867.
    1. Munter G., Levi-Vineberg T., Sylvetsky N. Vitamin D deficiency among physicians: A comparison between hospitalists and community-based physicians. Osteoporos. Int. 2015;26:1673–1676. doi: 10.1007/s00198-015-3028-y.
    1. Kwon S.I., Son J.S., Kim Y.O., Chae C.H., Kim J.H., Kim C.W., Park H.O., Lee J.H., Jung J.I. Association between serum vitamin D and depressive symptoms among female workers in the manufacturing industry. Ann. Occup. Environ. Med. 2015;27:28. doi: 10.1186/s40557-015-0083-y.
    1. Chang W.P., Jen H.J. BMI differences between different genders working fixed day shifts and rotating shifts: A literature review and meta-analysis. Chronobiol. Int. 2020;37:1754–1765. doi: 10.1080/07420528.2020.1800027.
    1. Peplonska B., Bukowska A., Sobala W. Association of rotating night shift work with BMI and abdominal obesity among nurses and midwives. PLoS ONE. 2015;10:e0133761. doi: 10.1371/journal.pone.0133761.
    1. Pereira-Santos M., Costa P.R.F., Assis A.M.O., Santos C.A.S.T., Santos D.B. Obesity and vitamin D deficiency: A systematic review and meta-analysis. Obes. Rev. 2015;16:341–349. doi: 10.1111/obr.12239.
    1. Doğan Y., Kara M., Culha M.A., Özçakar L., Kaymak B. The relationship between vitamin D deficiency, body composition, and physical/cognitive functions. Arch. Osteoporos. 2022;17:66. doi: 10.1007/s11657-022-01109-6.
    1. Eyles D.W., Liu P.Y., Josh P., Cui X. Intracellular distribution of the vitamin D receptor in the brain: Comparison with classic target tissues and redistribution with development. Neuroscience. 2014;268:1–9. doi: 10.1016/j.neuroscience.2014.02.042.
    1. Massa J., Stone K.L., Wei E.K., Harrison S.L., Barrett-Connor E., Lane N.E., Paudel M., Redline S., Ancoli-Israel S., Orwoll E., et al. Vitamin D and actigraphic sleep outcomes in older community-dwelling men: The MrOS sleep study. Sleep. 2015;38:251–257. doi: 10.5665/sleep.4408.
    1. Mccarty D.E., Reddy A., Keigley Q., Kim P.Y., Marino A.A. Vitamin D, Race, and Excessive Daytime Sleepiness. J. Clin. Sleep Med. 2012;8:693–697. doi: 10.5664/jcsm.2266.
    1. Gao Q., Kou T., Zhuang B., Ren Y., Dong X., Wang Q. The Association between Vitamin D Deficiency and. Nutrients. 2018;10:1395. doi: 10.3390/nu10101395.
    1. Brown B.W.J., Crowther M.E., Appleton S.L., Melaku Y.A., Adams R.J., Reynolds A.C. Shift work disorder and the prevalence of help seeking behaviors for sleep concerns in Australia: A descriptive study. Chronobiol. Int. 2022;39:714–724. doi: 10.1080/07420528.2022.2032125.
    1. Copertaro A., Bracci M. Working against the biological clock: A review for the occupational physician. Ind. Health. 2019;57:557–569. doi: 10.2486/indhealth.2018-0173.
    1. Bukowska-Damska A., Skowronska-Jozwiak E., Kaluzny P., Lewinski A. Night shift work and osteoporosis-bone turnover markers among female blue-collar workers in Poland. Chronobiol. Int. 2022;39:818–825. doi: 10.1080/07420528.2022.2037626.
    1. Zhang W., Yi J., Liu D., Wang Y., Jamilian P., Gaman M.A., Prabahar K., Fan J. The effect of vitamin D on the lipid profile as a risk factor for coronary heart disease in postmenopausal women: A meta-analysis and systematic review of randomized controlled trials. Exp. Gerontol. 2022;161:111709. doi: 10.1016/j.exger.2022.111709.
    1. Verdoia M., Gioscia R., Nardin M., Rognoni A., De Luca G. Low levels of vitamin D and coronary artery disease: Is it time for therapy? Kardiol. Pol. 2022;80:409–416. doi: 10.33963/KP.a2022.0079.
    1. Jaiswal V., Ishak A., Peng Ang S., Babu Pokhrel N., Shama N., Lnu K., Susan Varghese J., Storozhenko T., Ee Chia J., Naz S., et al. Hypovitaminosis D and cardiovascular outcomes: A systematic review and meta-analysis. IJC Heart Vasc. 2022;40:101019. doi: 10.1016/j.ijcha.2022.101019.
    1. Paschou S.A., Kosmopoulos M., Nikas I.P., Spartalis M., Kassi E., Goulis D.G., Lambrinoudaki I., Siasos G. The impact of obesity on the association between vitamin D deficiency and cardiovascular disease. Nutrients. 2019;11:2458. doi: 10.3390/nu11102458.
    1. Bikle D.D. Vitamin D Assays. Front. Horm. Res. 2018;50:14–30. doi: 10.1159/000486062.
    1. Máčová L., Bičíková M. Vitamin D: Current challenges between the laboratory and clinical practice. Nutrients. 2021;13:1758. doi: 10.3390/nu13061758.
    1. Wise S.A., Camara J.E., Sempos C.T., Lukas P., Le Goff C., Peeters S., Burdette C.Q., Nalin F., Hahm G., Durazo-Arvizu R.A., et al. Vitamin D Standardization Program (VDSP) intralaboratory study for the assessment of 25-hydroxyvitamin D assay variability and bias. J. Steroid Biochem. Mol. Biol. 2021;212:105917. doi: 10.1016/j.jsbmb.2021.105917.
    1. Wise S.A., Phinney K.W., Tai S.S.C., Camara J.E., Myers G.L., Durazo-Arvizu R., Tian L., Hoofnagle A.N., Bachmann L.M., Young I.S., et al. Baseline assessment of 25-hydroxyVitamin D assay performance: A Vitamin D standardization program (VDSP) interlaboratory comparison study. J. AOAC Int. 2017;100:1244–1252. doi: 10.5740/jaoacint.17-0258.
    1. Vasile M., Corinaldesi C., Antinozzi C., Crescioli C. Vitamin D in autoimmune rheumatic diseases: A view inside gender differences. Pharmacol. Res. 2017;117:228–241. doi: 10.1016/j.phrs.2016.12.038.
    1. Hagenau T., Vest R., Gissel T.N., Poulsen C.S., Erlandsen M., Mosekilde L., Vestergaard P. Global vitamin D levels in relation to age, gender, skin pigmentation and latitude: An ecologic meta-regression analysis. Osteoporos. Int. 2009;20:133–140. doi: 10.1007/s00198-008-0626-y.
    1. McCullough M.L., Weinstein S.J., Freedman D.M., Helzlsouer K., Flanders W.D., Koenig K., Kolonel L., Laden F., Le Marchand L., Purdue M., et al. Correlates of circulating 25-hydroxyvitamin D: Cohort Consortium Vitamin D Pooling Project of Rarer Cancers. Am. J. Epidemiol. 2010;172:21–35. doi: 10.1093/aje/kwq113.
    1. Mosekilde L. Vitamin D and the elderly. Clin. Endocrinol. 2005;62:265–281. doi: 10.1111/j.1365-2265.2005.02226.x.
    1. Forrest K.Y.Z., Stuhldreher W.L. Prevalence and correlates of vitamin D deficiency in US adults. Nutr. Res. 2011;31:48–54. doi: 10.1016/j.nutres.2010.12.001.

Source: PubMed

3
S'abonner