Progesterone Actions and Resistance in Gynecological Disorders

James A MacLean 2nd, Kanako Hayashi, James A MacLean 2nd, Kanako Hayashi

Abstract

Estrogen and progesterone and their signaling mechanisms are tightly regulated to maintain a normal menstrual cycle and to support a successful pregnancy. The imbalance of estrogen and progesterone disrupts their complex regulatory mechanisms, leading to estrogen dominance and progesterone resistance. Gynecological diseases are heavily associated with dysregulated steroid hormones and can induce chronic pelvic pain, dysmenorrhea, dyspareunia, heavy bleeding, and infertility, which substantially impact the quality of women's lives. Because the menstrual cycle repeatably occurs during reproductive ages with dynamic changes and remodeling of reproductive-related tissues, these alterations can accumulate and induce chronic and recurrent conditions. This review focuses on faulty progesterone signaling mechanisms and cellular responses to progesterone in endometriosis, adenomyosis, leiomyoma (uterine fibroids), polycystic ovary syndrome (PCOS), and endometrial hyperplasia. We also summarize the association with gene mutations and steroid hormone regulation in disease progression as well as current hormonal therapies and the clinical consequences of progesterone resistance.

Keywords: PCOS; adenomyosis; endometriosis; endometrium; progesterone; progesterone resistance.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Menstrual cycle. Steroid hormone-derived endometrial changes. Created with BioRender.com.

References

    1. Graham J.D., Clarke C.L. Physiological action of progesterone in target tissues. Endocr. Rev. 1997;18:502–519.
    1. Lydon J.P., DeMayo F.J., Funk C.R., Mani S.K., Hughes A.R., Montgomery C.A., Jr., Shyamala G., Conneely O.M., O’Malley B.W. Mice lacking progesterone receptor exhibit pleiotropic reproductive abnormalities. Genes Dev. 1995;9:2266–2278. doi: 10.1101/gad.9.18.2266.
    1. Patel B., Elguero S., Thakore S., Dahoud W., Bedaiwy M., Mesiano S. Role of nuclear progesterone receptor isoforms in uterine pathophysiology. Hum. Reprod. Update. 2015;21:155–173. doi: 10.1093/humupd/dmu056.
    1. Kastner P., Krust A., Turcotte B., Stropp U., Tora L., Gronemeyer H., Chambon P. Two distinct estrogen-regulated promoters generate transcripts encoding the two functionally different human progesterone receptor forms A and B. EMBO J. 1990;9:1603–1614. doi: 10.1002/j.1460-2075.1990.tb08280.x.
    1. Mulac-Jericevic B., Mullinax R.A., DeMayo F.J., Lydon J.P., Conneely O.M. Subgroup of reproductive functions of progesterone mediated by progesterone receptor-B isoform. Science. 2000;289:1751–1754. doi: 10.1126/science.289.5485.1751.
    1. Mulac-Jericevic B., Lydon J.P., DeMayo F.J., Conneely O.M. Defective mammary gland morphogenesis in mice lacking the progesterone receptor B isoform. Proc. Natl. Acad. Sci. USA. 2003;100:9744–9749. doi: 10.1073/pnas.1732707100.
    1. DeMayo F.J., Zhao B., Takamoto N., Tsai S.Y. Mechanisms of action of estrogen and progesterone. Ann. N. Y. Acad. Sci. 2002;955:48–59. doi: 10.1111/j.1749-6632.2002.tb02765.x.
    1. Kim J.J., Kurita T., Bulun S.E. Progesterone action in endometrial cancer, endometriosis, uterine fibroids, and breast cancer. Endocr. Rev. 2013;34:130–162. doi: 10.1210/er.2012-1043.
    1. Marquardt R.M., Kim T.H., Shin J.H., Jeong J.W. Progesterone and Estrogen Signaling in the Endometrium: What Goes Wrong in Endometriosis? Int. J. Mol. Sci. 2019;20:3822. doi: 10.3390/ijms20153822.
    1. Gellersen B., Brosens I.A., Brosens J.J. Decidualization of the human endometrium: Mechanisms, functions, and clinical perspectives. Semin. Reprod. Med. 2007;25:445–453. doi: 10.1055/s-2007-991042.
    1. Gellersen B., Brosens J.J. Cyclic decidualization of the human endometrium in reproductive health and failure. Endocr. Rev. 2014;35:851–905. doi: 10.1210/er.2014-1045.
    1. Al-Sabbagh M., Lam E.W., Brosens J.J. Mechanisms of endometrial progesterone resistance. Mol. Cell Endocrinol. 2012;358:208–215. doi: 10.1016/j.mce.2011.10.035.
    1. McKinnon B., Mueller M., Montgomery G. Progesterone Resistance in Endometriosis: An Acquired Property? Trends Endocrinol. Metab. 2018;29:535–548. doi: 10.1016/j.tem.2018.05.006.
    1. Patel B.G., Rudnicki M., Yu J., Shu Y., Taylor R.N. Progesterone resistance in endometriosis: Origins, consequences and interventions. Acta Obstet. Gynecol. Scand. 2017;96:623–632. doi: 10.1111/aogs.13156.
    1. Li X., Feng Y., Lin J.F., Billig H., Shao R. Endometrial progesterone resistance and PCOS. J. Biomed. Sci. 2014;21:2. doi: 10.1186/1423-0127-21-2.
    1. Burney R.O., Talbi S., Hamilton A.E., Vo K.C., Nyegaard M., Nezhat C.R., Lessey B.A., Giudice L.C. Gene expression analysis of endometrium reveals progesterone resistance and candidate susceptibility genes in women with endometriosis. Endocrinology. 2007;148:3814–3826. doi: 10.1210/en.2006-1692.
    1. Kao L.C., Germeyer A., Tulac S., Lobo S., Yang J.P., Taylor R.N., Osteen K., Lessey B.A., Giudice L.C. Expression profiling of endometrium from women with endometriosis reveals candidate genes for disease-based implantation failure and infertility. Endocrinology. 2003;144:2870–2881. doi: 10.1210/en.2003-0043.
    1. Houshdaran S., Nezhat C.R., Vo K.C., Zelenko Z., Irwin J.C., Giudice L.C. Aberrant Endometrial DNA Methylome and Associated Gene Expression in Women with Endometriosis. Biol. Reprod. 2016;95:93. doi: 10.1095/biolreprod.116.140434.
    1. Houshdaran S., Oke A.B., Fung J.C., Vo K.C., Nezhat C., Giudice L.C. Steroid hormones regulate genome-wide epigenetic programming and gene transcription in human endometrial cells with marked aberrancies in endometriosis. PLoS Genet. 2020;16:e1008601. doi: 10.1371/journal.pgen.1008601.
    1. Moustafa S., Young S.L. Diagnostic and therapeutic options in recurrent implantation failure. F1000Research. 2020;9 doi: 10.12688/f1000research.22403.1. F1000 Faculty Rev-208.
    1. Savaris R.F., Groll J.M., Young S.L., DeMayo F.J., Jeong J.W., Hamilton A.E., Giudice L.C., Lessey B.A. Progesterone resistance in PCOS endometrium: A microarray analysis in clomiphene citrate-treated and artificial menstrual cycles. J. Clin. Endocrinol. Metab. 2011;96:1737–1746. doi: 10.1210/jc.2010-2600.
    1. Piltonen T.T., Chen J., Erikson D.W., Spitzer T.L., Barragan F., Rabban J.T., Huddleston H., Irwin J.C., Giudice L.C. Mesenchymal stem/progenitors and other endometrial cell types from women with polycystic ovary syndrome (PCOS) display inflammatory and oncogenic potential. J. Clin. Endocrinol. Metab. 2013;98:3765–3775. doi: 10.1210/jc.2013-1923.
    1. Tamaresis J.S., Irwin J.C., Goldfien G.A., Rabban J.T., Burney R.O., Nezhat C., DePaolo L.V., Giudice L.C. Molecular classification of endometriosis and disease stage using high-dimensional genomic data. Endocrinology. 2014;155:4986–4999. doi: 10.1210/en.2014-1490.
    1. Guo S.W. Epigenetics of endometriosis. Mol. Hum. Reprod. 2009;15:587–607. doi: 10.1093/molehr/gap064.
    1. Meyer J.L., Zimbardi D., Podgaec S., Amorim R.L., Abrao M.S., Rainho C.A. DNA methylation patterns of steroid receptor genes ESR1, ESR2 and PGR in deep endometriosis compromising the rectum. Int. J. Mol. Med. 2014;33:897–904. doi: 10.3892/ijmm.2014.1637.
    1. Rocha-Junior C.V., Da Broi M.G., Miranda-Furtado C.L., Navarro P.A., Ferriani R.A., Meola J. Progesterone Receptor B (PGR-B) Is Partially Methylated in Eutopic Endometrium From Infertile Women With Endometriosis. Reprod. Sci. 2019;26:1568–1574. doi: 10.1177/1933719119828078.
    1. Wu Y., Strawn E., Basir Z., Halverson G., Guo S.W. Promoter hypermethylation of progesterone receptor isoform B (PR-B) in endometriosis. Epigenetics. 2006;1:106–111. doi: 10.4161/epi.1.2.2766.
    1. Xue Q., Lin Z., Yin P., Milad M.P., Cheng Y.H., Confino E., Reierstad S., Bulun S.E. Transcriptional activation of steroidogenic factor-1 by hypomethylation of the 5′ CpG island in endometriosis. J. Clin. Endocrinol. Metab. 2007;92:3261–3267. doi: 10.1210/jc.2007-0494.
    1. Wu Y., Halverson G., Basir Z., Strawn E., Yan P., Guo S.W. Aberrant methylation at HOXA10 may be responsible for its aberrant expression in the endometrium of patients with endometriosis. Am. J. Obstet. Gynecol. 2005;193:371–380. doi: 10.1016/j.ajog.2005.01.034.
    1. Anglesio M.S., Papadopoulos N., Ayhan A., Nazeran T.M., Noe M., Horlings H.M., Lum A., Jones S., Senz J., Seckin T., et al. Cancer-Associated Mutations in Endometriosis without Cancer. N. Engl. J. Med. 2017;376:1835–1848. doi: 10.1056/NEJMoa1614814.
    1. Inoue S., Hirota Y., Ueno T., Fukui Y., Yoshida E., Hayashi T., Kojima S., Takeyama R., Hashimoto T., Kiyono T., et al. Uterine adenomyosis is an oligoclonal disorder associated with KRAS mutations. Nat. Commun. 2019;10:5785. doi: 10.1038/s41467-019-13708-y.
    1. Li X., Zhang Y., Zhao L., Wang L., Wu Z., Mei Q., Nie J., Li X., Li Y., Fu X., et al. Whole-exome sequencing of endometriosis identifies frequent alterations in genes involved in cell adhesion and chromatin-remodeling complexes. Hum. Mol. Genet. 2014;23:6008–6021. doi: 10.1093/hmg/ddu330.
    1. Moore L., Leongamornlert D., Coorens T.H.H., Sanders M.A., Ellis P., Dentro S.C., Dawson K.J., Butler T., Rahbari R., Mitchell T.J., et al. The mutational landscape of normal human endometrial epithelium. Nature. 2020;580:640–646. doi: 10.1038/s41586-020-2214-z.
    1. Suda K., Nakaoka H., Yoshihara K., Ishiguro T., Tamura R., Mori Y., Yamawaki K., Adachi S., Takahashi T., Kase H., et al. Clonal Expansion and Diversification of Cancer-Associated Mutations in Endometriosis and Normal Endometrium. Cell Rep. 2018;24:1777–1789. doi: 10.1016/j.celrep.2018.07.037.
    1. Bulun S.E., Yilmaz B.D., Sison C., Miyazaki K., Bernardi L., Liu S., Kohlmeier A., Yin P., Milad M., Wei J. Endometriosis. Endocr. Rev. 2019;40:1048–1079. doi: 10.1210/er.2018-00242.
    1. Taylor H.S., Kotlyar A.M., Flores V.A. Endometriosis is a chronic systemic disease: Clinical challenges and novel innovations. Lancet. 2021;397:839–852. doi: 10.1016/S0140-6736(21)00389-5.
    1. Zondervan K.T., Becker C.M., Missmer S.A. Endometriosis. N. Engl. J. Med. 2020;382:1244–1256. doi: 10.1056/NEJMra1810764.
    1. Zondervan K.T., Becker C.M., Koga K., Missmer S.A., Taylor R.N., Vigano P. Endometriosis. Nat. Rev. Dis. Primers. 2018;4:9. doi: 10.1038/s41572-018-0008-5.
    1. Sampson J.A. Metastatic or Embolic Endometriosis, due to the Menstrual Dissemination of Endometrial Tissue into the Venous Circulation. Am. J. Pathol. 1927;3:93–110.43.
    1. Halme J., Hammond M.G., Hulka J.F., Raj S.G., Talbert L.M. Retrograde menstruation in healthy women and in patients with endometriosis. Obstet. Gynecol. 1984;64:151–154.
    1. Shafrir A.L., Farland L.V., Shah D.K., Harris H.R., Kvaskoff M., Zondervan K., Missmer S.A. Risk for and consequences of endometriosis: A critical epidemiologic review. Best Pract. Res. Clin. Obstet. Gynaecol. 2018;51:1–15. doi: 10.1016/j.bpobgyn.2018.06.001.
    1. Nnoaham K.E., Hummelshoj L., Webster P., d’Hooghe T., de Cicco Nardone F., de Cicco Nardone C., Jenkinson C., Kennedy S.H., Zondervan K.T., World Endometriosis Research Foundation Global Study of Women’s Health Consortium Impact of endometriosis on quality of life and work productivity: A multicenter study across ten countries. Fertil. Steril. 2011;96:366–373.e8. doi: 10.1016/j.fertnstert.2011.05.090.
    1. Simoens S., Dunselman G., Dirksen C., Hummelshoj L., Bokor A., Brandes I., Brodszky V., Canis M., Colombo G.L., DeLeire T., et al. The burden of endometriosis: Costs and quality of life of women with endometriosis and treated in referral centres. Hum. Reprod. 2012;27:1292–1299. doi: 10.1093/humrep/des073.
    1. Vercellini P., Vigano P., Somigliana E., Fedele L. Endometriosis: Pathogenesis and treatment. Nat. Rev. Endocrinol. 2014;10:261–275. doi: 10.1038/nrendo.2013.255.
    1. Dunselman G.A., Vermeulen N., Becker C., Calhaz-Jorge C., D’Hooghe T., De Bie B., Heikinheimo O., Horne A.W., Kiesel L., Nap A., et al. ESHRE guideline: Management of women with endometriosis. Hum. Reprod. 2014;29:400–412. doi: 10.1093/humrep/det457.
    1. Vercellini P., Bracco B., Mosconi P., Roberto A., Alberico D., Dhouha D., Somigliana E. Norethindrone acetate or dienogest for the treatment of symptomatic endometriosis: A before and after study. Fertil. Steril. 2016;105:734–743.e3. doi: 10.1016/j.fertnstert.2015.11.016.
    1. Agarwal S.K., Chapron C., Giudice L.C., Laufer M.R., Leyland N., Missmer S.A., Singh S.S., Taylor H.S. Clinical diagnosis of endometriosis: A call to action. Am. J. Obstet. Gynecol. 2019;220:354.e1–354.e12. doi: 10.1016/j.ajog.2018.12.039.
    1. Abou-Setta A.M., Houston B., Al-Inany H.G., Farquhar C. Levonorgestrel-releasing intrauterine device (LNG-IUD) for symptomatic endometriosis following surgery. Cochrane Database Syst. Rev. 2013;1:CD005072. doi: 10.1002/14651858.CD005072.pub3.
    1. Barra F., Grandi G., Tantari M., Scala C., Facchinetti F., Ferrero S. A comprehensive review of hormonal and biological therapies for endometriosis: Latest developments. Expert Opin. Biol. Ther. 2019;19:343–360. doi: 10.1080/14712598.2019.1581761.
    1. Giudice L.C. Clinical practice. Endometriosis. N. Engl. J. Med. 2010;362:2389–2398. doi: 10.1056/NEJMcp1000274.
    1. As-Sanie S., Black R., Giudice L.C., Gray Valbrun T., Gupta J., Jones B., Laufer M.R., Milspaw A.T., Missmer S.A., Norman A., et al. Assessing research gaps and unmet needs in endometriosis. Am. J. Obstet. Gynecol. 2019;221:86–94. doi: 10.1016/j.ajog.2019.02.033.
    1. DeCherney A.H. Endometriosis: Recurrence and retreatment. Clin. Ther. 1992;14:766–772.
    1. Evers J.L., Dunselman G.A., Land J.A., Bouckaert P.X. Is there a solution for recurrent endometriosis? Br. J. Clin. Pract. Suppl. 1991;72:45–50.
    1. Practice Committee of American Society for Reproductive Medicine Treatment of pelvic pain associated with endometriosis. Fertil. Steril. 2008;90:S260–S269. doi: 10.1016/j.fertnstert.2008.08.057.
    1. Waller K.G., Shaw R.W. Gonadotropin-releasing hormone analogues for the treatment of endometriosis: Long-term follow-up. Fertil. Steril. 1993;59:511–515. doi: 10.1016/S0015-0282(16)55791-4.
    1. Reis F.M., Coutinho L.M., Vannuccini S., Batteux F., Chapron C., Petraglia F. Progesterone receptor ligands for the treatment of endometriosis: The mechanisms behind therapeutic success and failure. Hum. Reprod. Update. 2020;26:565–585. doi: 10.1093/humupd/dmaa009.
    1. Attia G.R., Zeitoun K., Edwards D., Johns A., Carr B.R., Bulun S.E. Progesterone receptor isoform A but not B is expressed in endometriosis. J. Clin. Endocrinol. Metab. 2000;85:2897–2902. doi: 10.1210/jc.85.8.2897.
    1. Bedaiwy M.A., Dahoud W., Skomorovska-Prokvolit Y., Yi L., Liu J.H., Falcone T., Hurd W.W., Mesiano S. Abundance and Localization of Progesterone Receptor Isoforms in Endometrium in Women with and without Endometriosis and in Peritoneal and Ovarian Endometriotic Implants. Reprod. Sci. 2015;22:1153–1161. doi: 10.1177/1933719115585145.
    1. Wu Y., Starzinski-Powitz A., Guo S.W. Prolonged stimulation with tumor necrosis factor-alpha induced partial methylation at PR-B promoter in immortalized epithelial-like endometriotic cells. Fertil. Steril. 2008;90:234–237. doi: 10.1016/j.fertnstert.2007.06.008.
    1. Gellersen B., Fernandes M.S., Brosens J.J. Non-genomic progesterone actions in female reproduction. Hum. Reprod. Update. 2009;15:119–138. doi: 10.1093/humupd/dmn044.
    1. Gellersen B., Brosens J. Cyclic AMP and progesterone receptor cross-talk in human endometrium: A decidualizing affair. J. Endocrinol. 2003;178:357–372. doi: 10.1677/joe.0.1780357.
    1. Jones M.C., Fusi L., Higham J.H., Abdel-Hafiz H., Horwitz K.B., Lam E.W., Brosens J.J. Regulation of the SUMO pathway sensitizes differentiating human endometrial stromal cells to progesterone. Proc. Natl. Acad. Sci. USA. 2006;103:16272–16277. doi: 10.1073/pnas.0603002103.
    1. Prentice A., Randall B.J., Weddell A., McGill A., Henry L., Horne C.H., Thomas E.J. Ovarian steroid receptor expression in endometriosis and in two potential parent epithelia: Endometrium and peritoneal mesothelium. Hum. Reprod. 1992;7:1318–1325. doi: 10.1093/oxfordjournals.humrep.a137848.
    1. Broi M.G.D., Rocha C.V.J., Meola J., Martins W.P., Carvalho F.M., Ferriani R.A., Navarro P.A. Expression of PGR, HBEGF, ITGAV, ITGB3 and SPP1 genes in eutopic endometrium of infertile women with endometriosis during the implantation window: A pilot study. JBRA Assist. Reprod. 2017;21:196–202. doi: 10.5935/1518-0557.20170038.
    1. Zanatta A., Pereira R.M., Rocha A.M., Cogliati B., Baracat E.C., Taylor H.S., Motta E.L., Serafini P.C. The relationship among HOXA10, estrogen receptor alpha, progesterone receptor, and progesterone receptor B proteins in rectosigmoid endometriosis: A tissue microarray study. Reprod. Sci. 2015;22:31–37. doi: 10.1177/1933719114549846.
    1. Santamaria X., Mas A., Cervello I., Taylor H., Simon C. Uterine stem cells: From basic research to advanced cell therapies. Hum. Reprod. Update. 2018;24:673–693. doi: 10.1093/humupd/dmy028.
    1. Symons L.K., Miller J.E., Kay V.R., Marks R.M., Liblik K., Koti M., Tayade C. The Immunopathophysiology of Endometriosis. Trends Mol. Med. 2018;24:748–762. doi: 10.1016/j.molmed.2018.07.004.
    1. Han S.J., Jung S.Y., Wu S.P., Hawkins S.M., Park M.J., Kyo S., Qin J., Lydon J.P., Tsai S.Y., Tsai M.J., et al. Estrogen Receptor beta Modulates Apoptosis Complexes and the Inflammasome to Drive the Pathogenesis of Endometriosis. Cell. 2015;163:960–974. doi: 10.1016/j.cell.2015.10.034.
    1. Lessey B.A., Kim J.J. Endometrial receptivity in the eutopic endometrium of women with endometriosis: It is affected, and let me show you why. Fertil. Steril. 2017;108:19–27. doi: 10.1016/j.fertnstert.2017.05.031.
    1. Aghajanova L., Horcajadas J.A., Weeks J.L., Esteban F.J., Nezhat C.N., Conti M., Giudice L.C. The protein kinase A pathway-regulated transcriptome of endometrial stromal fibroblasts reveals compromised differentiation and persistent proliferative potential in endometriosis. Endocrinology. 2010;151:1341–1355. doi: 10.1210/en.2009-0923.
    1. Taylor H.S., Bagot C., Kardana A., Olive D., Arici A. HOX gene expression is altered in the endometrium of women with endometriosis. Hum. Reprod. 1999;14:1328–1331. doi: 10.1093/humrep/14.5.1328.
    1. Garcia-Alonso L., Handfield L.F., Roberts K., Nikolakopoulou K., Fernando R.C., Gardner L., Woodhams B., Arutyunyan A., Polanski K., Hoo R., et al. Mapping the temporal and spatial dynamics of the human endometrium in vivo and in vitro. Nat. Genet. 2021;53:1698–1711. doi: 10.1038/s41588-021-00972-2.
    1. Tan Y., Flynn W., Sivajothi S., Luo S., Bozal S., Luciano A., Robson P., Luciano D., Courtois E. Single cell analysis of endometriosis reveals a coordinated transcriptional program driving immunotolerance and angiogenesis across eutopic and ectopic tissues. bioRxiv. 2021 doi: 10.1101/2021.07.28.453839.
    1. Fonseca M., Wright K., Lin X., Abbasi F., Haro M., Sun J., Hernandez L., Orr N., Hong J., Choi-Kuaea Y., et al. A cellular and molecular portrait of endometriosis subtypes. bioRxiv. 2021 doi: 10.1101/2021.05.20.445037.
    1. Rowan B.G., O’Malley B.W. Progesterone receptor coactivators. Steroids. 2000;65:545–549. doi: 10.1016/S0039-128X(00)00112-4.
    1. Han S.J., DeMayo F.J., O’Malley B.W. Progestins and the Mammary Gland. Springer; Berlin/Heidelberg, Germany: 2007. Dynamic regulation of progesterone receptor activity in female reproductive tissues; pp. 25–43. Ernst Schering Foundation Symposium Proceedings.
    1. Xu J., Qiu Y., DeMayo F.J., Tsai S.Y., Tsai M.J., O’Malley B.W. Partial hormone resistance in mice with disruption of the steroid receptor coactivator-1 (SRC-1) gene. Science. 1998;279:1922–1925. doi: 10.1126/science.279.5358.1922.
    1. Mukherjee A., Soyal S.M., Fernandez-Valdivia R., Gehin M., Chambon P., Demayo F.J., Lydon J.P., O’Malley B.W. Steroid receptor coactivator 2 is critical for progesterone-dependent uterine function and mammary morphogenesis in the mouse. Mol. Cell Biol. 2006;26:6571–6583. doi: 10.1128/MCB.00654-06.
    1. Xu J., Liao L., Ning G., Yoshida-Komiya H., Deng C., O’Malley B.W. The steroid receptor coactivator SRC-3 (p/CIP/RAC3/AIB1/ACTR/TRAM-1) is required for normal growth, puberty, female reproductive function, and mammary gland development. Proc. Natl. Acad. Sci. USA. 2000;97:6379–6384. doi: 10.1073/pnas.120166297.
    1. Han S.J., DeMayo F.J., Xu J., Tsai S.Y., Tsai M.J., O’Malley B.W. Steroid receptor coactivator (SRC)-1 and SRC-3 differentially modulate tissue-specific activation functions of the progesterone receptor. Mol. Endocrinol. 2006;20:45–55. doi: 10.1210/me.2005-0310.
    1. Jeong J.W., Lee K.Y., Han S.J., Aronow B.J., Lydon J.P., O’Malley B.W., DeMayo F.J. The p160 steroid receptor coactivator 2, SRC-2, regulates murine endometrial function and regulates progesterone-independent and -dependent gene expression. Endocrinology. 2007;148:4238–4250. doi: 10.1210/en.2007-0122.
    1. Han S.J., Jeong J., Demayo F.J., Xu J., Tsai S.Y., Tsai M.J., O’Malley B.W. Dynamic cell type specificity of SRC-1 coactivator in modulating uterine progesterone receptor function in mice. Mol. Cell. Biol. 2005;25:8150–8165. doi: 10.1128/MCB.25.18.8150-8165.2005.
    1. Han S.J., Hawkins S.M., Begum K., Jung S.Y., Kovanci E., Qin J., Lydon J.P., DeMayo F.J., O’Malley B.W. A new isoform of steroid receptor coactivator-1 is crucial for pathogenic progression of endometriosis. Nat. Med. 2012;18:1102–1111. doi: 10.1038/nm.2826.
    1. Takamoto N., Zhao B., Tsai S.Y., DeMayo F.J. Identification of Indian hedgehog as a progesterone-responsive gene in the murine uterus. Mol. Endocrinol. 2002;16:2338–2348. doi: 10.1210/me.2001-0154.
    1. Matsumoto H., Zhao X., Das S.K., Hogan B.L., Dey S.K. Indian hedgehog as a progesterone-responsive factor mediating epithelial-mesenchymal interactions in the mouse uterus. Dev. Biol. 2002;245:280–290. doi: 10.1006/dbio.2002.0645.
    1. Lee K., Jeong J., Kwak I., Yu C.T., Lanske B., Soegiarto D.W., Toftgard R., Tsai M.J., Tsai S., Lydon J.P., et al. Indian hedgehog is a major mediator of progesterone signaling in the mouse uterus. Nat. Genet. 2006;38:1204–1209. doi: 10.1038/ng1874.
    1. Kurihara I., Lee D.K., Petit F.G., Jeong J., Lee K., Lydon J.P., DeMayo F.J., Tsai M.J., Tsai S.Y. COUP-TFII mediates progesterone regulation of uterine implantation by controlling ER activity. PLoS Genet. 2007;3:e102. doi: 10.1371/journal.pgen.0030102.
    1. Smith K., Alnifaidy R., Wei Q., Nieman L.K. Endometrial Indian hedgehog expression is decreased in women with endometriosis. Fertil. Steril. 2011;95:2738–2741.e3. doi: 10.1016/j.fertnstert.2011.05.018.
    1. Lin S.C., Li Y.H., Wu M.H., Chang Y.F., Lee D.K., Tsai S.Y., Tsai M.J., Tsai S.J. Suppression of COUP-TFII by proinflammatory cytokines contributes to the pathogenesis of endometriosis. J. Clin. Endocrinol. Metab. 2014;99:E427–E437. doi: 10.1210/jc.2013-3717.
    1. Liang Y., Li Y., Liu K., Chen P., Wang D. Expression and Significance of WNT4 in Ectopic and Eutopic Endometrium of Human Endometriosis. Reprod. Sci. 2016;23:379–385. doi: 10.1177/1933719115602763.
    1. Jeong J.W., Lee H.S., Lee K.Y., White L.D., Broaddus R.R., Zhang Y.W., Vande Woude G.F., Giudice L.C., Young S.L., Lessey B.A., et al. Mig-6 modulates uterine steroid hormone responsiveness and exhibits altered expression in endometrial disease. Proc. Natl. Acad. Sci. USA. 2009;106:8677–8682. doi: 10.1073/pnas.0903632106.
    1. Yoo J.Y., Kim T.H., Lee J.H., Dunwoodie S.L., Ku B.J., Jeong J.W. Mig-6 regulates endometrial genes involved in cell cycle and progesterone signaling. Biochem. Biophys. Res. Commun. 2015;462:409–414. doi: 10.1016/j.bbrc.2015.04.146.
    1. Su R.W., Strug M.R., Joshi N.R., Jeong J.W., Miele L., Lessey B.A., Young S.L., Fazleabas A.T. Decreased Notch pathway signaling in the endometrium of women with endometriosis impairs decidualization. J. Clin. Endocrinol. Metab. 2015;100:E433–E442. doi: 10.1210/jc.2014-3720.
    1. Yoo J.Y., Shin H., Kim T.H., Choi W.S., Ferguson S.D., Fazleabas A.T., Young S.L., Lessey B.A., Ha U.H., Jeong J.W. CRISPLD2 is a target of progesterone receptor and its expression is decreased in women with endometriosis. PLoS ONE. 2014;9:e100481. doi: 10.1371/journal.pone.0100481.
    1. Franco H.L., Dai D., Lee K.Y., Rubel C.A., Roop D., Boerboom D., Jeong J.W., Lydon J.P., Bagchi I.C., Bagchi M.K., et al. WNT4 is a key regulator of normal postnatal uterine development and progesterone signaling during embryo implantation and decidualization in the mouse. FASEB J. 2011;25:1176–1187. doi: 10.1096/fj.10-175349.
    1. Benson G.V., Lim H., Paria B.C., Satokata I., Dey S.K., Maas R.L. Mechanisms of reduced fertility in Hoxa-10 mutant mice: Uterine homeosis and loss of maternal Hoxa-10 expression. Development. 1996;122:2687–2696. doi: 10.1242/dev.122.9.2687.
    1. Lim H., Ma L., Ma W.G., Maas R.L., Dey S.K. Hoxa-10 regulates uterine stromal cell responsiveness to progesterone during implantation and decidualization in the mouse. Mol. Endocrinol. 1999;13:1005–1017. doi: 10.1210/mend.13.6.0284.
    1. Brosens J.J., Gellersen B. Death or survival—Progesterone-dependent cell fate decisions in the human endometrial stroma. J. Mol. Endocrinol. 2006;36:389–398. doi: 10.1677/jme.1.02060.
    1. Vasquez Y.M., Wang X., Wetendorf M., Franco H.L., Mo Q., Wang T., Lanz R.B., Young S.L., Lessey B.A., Spencer T.E., et al. FOXO1 regulates uterine epithelial integrity and progesterone receptor expression critical for embryo implantation. PLoS Genet. 2018;14:e1007787. doi: 10.1371/journal.pgen.1007787.
    1. Afshar Y., Jeong J.W., Roqueiro D., DeMayo F., Lydon J., Radtke F., Radnor R., Miele L., Fazleabas A. Notch1 mediates uterine stromal differentiation and is critical for complete decidualization in the mouse. FASEB J. 2012;26:282–294. doi: 10.1096/fj.11-184663.
    1. Afshar Y., Miele L., Fazleabas A.T. Notch1 is regulated by chorionic gonadotropin and progesterone in endometrial stromal cells and modulates decidualization in primates. Endocrinology. 2012;153:2884–2896. doi: 10.1210/en.2011-2122.
    1. Brown D.M., Lee H.C., Liu S., Quick C.M., Fernandes L.M., Simmen F.A., Tsai S.J., Simmen R.C.M. Notch-1 Signaling Activation and Progesterone Receptor Expression in Ectopic Lesions of Women With Endometriosis. J. Endocr. Soc. 2018;2:765–778. doi: 10.1210/js.2018-00007.
    1. Tranguch S., Cheung-Flynn J., Daikoku T., Prapapanich V., Cox M.B., Xie H., Wang H., Das S.K., Smith D.F., Dey S.K. Cochaperone immunophilin FKBP52 is critical to uterine receptivity for embryo implantation. Proc. Natl. Acad. Sci. USA. 2005;102:14326–14331. doi: 10.1073/pnas.0505775102.
    1. Tranguch S., Wang H., Daikoku T., Xie H., Smith D.F., Dey S.K. FKBP52 deficiency-conferred uterine progesterone resistance is genetic background and pregnancy stage specific. J. Clin. Investig. 2007;117:1824–1834. doi: 10.1172/JCI31622.
    1. Hirota Y., Tranguch S., Daikoku T., Hasegawa A., Osuga Y., Taketani Y., Dey S.K. Deficiency of immunophilin FKBP52 promotes endometriosis. Am. J. Pathol. 2008;173:1747–1757. doi: 10.2353/ajpath.2008.080527.
    1. Yang H., Zhou Y., Edelshain B., Schatz F., Lockwood C.J., Taylor H.S. FKBP4 is regulated by HOXA10 during decidualization and in endometriosis. Reproduction. 2012;143:531–538. doi: 10.1530/REP-11-0438.
    1. Joshi N.R., Miyadahira E.H., Afshar Y., Jeong J.W., Young S.L., Lessey B.A., Serafini P.C., Fazleabas A.T. Progesterone Resistance in Endometriosis Is Modulated by the Altered Expression of MicroRNA-29c and FKBP4. J. Clin. Endocrinol. Metab. 2017;102:141–149. doi: 10.1210/jc.2016-2076.
    1. Jackson K.S., Brudney A., Hastings J.M., Mavrogianis P.A., Kim J.J., Fazleabas A.T. The altered distribution of the steroid hormone receptors and the chaperone immunophilin FKBP52 in a baboon model of endometriosis is associated with progesterone resistance during the window of uterine receptivity. Reprod. Sci. 2007;14:137–150. doi: 10.1177/1933719106298409.
    1. Gonzalez-Ramos R., Defrere S., Devoto L. Nuclear factor-kappaB: A main regulator of inflammation and cell survival in endometriosis pathophysiology. Fertil. Steril. 2012;98:520–528. doi: 10.1016/j.fertnstert.2012.06.021.
    1. Gonzalez-Ramos R., Rocco J., Rojas C., Sovino H., Poch A., Kohen P., Alvarado-Diaz C., Devoto L. Physiologic activation of nuclear factor kappa-B in the endometrium during the menstrual cycle is altered in endometriosis patients. Fertil. Steril. 2012;97:645–651. doi: 10.1016/j.fertnstert.2011.12.006.
    1. Kim B.G., Yoo J.Y., Kim T.H., Shin J.H., Langenheim J.F., Ferguson S.D., Fazleabas A.T., Young S.L., Lessey B.A., Jeong J.W. Aberrant activation of signal transducer and activator of transcription-3 (STAT3) signaling in endometriosis. Hum. Reprod. 2015;30:1069–1078. doi: 10.1093/humrep/dev050.
    1. Sekulovski N., Whorton A.E., Tanaka T., Hirota Y., Shi M., MacLean J.A., de Mola J.R.L., Groesch K., Diaz-Sylvester P., Wilson T., et al. Niclosamide suppresses macrophage-induced inflammation in endometriosisdagger. Biol. Reprod. 2020;102:1011–1019. doi: 10.1093/biolre/ioaa010.
    1. Sekulovski N., Whorton A.E., Shi M., MacLean J.A., II, Hayashi K. Endometriotic inflammatory microenvironment induced by macrophages can be targeted by niclosamidedagger. Biol. Reprod. 2019;100:398–408. doi: 10.1093/biolre/ioy222.
    1. Lee J.H., Kim T.H., Oh S.J., Yoo J.Y., Akira S., Ku B.J., Lydon J.P., Jeong J.W. Signal transducer and activator of transcription-3 (Stat3) plays a critical role in implantation via progesterone receptor in uterus. FASEB J. 2013;27:2553–2563. doi: 10.1096/fj.12-225664.
    1. Shi M., Sekulovski N., Whorton A.E., MacLean J.A., 2nd, Greaves E., Hayashi K. Efficacy of niclosamide on the intra-abdominal inflammatory environment in endometriosis. FASEB J. 2021;35:e21584. doi: 10.1096/fj.202002541RRR.
    1. Yoo J.Y., Jeong J.W., Fazleabas A.T., Tayade C., Young S.L., Lessey B.A. Protein Inhibitor of Activated STAT3 (PIAS3) Is Down-Regulated in Eutopic Endometrium of Women with Endometriosis. Biol. Reprod. 2016;95:11. doi: 10.1095/biolreprod.115.137158.
    1. Yoo J.Y., Kim T.H., Fazleabas A.T., Palomino W.A., Ahn S.H., Tayade C., Schammel D.P., Young S.L., Jeong J.W., Lessey B.A. KRAS Activation and over-expression of SIRT1/BCL6 Contributes to the Pathogenesis of Endometriosis and Progesterone Resistance. Sci. Rep. 2017;7:6765. doi: 10.1038/s41598-017-04577-w.
    1. Arguni E., Arima M., Tsuruoka N., Sakamoto A., Hatano M., Tokuhisa T. JunD/AP-1 and STAT3 are the major enhancer molecules for high Bcl6 expression in germinal center B cells. Int. Immunol. 2006;18:1079–1089. doi: 10.1093/intimm/dxl041.
    1. Evans-Hoeker E., Lessey B.A., Jeong J.W., Savaris R.F., Palomino W.A., Yuan L., Schammel D.P., Young S.L. Endometrial BCL6 Overexpression in Eutopic Endometrium of Women With Endometriosis. Reprod. Sci. 2016;23:1234–1241. doi: 10.1177/1933719116649711.
    1. Di Cristofano A., Ellenson L.H. Endometrial carcinoma. Annu. Rev. Pathol. 2007;2:57–85. doi: 10.1146/annurev.pathol.2.010506.091905.
    1. Rubel C.A., Lanz R.B., Kommagani R., Franco H.L., Lydon J.P., DeMayo F.J. Research resource: Genome-wide profiling of progesterone receptor binding in the mouse uterus. Mol. Endocrinol. 2012;26:1428–1442. doi: 10.1210/me.2011-1355.
    1. Guimaraes-Young A., Neff T., Dupuy A.J., Goodheart M.J. Conditional deletion of Sox17 reveals complex effects on uterine adenogenesis and function. Dev. Biol. 2016;414:219–227. doi: 10.1016/j.ydbio.2016.04.010.
    1. Hirate Y., Suzuki H., Kawasumi M., Takase H.M., Igarashi H., Naquet P., Kanai Y., Kanai-Azuma M. Mouse Sox17 haploinsufficiency leads to female subfertility due to impaired implantation. Sci. Rep. 2016;6:24171. doi: 10.1038/srep24171.
    1. Wang X., Li X., Wang T., Wu S.P., Jeong J.W., Kim T.H., Young S.L., Lessey B.A., Lanz R.B., Lydon J.P., et al. SOX17 regulates uterine epithelial-stromal cross-talk acting via a distal enhancer upstream of Ihh. Nat. Commun. 2018;9:4421. doi: 10.1038/s41467-018-06652-w.
    1. Kim T.H., Yoo J.Y., Wang Z., Lydon J.P., Khatri S., Hawkins S.M., Leach R.E., Fazleabas A.T., Young S.L., Lessey B.A., et al. ARID1A Is Essential for Endometrial Function during Early Pregnancy. PLoS Genet. 2015;11:e1005537. doi: 10.1371/journal.pgen.1005537.
    1. Kim T.H., Yoo J.Y., Choi K.C., Shin J.H., Leach R.E., Fazleabas A.T., Young S.L., Lessey B.A., Yoon H.G., Jeong J.W. Loss of HDAC3 results in nonreceptive endometrium and female infertility. Sci. Transl. Med. 2019;11:eaaf7533. doi: 10.1126/scitranslmed.aaf7533.
    1. Kim J.J., Taylor H.S., Lu Z., Ladhani O., Hastings J.M., Jackson K.S., Wu Y., Guo S.W., Fazleabas A.T. Altered expression of HOXA10 in endometriosis: Potential role in decidualization. Mol. Hum. Reprod. 2007;13:323–332. doi: 10.1093/molehr/gam005.
    1. Lee B., Du H., Taylor H.S. Experimental murine endometriosis induces DNA methylation and altered gene expression in eutopic endometrium. Biol. Reprod. 2009;80:79–85. doi: 10.1095/biolreprod.108.070391.
    1. Dyson M.T., Roqueiro D., Monsivais D., Ercan C.M., Pavone M.E., Brooks D.C., Kakinuma T., Ono M., Jafari N., Dai Y., et al. Genome-wide DNA methylation analysis predicts an epigenetic switch for GATA factor expression in endometriosis. PLoS Genet. 2014;10:e1004158. doi: 10.1371/journal.pgen.1004158.
    1. Rahmioglu N., Montgomery G.W., Zondervan K.T. Genetics of endometriosis. Women’s Health. 2015;11:577–586. doi: 10.2217/whe.15.41.
    1. Bird C.C., McElin T.W., Manalo-Estrella P. The elusive adenomyosis of the uterus—Revisited. Am. J. Obstet. Gynecol. 1972;112:583–593. doi: 10.1016/0002-9378(72)90781-8.
    1. Benagiano G., Brosens I. History of adenomyosis. Best Pract. Res. Clin. Obstet. Gynaecol. 2006;20:449–463. doi: 10.1016/j.bpobgyn.2006.01.007.
    1. Ferenczy A. Pathophysiology of adenomyosis. Hum. Reprod. Update. 1998;4:312–322. doi: 10.1093/humupd/4.4.312.
    1. Stratopoulou C.A., Donnez J., Dolmans M.M. Origin and Pathogenic Mechanisms of Uterine Adenomyosis: What Is Known So Far. Reprod. Sci. 2021;28:2087–2097. doi: 10.1007/s43032-020-00361-w.
    1. Garcia-Solares J., Donnez J., Donnez O., Dolmans M.M. Pathogenesis of uterine adenomyosis: Invagination or metaplasia? Fertil. Steril. 2018;109:371–379. doi: 10.1016/j.fertnstert.2017.12.030.
    1. Bulun S.E., Yildiz S., Adli M., Wei J.J. Adenomyosis pathogenesis: Insights from next-generation sequencing. Hum. Reprod. Update. 2021;27:1086–1097. doi: 10.1093/humupd/dmab017.
    1. Leyendecker G., Wildt L. A new concept of endometriosis and adenomyosis: Tissue injury and repair (TIAR) Horm. Mol. Biol. Clin. Investig. 2011;5:125–142. doi: 10.1515/HMBCI.2011.002.
    1. Batt R.E., Yeh J. Mullerianosis: Four developmental (embryonic) mullerian diseases. Reprod. Sci. 2013;20:1030–1037. doi: 10.1177/1933719112472736.
    1. Enatsu A., Harada T., Yoshida S., Iwabe T., Terakawa N. Adenomyosis in a patient with the Rokitansky-Kuster-Hauser syndrome. Fertil. Steril. 2000;73:862–863. doi: 10.1016/S0015-0282(99)00643-3.
    1. Koninckx P.R., Ussia A., Adamyan L., Wattiez A., Gomel V., Martin D.C. Pathogenesis of endometriosis: The genetic/epigenetic theory. Fertil. Steril. 2019;111:327–340. doi: 10.1016/j.fertnstert.2018.10.013.
    1. Hashimoto A., Iriyama T., Sayama S., Nakayama T., Komatsu A., Miyauchi A., Nishii O., Nagamatsu T., Osuga Y., Fujii T. Adenomyosis and adverse perinatal outcomes: Increased risk of second trimester miscarriage, preeclampsia, and placental malposition. J. Matern. Fetal Neonatal Med. 2018;31:364–369. doi: 10.1080/14767058.2017.1285895.
    1. Vannuccini S., Clifton V.L., Fraser I.S., Taylor H.S., Critchley H., Giudice L.C., Petraglia F. Infertility and reproductive disorders: Impact of hormonal and inflammatory mechanisms on pregnancy outcome. Hum. Reprod. Update. 2016;22:104–115. doi: 10.1093/humupd/dmv044.
    1. Struble J., Reid S., Bedaiwy M.A. Adenomyosis: A Clinical Review of a Challenging Gynecologic Condition. J. Minim. Invasive Gynecol. 2016;23:164–185. doi: 10.1016/j.jmig.2015.09.018.
    1. Abbott J.A. Adenomyosis and Abnormal Uterine Bleeding (AUB-A)-Pathogenesis, diagnosis, and management. Best Pract. Res. Clin. Obstet. Gynaecol. 2017;40:68–81. doi: 10.1016/j.bpobgyn.2016.09.006.
    1. Gunther R., Walker C. Adenomyosis. StatPearls; Treasure Island, FL, USA: 2021.
    1. Vercellini P., Vigano P., Somigliana E., Daguati R., Abbiati A., Fedele L. Adenomyosis: Epidemiological factors. Best Pract. Res. Clin. Obstet. Gynaecol. 2006;20:465–477. doi: 10.1016/j.bpobgyn.2006.01.017.
    1. Yu O., Schulze-Rath R., Grafton J., Hansen K., Scholes D., Reed S.D. Adenomyosis incidence, prevalence and treatment: United States population-based study 2006–2015. Am. J. Obstet. Gynecol. 2020;223:94.e1–94.e10. doi: 10.1016/j.ajog.2020.01.016.
    1. Bourdon M., Santulli P., Marcellin L., Maignien C., Maitrot-Mantelet L., Bordonne C., Plu Bureau G., Chapron C. Adenomyosis: An update regarding its diagnosis and clinical features. J. Gynecol. Obstet. Hum. Reprod. 2021;50:102228. doi: 10.1016/j.jogoh.2021.102228.
    1. Pinzauti S., Lazzeri L., Tosti C., Centini G., Orlandini C., Luisi S., Zupi E., Exacoustos C., Petraglia F. Transvaginal sonographic features of diffuse adenomyosis in 18–30-year-old nulligravid women without endometriosis: Association with symptoms. Ultrasound Obstet. Gynecol. 2015;46:730–736. doi: 10.1002/uog.14834.
    1. Chapron C., Tosti C., Marcellin L., Bourdon M., Lafay-Pillet M.C., Millischer A.E., Streuli I., Borghese B., Petraglia F., Santulli P. Relationship between the magnetic resonance imaging appearance of adenomyosis and endometriosis phenotypes. Hum. Reprod. 2017;32:1393–1401. doi: 10.1093/humrep/dex088.
    1. Sharara F.I., Kheil M.H., Feki A., Rahman S., Klebanoff J.S., Ayoubi J.M., Moawad G.N. Current and Prospective Treatment of Adenomyosis. J. Clin. Med. 2021;10:3410. doi: 10.3390/jcm10153410.
    1. Vannuccini S., Luisi S., Tosti C., Sorbi F., Petraglia F. Role of medical therapy in the management of uterine adenomyosis. Fertil. Steril. 2018;109:398–405. doi: 10.1016/j.fertnstert.2018.01.013.
    1. Matsushima T., Akira S., Fukami T., Yoneyama K., Takeshita T. Efficacy of Hormonal Therapies for Decreasing Uterine Volume in Patients with Adenomyosis. Gynecol. Minim. Invasive Ther. 2018;7:119–123. doi: 10.4103/GMIT.GMIT_35_18.
    1. Grow D.R., Filer R.B. Treatment of adenomyosis with long-term GnRH analogues: A case report. Obstet. Gynecol. 1991;78:538–539.
    1. Nelson J.R., Corson S.L. Long-term management of adenomyosis with a gonadotropin-releasing hormone agonist: A case report. Fertil. Steril. 1993;59:441–443. doi: 10.1016/S0015-0282(16)55704-5.
    1. Fedele L., Bianchi S., Raffaelli R., Portuese A., Dorta M. Treatment of adenomyosis-associated menorrhagia with a levonorgestrel-releasing intrauterine device. Fertil. Steril. 1997;68:426–429. doi: 10.1016/S0015-0282(97)00245-8.
    1. Beatty M.N., Blumenthal P.D. The levonorgestrel-releasing intrauterine system: Safety, efficacy, and patient acceptability. Ther. Clin. Risk Manag. 2009;5:561–574.
    1. Fong Y.F., Singh K. Medical treatment of a grossly enlarged adenomyotic uterus with the levonorgestrel-releasing intrauterine system. Contraception. 1999;60:173–175. doi: 10.1016/S0010-7824(99)00075-X.
    1. Shaaban O.M., Ali M.K., Sabra A.M., Abd El Aal D.E. Levonorgestrel-releasing intrauterine system versus a low-dose combined oral contraceptive for treatment of adenomyotic uteri: A randomized clinical trial. Contraception. 2015;92:301–307. doi: 10.1016/j.contraception.2015.05.015.
    1. Abbas A.M., Samy A., Atwa K., Ghoneim H.M., Lotfy M., Saber Mohammed H., Abdellah A.M., El Bahie A.M., Aboelroose A.A., El Gedawy A.M., et al. The role of levonorgestrel intra-uterine system in the management of adenomyosis: A systematic review and meta-analysis of prospective studies. Acta Obstet. Gynecol. Scand. 2020;99:571–581. doi: 10.1111/aogs.13798.
    1. Radzinsky V.E., Khamoshina M.B., Nosenko E.N., Dukhin A.O., Sojunov M.A., Orazmuradov A.A., Lebedeva M.G., Orazov M.R. Treatment strategies for pelvic pain associated with adenomyosis. Gynecol. Endocrinol. 2016;32:19–22. doi: 10.1080/09513590.2016.1232673.
    1. Lee K.H., Kim J.K., Lee M.A., Ko Y.B., Yang J.B., Kang B.H., Yoo H.J. Relationship between uterine volume and discontinuation of treatment with levonorgestrel-releasing intrauterine devices in patients with adenomyosis. Arch. Gynecol. Obstet. 2016;294:561–566. doi: 10.1007/s00404-016-4105-y.
    1. Vannuccini S., Tosti C., Carmona F., Huang S.J., Chapron C., Guo S.W., Petraglia F. Pathogenesis of adenomyosis: An update on molecular mechanisms. Reprod. Biomed. Online. 2017;35:592–601. doi: 10.1016/j.rbmo.2017.06.016.
    1. Nie J., Lu Y., Liu X., Guo S.W. Immunoreactivity of progesterone receptor isoform B, nuclear factor κB, and IκBα in adenomyosis. Fertil. Steril. 2009;92:886–889. doi: 10.1016/j.fertnstert.2009.01.084.
    1. Mehasseb M.K., Panchal R., Taylor A.H., Brown L., Bell S.C., Habiba M. Estrogen and progesterone receptor isoform distribution through the menstrual cycle in uteri with and without adenomyosis. Fertil. Steril. 2011;95:2228–2235.e1. doi: 10.1016/j.fertnstert.2011.02.051.
    1. Bulun S.E. Uterine fibroids. N. Engl. J. Med. 2013;369:1344–1355. doi: 10.1056/NEJMra1209993.
    1. Stewart E.A., Laughlin-Tommaso S.K., Catherino W.H., Lalitkumar S., Gupta D., Vollenhoven B. Uterine fibroids. Nat. Rev. Dis. Primers. 2016;2:16043. doi: 10.1038/nrdp.2016.43.
    1. Islam M.S., Ciavattini A., Petraglia F., Castellucci M., Ciarmela P. Extracellular matrix in uterine leiomyoma pathogenesis: A potential target for future therapeutics. Hum. Reprod. Update. 2018;24:59–85. doi: 10.1093/humupd/dmx032.
    1. Stewart E.A., Cookson C.L., Gandolfo R.A., Schulze-Rath R. Epidemiology of uterine fibroids: A systematic review. BJOG. 2017;124:1501–1512. doi: 10.1111/1471-0528.14640.
    1. Baird D.D., Dunson D.B., Hill M.C., Cousins D., Schectman J.M. High cumulative incidence of uterine leiomyoma in black and white women: Ultrasound evidence. Am. J. Obstet. Gynecol. 2003;188:100–107. doi: 10.1067/mob.2003.99.
    1. Zimmermann A., Bernuit D., Gerlinger C., Schaefers M., Geppert K. Prevalence, symptoms and management of uterine fibroids: An international internet-based survey of 21,746 women. BMC Womens Health. 2012;12:6. doi: 10.1186/1472-6874-12-6.
    1. Giuliani E., As-Sanie S., Marsh E.E. Epidemiology and management of uterine fibroids. Int. J. Gynaecol. Obstet. 2020;149:3–9. doi: 10.1002/ijgo.13102.
    1. Borah B.J., Laughlin-Tommaso S.K., Myers E.R., Yao X., Stewart E.A. Association Between Patient Characteristics and Treatment Procedure Among Patients With Uterine Leiomyomas. Obstet. Gynecol. 2016;127:67–77. doi: 10.1097/AOG.0000000000001160.
    1. Merrill R.M. Hysterectomy surveillance in the United States, 1997 through 2005. Med. Sci. Monit. 2008;14:CR24-31.
    1. Whiteman M.K., Hillis S.D., Jamieson D.J., Morrow B., Podgornik M.N., Brett K.M., Marchbanks P.A. Inpatient hysterectomy surveillance in the United States, 2000–2004. Am. J. Obstet. Gynecol. 2008;198:34.e1–34.e7. doi: 10.1016/j.ajog.2007.05.039.
    1. Donnez J., Dolmans M.M. Uterine fibroid management: From the present to the future. Hum. Reprod. Update. 2016;22:665–686. doi: 10.1093/humupd/dmw023.
    1. Moroni R.M., Martins W.P., Dias S.V., Vieira C.S., Ferriani R.A., Nastri C.O., Brito L.G. Combined oral contraceptive for treatment of women with uterine fibroids and abnormal uterine bleeding: A systematic review. Gynecol. Obstet. Investig. 2015;79:145–152. doi: 10.1159/000369390.
    1. Laughlin-Tommaso S.K., Stewart E.A. Moving Toward Individualized Medicine for Uterine Leiomyomas. Obstet. Gynecol. 2018;132:961–971. doi: 10.1097/AOG.0000000000002785.
    1. American College of Obstetricians and Gynecologists ACOG practice bulletin. Alternatives to hysterectomy in the management of leiomyomas. Obstet. Gynecol. 2008;112:387–400. doi: 10.1097/AOG.0b013e318183fbab.
    1. Lethaby A., Vollenhoven B., Sowter M. Pre-operative GnRH analogue therapy before hysterectomy or myomectomy for uterine fibroids. Cochrane Database Syst. Rev. 2001;2:CD000547. doi: 10.1002/14651858.CD000547.
    1. Ishikawa H., Ishi K., Serna V.A., Kakazu R., Bulun S.E., Kurita T. Progesterone is essential for maintenance and growth of uterine leiomyoma. Endocrinology. 2010;151:2433–2442. doi: 10.1210/en.2009-1225.
    1. Qiang W., Liu Z., Serna V.A., Druschitz S.A., Liu Y., Espona-Fiedler M., Wei J.J., Kurita T. Down-regulation of miR-29b is essential for pathogenesis of uterine leiomyoma. Endocrinology. 2014;155:663–669. doi: 10.1210/en.2013-1763.
    1. Kawaguchi K., Fujii S., Konishi I., Nanbu Y., Nonogaki H., Mori T. Mitotic activity in uterine leiomyomas during the menstrual cycle. Am. J. Obstet. Gynecol. 1989;160:637–641. doi: 10.1016/S0002-9378(89)80046-8.
    1. Lamminen S., Rantala I., Helin H., Rorarius M., Tuimala R. Proliferative activity of human uterine leiomyoma cells as measured by automatic image analysis. Gynecol. Obstet. Investig. 1992;34:111–114. doi: 10.1159/000292738.
    1. Palomba S., Sena T., Morelli M., Noia R., Zullo F., Mastrantonio P. Effect of different doses of progestin on uterine leiomyomas in postmenopausal women. Eur. J. Obstet. Gynecol. Reprod. Biol. 2002;102:199–201. doi: 10.1016/S0301-2115(01)00588-7.
    1. Carr B.R., Marshburn P.B., Weatherall P.T., Bradshaw K.D., Breslau N.A., Byrd W., Roark M., Steinkampf M.P. An evaluation of the effect of gonadotropin-releasing hormone analogs and medroxyprogesterone acetate on uterine leiomyomata volume by magnetic resonance imaging: A prospective, randomized, double blind, placebo-controlled, crossover trial. J. Clin. Endocrinol. Metab. 1993;76:1217–1223. doi: 10.1097/00006254-199310000-00020.
    1. Friedman A.J., Daly M., Juneau-Norcross M., Rein M.S., Fine C., Gleason R., Leboff M. A prospective, randomized trial of gonadotropin-releasing hormone agonist plus estrogen-progestin or progestin “add-back” regimens for women with leiomyomata uteri. J. Clin. Endocrinol. Metab. 1993;76:1439–1445.
    1. Stewart E.A., Friedman A.J., Peck K., Nowak R.A. Relative overexpression of collagen type I and collagen type III messenger ribonucleic acids by uterine leiomyomas during the proliferative phase of the menstrual cycle. J. Clin. Endocrinol. Metab. 1994;79:900–906.
    1. Ohara N. Sex steroidal modulation of collagen metabolism in uterine leiomyomas. Clin. Exp. Obstet. Gynecol. 2009;36:10–11.
    1. Islam M.S., Catherino W.H., Protic O., Janjusevic M., Gray P.C., Giannubilo S.R., Ciavattini A., Lamanna P., Tranquilli A.L., Petraglia F., et al. Role of activin-A and myostatin and their signaling pathway in human myometrial and leiomyoma cell function. J. Clin. Endocrinol. Metab. 2014;99:E775–E785. doi: 10.1210/jc.2013-2623.
    1. Joseph D.S., Malik M., Nurudeen S., Catherino W.H. Myometrial cells undergo fibrotic transformation under the influence of transforming growth factor beta-3. Fertil. Steril. 2010;93:1500–1508. doi: 10.1016/j.fertnstert.2009.01.081.
    1. Wang Y., Feng G., Wang J., Zhou Y., Liu Y., Shi Y., Zhu Y., Lin W., Xu Y., Li Z. Differential effects of tumor necrosis factor-alpha on matrix metalloproteinase-2 expression in human myometrial and uterine leiomyoma smooth muscle cells. Hum. Reprod. 2015;30:61–70. doi: 10.1093/humrep/deu300.
    1. Makinen N., Mehine M., Tolvanen J., Kaasinen E., Li Y., Lehtonen H.J., Gentile M., Yan J., Enge M., Taipale M., et al. MED12, the mediator complex subunit 12 gene, is mutated at high frequency in uterine leiomyomas. Science. 2011;334:252–255. doi: 10.1126/science.1208930.
    1. Mehine M., Makinen N., Heinonen H.R., Aaltonen L.A., Vahteristo P. Genomics of uterine leiomyomas: Insights from high-throughput sequencing. Fertil. Steril. 2014;102:621–629. doi: 10.1016/j.fertnstert.2014.06.050.
    1. Bertsch E., Qiang W., Zhang Q., Espona-Fiedler M., Druschitz S., Liu Y., Mittal K., Kong B., Kurita T., Wei J.J. MED12 and HMGA2 mutations: Two independent genetic events in uterine leiomyoma and leiomyosarcoma. Mod. Pathol. 2014;27:1144–1153. doi: 10.1038/modpathol.2013.243.
    1. Sandberg A.A. Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors: Leiomyoma. Cancer Genet. Cytogenet. 2005;158:1–26. doi: 10.1016/j.cancergencyto.2004.08.025.
    1. Markowski D.N., Bartnitzke S., Loning T., Drieschner N., Helmke B.M., Bullerdiek J. MED12 mutations in uterine fibroids—Their relationship to cytogenetic subgroups. Int. J. Cancer. 2012;131:1528–1536. doi: 10.1002/ijc.27424.
    1. Mehine M., Kaasinen E., Makinen N., Katainen R., Kampjarvi K., Pitkanen E., Heinonen H.R., Butzow R., Kilpivaara O., Kuosmanen A., et al. Characterization of uterine leiomyomas by whole-genome sequencing. N. Engl. J. Med. 2013;369:43–53. doi: 10.1056/NEJMoa1302736.
    1. Mehine M., Kaasinen E., Heinonen H.R., Makinen N., Kampjarvi K., Sarvilinna N., Aavikko M., Vaharautio A., Pasanen A., Butzow R., et al. Integrated data analysis reveals uterine leiomyoma subtypes with distinct driver pathways and biomarkers. Proc. Natl. Acad. Sci. USA. 2016;113:1315–1320. doi: 10.1073/pnas.1518752113.
    1. Vanharanta S., Pollard P.J., Lehtonen H.J., Laiho P., Sjoberg J., Leminen A., Aittomaki K., Arola J., Kruhoffer M., Orntoft T.F., et al. Distinct expression profile in fumarate-hydratase-deficient uterine fibroids. Hum. Mol. Genet. 2006;15:97–103. doi: 10.1093/hmg/ddi431.
    1. Wu X., Serna V.A., Thomas J., Qiang W., Blumenfeld M.L., Kurita T. Subtype-Specific Tumor-Associated Fibroblasts Contribute to the Pathogenesis of Uterine Leiomyoma. Cancer Res. 2017;77:6891–6901. doi: 10.1158/0008-5472.CAN-17-1744.
    1. Serna V.A., Wu X., Qiang W., Thomas J., Blumenfeld M.L., Kurita T. Cellular kinetics of MED12-mutant uterine leiomyoma growth and regression in vivo. Endocr. Relat. Cancer. 2018;25:747–759. doi: 10.1530/ERC-18-0184.
    1. Ikhena D.E., Liu S., Kujawa S., Esencan E., Coon J.S., Robins J., Bulun S.E., Yin P. RANKL/RANK Pathway and Its Inhibitor RANK-Fc in Uterine Leiomyoma Growth. J. Clin. Endocrinol. Metab. 2018;103:1842–1849. doi: 10.1210/jc.2017-01585.
    1. Liu S., Yin P., Kujawa S.A., Coon J.S., Okeigwe I., Bulun S.E. Progesterone receptor integrates the effects of mutated MED12 and altered DNA methylation to stimulate RANKL expression and stem cell proliferation in uterine leiomyoma. Oncogene. 2019;38:2722–2735. doi: 10.1038/s41388-018-0612-6.
    1. Liu S., Yin P., Xu J., Dotts A.J., Kujawa S.A., Coon V.J., Zhao H., Dai Y., Bulun S.E. Progesterone receptor-DNA methylation crosstalk regulates depletion of uterine leiomyoma stem cells: A potential therapeutic target. Stem Cell Rep. 2021;16:2099–2106. doi: 10.1016/j.stemcr.2021.07.013.
    1. El Sabeh M., Saha S.K., Afrin S., Islam M.S., Borahay M.A. Wnt/beta-catenin signaling pathway in uterine leiomyoma: Role in tumor biology and targeting opportunities. Mol. Cell Biochem. 2021;476:3513–3536. doi: 10.1007/s11010-021-04174-6.
    1. Ono M., Yin P., Navarro A., Moravek M.B., Coon J.S., Druschitz S.A., Serna V.A., Qiang W., Brooks D.C., Malpani S.S., et al. Paracrine activation of WNT/beta-catenin pathway in uterine leiomyoma stem cells promotes tumor growth. Proc. Natl. Acad. Sci. USA. 2013;110:17053–17058. doi: 10.1073/pnas.1313650110.
    1. Ono M., Yin P., Navarro A., Moravek M.B., Coon V.J., Druschitz S.A., Gottardi C.J., Bulun S.E. Inhibition of canonical WNT signaling attenuates human leiomyoma cell growth. Fertil. Steril. 2014;101:1441–1449. doi: 10.1016/j.fertnstert.2014.01.017.
    1. Liu S., Yin P., Dotts A.J., Kujawa S.A., Coon V.J., Wei J.J., Chakravarti D., Bulun S.E. Activation of protein kinase B by WNT4 as a regulator of uterine leiomyoma stem cell function. Fertil. Steril. 2020;114:1339–1349. doi: 10.1016/j.fertnstert.2020.06.045.
    1. Kim S., Xu X., Hecht A., Boyer T.G. Mediator is a transducer of Wnt/beta-catenin signaling. J. Biol. Chem. 2006;281:14066–14075. doi: 10.1074/jbc.M602696200.
    1. El Andaloussi A., Al-Hendy A., Ismail N., Boyer T.G., Halder S.K. Introduction of Somatic Mutation in MED12 Induces Wnt4/beta-Catenin and Disrupts Autophagy in Human Uterine Myometrial Cell. Reprod. Sci. 2020;27:823–832. doi: 10.1007/s43032-019-00084-7.
    1. Corachan A., Trejo M.G., Carbajo-Garcia M.C., Monleon J., Escrig J., Faus A., Pellicer A., Cervello I., Ferrero H. Vitamin D as an effective treatment in human uterine leiomyomas independent of mediator complex subunit 12 mutation. Fertil. Steril. 2021;115:512–521. doi: 10.1016/j.fertnstert.2020.07.049.
    1. Fauser B.C., Tarlatzis B.C., Rebar R.W., Legro R.S., Balen A.H., Lobo R., Carmina E., Chang J., Yildiz B.O., Laven J.S., et al. Consensus on women’s health aspects of polycystic ovary syndrome (PCOS): The Amsterdam ESHRE/ASRM-Sponsored 3rd PCOS Consensus Workshop Group. Fertil. Steril. 2012;97:28–38.e25. doi: 10.1016/j.fertnstert.2011.09.024.
    1. Norman R.J., Dewailly D., Legro R.S., Hickey T.E. Polycystic ovary syndrome. Lancet. 2007;370:685–697. doi: 10.1016/S0140-6736(07)61345-2.
    1. Moran L.J., Hutchison S.K., Norman R.J., Teede H.J. Lifestyle changes in women with polycystic ovary syndrome. Cochrane Database Syst. Rev. 2011;7:CD007506. doi: 10.1002/14651858.CD007506.pub3.
    1. Chakraborty P., Goswami S.K., Rajani S., Sharma S., Kabir S.N., Chakravarty B., Jana K. Recurrent pregnancy loss in polycystic ovary syndrome: Role of hyperhomocysteinemia and insulin resistance. PLoS ONE. 2013;8:e64446. doi: 10.1371/journal.pone.0064446.
    1. Homburg R. Management of infertility and prevention of ovarian hyperstimulation in women with polycystic ovary syndrome. Best Pract. Res. Clin. Obstet. Gynaecol. 2004;18:773–788. doi: 10.1016/j.bpobgyn.2004.05.006.
    1. Sun Y.F., Zhang J., Xu Y.M., Cao Z.Y., Wang Y.Z., Hao G.M., Gao B.L. High BMI and Insulin Resistance Are Risk Factors for Spontaneous Abortion in Patients With Polycystic Ovary Syndrome Undergoing Assisted Reproductive Treatment: A Systematic Review and Meta-Analysis. Front. Endocrinol. 2020;11:592495. doi: 10.3389/fendo.2020.592495.
    1. Scicchitano P., Dentamaro I., Carbonara R., Bulzis G., Dachille A., Caputo P., Riccardi R., Locorotondo M., Mandurino C., Matteo Ciccone M. Cardiovascular Risk in Women With PCOS. Int. J. Endocrinol. Metab. 2012;10:611–618. doi: 10.5812/ijem.4020.
    1. Wild R.A., Carmina E., Diamanti-Kandarakis E., Dokras A., Escobar-Morreale H.F., Futterweit W., Lobo R., Norman R.J., Talbott E., Dumesic D.A. Assessment of cardiovascular risk and prevention of cardiovascular disease in women with the polycystic ovary syndrome: A consensus statement by the Androgen Excess and Polycystic Ovary Syndrome (AE-PCOS) Society. J. Clin. Endocrinol. Metab. 2010;95:2038–2049. doi: 10.1210/jc.2009-2724.
    1. Dumesic D.A., Lobo R.A. Cancer risk and PCOS. Steroids. 2013;78:782–785. doi: 10.1016/j.steroids.2013.04.004.
    1. Witchel S.F., Oberfield S.E., Pena A.S. Polycystic Ovary Syndrome: Pathophysiology, Presentation, and Treatment With Emphasis on Adolescent Girls. J. Endocr. Soc. 2019;3:1545–1573. doi: 10.1210/js.2019-00078.
    1. Pastor C.L., Griffin-Korf M.L., Aloi J.A., Evans W.S., Marshall J.C. Polycystic ovary syndrome: Evidence for reduced sensitivity of the gonadotropin-releasing hormone pulse generator to inhibition by estradiol and progesterone. J. Clin. Endocrinol. Metab. 1998;83:582–590. doi: 10.1210/jc.83.2.582.
    1. Hayes M.G., Urbanek M., Ehrmann D.A., Armstrong L.L., Lee J.Y., Sisk R., Karaderi T., Barber T.M., McCarthy M.I., Franks S., et al. Genome-wide association of polycystic ovary syndrome implicates alterations in gonadotropin secretion in European ancestry populations. Nat. Commun. 2015;6:7502. doi: 10.1038/ncomms8502.
    1. Diamanti-Kandarakis E., Dunaif A. Insulin resistance and the polycystic ovary syndrome revisited: An update on mechanisms and implications. Endocr. Rev. 2012;33:981–1030. doi: 10.1210/er.2011-1034.
    1. DeVane G.W., Czekala N.M., Judd H.L., Yen S.S. Circulating gonadotropins, estrogens, and androgens in polycystic ovarian disease. Am. J. Obstet. Gynecol. 1975;121:496–500. doi: 10.1016/0002-9378(75)90081-2.
    1. Baird D.T., Corker C.S., Davidson D.W., Hunter W.M., Michie E.A., Van Look P.F. Pituitary-ovarian relationships in polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 1977;45:798–801. doi: 10.1210/jcem-45-4-798.
    1. Franks S., Stark J., Hardy K. Follicle dynamics and anovulation in polycystic ovary syndrome. Hum. Reprod. Update. 2008;14:367–378. doi: 10.1093/humupd/dmn015.
    1. Escobar-Morreale H.F. Polycystic ovary syndrome: Definition, aetiology, diagnosis and treatment. Nat. Rev. Endocrinol. 2018;14:270–284. doi: 10.1038/nrendo.2018.24.
    1. Vrbikova J., Cibula D. Combined oral contraceptives in the treatment of polycystic ovary syndrome. Hum. Reprod. Update. 2005;11:277–291. doi: 10.1093/humupd/dmi005.
    1. Wild S., Pierpoint T., Jacobs H., McKeigue P. Long-term consequences of polycystic ovary syndrome: Results of a 31 year follow-up study. Hum. Fertil. 2000;3:101–105. doi: 10.1080/1464727002000198781.
    1. Fearnley E.J., Marquart L., Spurdle A.B., Weinstein P., Webb P.M., Australian Ovarian Cancer Study Group. The Australian National Endometrial Cancer Study Group Polycystic ovary syndrome increases the risk of endometrial cancer in women aged less than 50 years: An Australian case-control study. Cancer Causes Control. 2010;21:2303–2308. doi: 10.1007/s10552-010-9658-7.
    1. Hardiman P., Pillay O.C., Atiomo W. Polycystic ovary syndrome and endometrial carcinoma. Lancet. 2003;361:1810–1812. doi: 10.1016/S0140-6736(03)13409-5.
    1. Goodarzi M.O., Dumesic D.A., Chazenbalk G., Azziz R. Polycystic ovary syndrome: Etiology, pathogenesis and diagnosis. Nat. Rev. Endocrinol. 2011;7:219–231. doi: 10.1038/nrendo.2010.217.
    1. Perez-Medina T., Bajo J., Folgueira G., Haya J., Ortega P. Atypical endometrial hyperplasia treatment with progestogens and gonadotropin-releasing hormone analogues: Long-term follow-up. Gynecol. Oncol. 1999;73:299–304. doi: 10.1006/gyno.1998.5322.
    1. Piltonen T.T., Chen J.C., Khatun M., Kangasniemi M., Liakka A., Spitzer T., Tran N., Huddleston H., Irwin J.C., Giudice L.C. Endometrial stromal fibroblasts from women with polycystic ovary syndrome have impaired progesterone-mediated decidualization, aberrant cytokine profiles and promote enhanced immune cell migration in vitro. Hum. Reprod. 2015;30:1203–1215. doi: 10.1093/humrep/dev055.
    1. Quezada S., Avellaira C., Johnson M.C., Gabler F., Fuentes A., Vega M. Evaluation of steroid receptors, coregulators, and molecules associated with uterine receptivity in secretory endometria from untreated women with polycystic ovary syndrome. Fertil. Steril. 2006;85:1017–1026. doi: 10.1016/j.fertnstert.2005.09.053.
    1. Hu M., Li J., Zhang Y., Li X., Brannstrom M., Shao L.R., Billig H. Endometrial progesterone receptor isoforms in women with polycystic ovary syndrome. Am. J. Transl. Res. 2018;10:2696–2705.
    1. Lashen H. Role of metformin in the management of polycystic ovary syndrome. Ther. Adv. Endocrinol. Metab. 2010;1:117–128. doi: 10.1177/2042018810380215.
    1. Johnson N.P. Metformin use in women with polycystic ovary syndrome. Ann. Transl. Med. 2014;2:56.
    1. Takemura Y., Osuga Y., Yoshino O., Hasegawa A., Hirata T., Hirota Y., Nose E., Morimoto C., Harada M., Koga K., et al. Metformin suppresses interleukin (IL)-1beta-induced IL-8 production, aromatase activation, and proliferation of endometriotic stromal cells. J. Clin. Endocrinol. Metab. 2007;92:3213–3218. doi: 10.1210/jc.2006-2486.
    1. Xie Y., Wang Y.L., Yu L., Hu Q., Ji L., Zhang Y., Liao Q.P. Metformin promotes progesterone receptor expression via inhibition of mammalian target of rapamycin (mTOR) in endometrial cancer cells. J. Steroid Biochem. Mol. Biol. 2011;126:113–120. doi: 10.1016/j.jsbmb.2010.12.006.
    1. Shen Z.Q., Zhu H.T., Lin J.F. Reverse of progestin-resistant atypical endometrial hyperplasia by metformin and oral contraceptives. Obstet. Gynecol. 2008;112:465–467. doi: 10.1097/AOG.0b013e3181719b92.
    1. Session D.R., Kalli K.R., Tummon I.S., Damario M.A., Dumesic D.A. Treatment of atypical endometrial hyperplasia with an insulin-sensitizing agent. Gynecol. Endocrinol. 2003;17:405–407. doi: 10.1080/09513590312331290298.
    1. Stochino-Loi E., Major A.L., Gillon T.E.R., Ayoubi J.M., Feki A., Bouquet de Joliniere J. Metformin, the Rise of a New Medical Therapy for Endometriosis? A Systematic Review of the Literature. Front. Med. 2021;8:581311. doi: 10.3389/fmed.2021.581311.
    1. Kim J.J., Chapman-Davis E. Role of progesterone in endometrial cancer. Semin. Reprod. Med. 2010;28:81–90. doi: 10.1055/s-0029-1242998.
    1. Montgomery B.E., Daum G.S., Dunton C.J. Endometrial hyperplasia: A review. Obstet. Gynecol. Surv. 2004;59:368–378. doi: 10.1097/00006254-200405000-00025.
    1. Singh G., Puckett Y. Endometrial Hyperplasia. StatPearls; Treasure Island, FL, USA: 2021.
    1. Urick M.E., Bell D.W. Clinical actionability of molecular targets in endometrial cancer. Nat. Rev. Cancer. 2019;19:510–521. doi: 10.1038/s41568-019-0177-x.
    1. Emons G., Beckmann M.W., Schmidt D., Mallmann P., Uterus commission of the Gynecological Oncology Working Group New WHO Classification of Endometrial Hyperplasias. Geburtshilfe Frauenheilkd. 2015;75:135–136. doi: 10.1055/s-0034-1396256.
    1. Li L., Yue P., Song Q., Yen T.T., Asaka S., Wang T.L., Beavis A.L., Fader A.N., Jiao Y., Yuan G., et al. Genome-wide mutation analysis in precancerous lesions of endometrial carcinoma. J. Pathol. 2021;253:119–128. doi: 10.1002/path.5566.
    1. Mencaglia L., Valle R.F., Perino A., Gilardi G. Endometrial carcinoma and its precursors: Early detection and treatment. Int. J. Gynaecol. Obstet. 1990;31:107–116. doi: 10.1016/0020-7292(90)90706-Q.
    1. Linkov F., Edwards R., Balk J., Yurkovetsky Z., Stadterman B., Lokshin A., Taioli E. Endometrial hyperplasia, endometrial cancer and prevention: Gaps in existing research of modifiable risk factors. Eur. J. Cancer. 2008;44:1632–1644. doi: 10.1016/j.ejca.2008.05.001.
    1. Pandey J., Yonder S. Premalignant Lesions of The Endometrium. StatPearls; Treasure Island, FL, USA: 2021.
    1. Kurman R.J., Kaminski P.F., Norris H.J. The behavior of endometrial hyperplasia. A long-term study of “untreated” hyperplasia in 170 patients. Cancer. 1985;56:403–412. doi: 10.1002/1097-0142(19850715)56:2<403::AID-CNCR2820560233>;2-X.
    1. Lacey J.V., Jr., Mutter G.L., Nucci M.R., Ronnett B.M., Ioffe O.B., Rush B.B., Glass A.G., Richesson D.A., Chatterjee N., Langholz B., et al. Risk of subsequent endometrial carcinoma associated with endometrial intraepithelial neoplasia classification of endometrial biopsies. Cancer. 2008;113:2073–2081. doi: 10.1002/cncr.23808.
    1. Kaku T., Tsukamoto N., Hachisuga T., Tsuruchi N., Sakai K., Hirakawa T., Amada S., Saito T., Kamura T., Nakano H. Endometrial carcinoma associated with hyperplasia. Gynecol. Oncol. 1996;60:22–25. doi: 10.1006/gyno.1996.0005.
    1. Trimble C.L., Kauderer J., Zaino R., Silverberg S., Lim P.C., Burke J.J., 2nd, Alberts D., Curtin J. Concurrent endometrial carcinoma in women with a biopsy diagnosis of atypical endometrial hyperplasia: A Gynecologic Oncology Group study. Cancer. 2006;106:812–819. doi: 10.1002/cncr.21650.
    1. Gucer F., Reich O., Tamussino K., Bader A.A., Pieber D., Scholl W., Haas J., Petru E. Concomitant endometrial hyperplasia in patients with endometrial carcinoma. Gynecol. Oncol. 1998;69:64–68. doi: 10.1006/gyno.1997.4911.
    1. Jarboe E.A., Mutter G.L. Endometrial intraepithelial neoplasia. Semin. Diagn. Pathol. 2010;27:215–225. doi: 10.1053/j.semdp.2010.09.007.
    1. Huvila J., Pors J., Thompson E.F., Gilks C.B. Endometrial carcinoma: Molecular subtypes, precursors and the role of pathology in early diagnosis. J. Pathol. 2021;253:355–365. doi: 10.1002/path.5608.
    1. Carugno J., Marbin S.J., Lagan A.A., Vitale S.G., Alonso L., Di Spezio Sardo A., Haimovich S. New development on hysteroscopy for endometrial cancer diagnosis: State of the art. Minerva Med. 2021;112:12–19. doi: 10.23736/S0026-4806.20.07123-2.
    1. Yen T.T., Wang T.L., Fader A.N., Shih I.M., Gaillard S. Molecular Classification and Emerging Targeted Therapy in Endometrial Cancer. Int. J. Gynecol. Pathol. 2020;39:26–35. doi: 10.1097/PGP.0000000000000585.
    1. Albertini A.F., Devouassoux-Shisheboran M., Genestie C. Pathology of endometrioid carcinoma. Bull. Cancer. 2012;99:7–12. doi: 10.1684/bdc.2011.1526.
    1. Setiawan V.W., Yang H.P., Pike M.C., McCann S.E., Yu H., Xiang Y.B., Wolk A., Wentzensen N., Weiss N.S., Webb P.M., et al. Type I and II endometrial cancers: Have they different risk factors? J. Clin. Oncol. 2013;31:2607–2618. doi: 10.1200/JCO.2012.48.2596.
    1. Cancer Genome Atlas Research Network. Kandoth C., Schultz N., Cherniack A.D., Akbani R., Liu Y., Shen H., Robertson A.G., Pashtan I., Shen R., et al. Integrated genomic characterization of endometrial carcinoma. Nature. 2013;497:67–73.
    1. Salvesen H.B., Stefansson I., Kretzschmar E.I., Gruber P., MacDonald N.D., Ryan A., Jacobs I.J., Akslen L.A., Das S. Significance of PTEN alterations in endometrial carcinoma: A population-based study of mutations, promoter methylation and PTEN protein expression. Int. J. Oncol. 2004;25:1615–1623. doi: 10.3892/ijo.25.6.1615.
    1. Risinger J.I., Hayes K., Maxwell G.L., Carney M.E., Dodge R.K., Barrett J.C., Berchuck A. PTEN mutation in endometrial cancers is associated with favorable clinical and pathologic characteristics. Clin. Cancer Res. 1998;4:3005–3010.
    1. Ayhan A., Mao T.L., Suryo Rahmanto Y., Zeppernick F., Ogawa H., Wu R.C., Wang T.L., Shih Ie M. Increased proliferation in atypical hyperplasia/endometrioid intraepithelial neoplasia of the endometrium with concurrent inactivation of ARID1A and PTEN tumour suppressors. J. Pathol. Clin. Res. 2015;1:186–193. doi: 10.1002/cjp2.22.
    1. Joshi A., Miller C., Jr., Baker S.J., Ellenson L.H. Activated mutant p110alpha causes endometrial carcinoma in the setting of biallelic Pten deletion. Am. J. Pathol. 2015;185:1104–1113. doi: 10.1016/j.ajpath.2014.12.019.
    1. Daikoku T., Hirota Y., Tranguch S., Joshi A.R., DeMayo F.J., Lydon J.P., Ellenson L.H., Dey S.K. Conditional loss of uterine Pten unfailingly and rapidly induces endometrial cancer in mice. Cancer Res. 2008;68:5619–5627. doi: 10.1158/0008-5472.CAN-08-1274.
    1. Kim T.H., Wang J., Lee K.Y., Franco H.L., Broaddus R.R., Lydon J.P., Jeong J.W., Demayo F.J. The Synergistic Effect of Conditional Pten Loss and Oncogenic K-ras Mutation on Endometrial Cancer Development Occurs via Decreased Progesterone Receptor Action. J. Oncol. 2010;2010:139087. doi: 10.1155/2010/139087.
    1. Suryo Rahmanto Y., Shen W., Shi X., Chen X., Yu Y., Yu Z.C., Miyamoto T., Lee M.H., Singh V., Asaka R., et al. Inactivation of Arid1a in the endometrium is associated with endometrioid tumorigenesis through transcriptional reprogramming. Nat. Commun. 2020;11:2717. doi: 10.1038/s41467-020-16416-0.
    1. Wang X., Khatri S., Broaddus R., Wang Z., Hawkins S.M. Deletion of Arid1a in Reproductive Tract Mesenchymal Cells Reduces Fertility in Female Mice. Biol. Reprod. 2016;94:93. doi: 10.1095/biolreprod.115.133637.
    1. Joshi A., Wang H., Jiang G., Douglas W., Chan J.S., Korach K.S., Ellenson L.H. Endometrial tumorigenesis in Pten(+/−) mice is independent of coexistence of estrogen and estrogen receptor alpha. Am. J. Pathol. 2012;180:2536–2547. doi: 10.1016/j.ajpath.2012.03.006.
    1. Yang S., Thiel K.W., Leslie K.K. Progesterone: The ultimate endometrial tumor suppressor. Trends Endocrinol. Metab. 2011;22:145–152. doi: 10.1016/j.tem.2011.01.005.
    1. Committee on Gynecologic Practice The American College of Obstetricians and Gynecologists Committee Opinion no. 631. Endometrial intraepithelial neoplasia. Obstet. Gynecol. 2015;125:1272–1278. doi: 10.1097/01.AOG.0000465189.50026.20.
    1. Guillon S., Popescu N., Phelippeau J., Koskas M. A systematic review and meta-analysis of prognostic factors for remission in fertility-sparing management of endometrial atypical hyperplasia and adenocarcinoma. Int. J. Gynaecol. Obstet. 2019;146:277–288. doi: 10.1002/ijgo.12882.
    1. Trimble C.L., Method M., Leitao M., Lu K., Ioffe O., Hampton M., Higgins R., Zaino R., Mutter G.L., Society of Gynecologic Oncology Clinical Practice Committee Management of endometrial precancers. Obstet. Gynecol. 2012;120:1160–1175. doi: 10.1097/AOG.0b013e31826bb121.
    1. Terakawa N., Kigawa J., Taketani Y., Yoshikawa H., Yajima A., Noda K., Okada H., Kato J., Yakushiji M., Tanizawa O., et al. The behavior of endometrial hyperplasia: A prospective study. Endometrial Hyperplasia Study Group. J. Obstet. Gynaecol. Res. 1997;23:223–230. doi: 10.1111/j.1447-0756.1997.tb00836.x.
    1. Gallos I.D., Shehmar M., Thangaratinam S., Papapostolou T.K., Coomarasamy A., Gupta J.K. Oral progestogens vs levonorgestrel-releasing intrauterine system for endometrial hyperplasia: A systematic review and metaanalysis. Am. J. Obstet. Gynecol. 2010;203:547.e1–547.e10. doi: 10.1016/j.ajog.2010.07.037.
    1. Varma R., Soneja H., Bhatia K., Ganesan R., Rollason T., Clark T.J., Gupta J.K. The effectiveness of a levonorgestrel-releasing intrauterine system (LNG-IUS) in the treatment of endometrial hyperplasia—A long-term follow-up study. Eur. J. Obstet. Gynecol. Reprod. Biol. 2008;139:169–175. doi: 10.1016/j.ejogrb.2008.02.022.
    1. Fleming G.F. Second-Line Therapy for Endometrial Cancer: The Need for Better Options. J. Clin. Oncol. 2015;33:3535–3540. doi: 10.1200/JCO.2015.61.7225.
    1. Lacey J.V., Jr., Sherman M.E., Rush B.B., Ronnett B.M., Ioffe O.B., Duggan M.A., Glass A.G., Richesson D.A., Chatterjee N., Langholz B. Absolute risk of endometrial carcinoma during 20-year follow-up among women with endometrial hyperplasia. J. Clin. Oncol. 2010;28:788–792. doi: 10.1200/JCO.2009.24.1315.
    1. Fazleabas A.T. Progesterone resistance in a baboon model of endometriosis. Semin. Reprod. Med. 2010;28:75–80. doi: 10.1055/s-0029-1242997.

Source: PubMed

3
S'abonner