Therapeutic Potential of Remote Ischemic Conditioning in Vascular Cognitive Impairment

Rui Xu, Qianyan He, Yan Wang, Yi Yang, Zhen-Ni Guo, Rui Xu, Qianyan He, Yan Wang, Yi Yang, Zhen-Ni Guo

Abstract

Vascular cognitive impairment (VCI) is a heterogeneous disease caused by a variety of cerebrovascular diseases. Patients with VCI often present with slower cognitive processing speed and poor executive function, which affects their independence in daily life, thus increasing social burden. Remote ischemic conditioning (RIC) is a non-invasive and efficient intervention that triggers endogenous protective mechanisms to generate neuroprotection. Over the past decades, evidence from basic and clinical research has shown that RIC is promising for the treatment of VCI. To further our understanding of RIC and improve the management of VCI, we summarize the evidence on the therapeutic potential of RIC in relation to the risk factors and pathobiologies of VCI, including reducing the risk of recurrent stroke, decreasing high blood pressure, improving cerebral blood flow, restoring white matter integrity, protecting the neurovascular unit, attenuating oxidative stress, and inhibiting the inflammatory response.

Keywords: cerebral blood flow; inflammation; neurovascular unit; oxidative stress; remote ischemic conditioning; vascular cognitive impairment; white matter.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Xu, He, Wang, Yang and Guo.

Figures

FIGURE 1
FIGURE 1
Potential role of RIC on VCI-related risk factors. (A) Following an abrupt rupture of an atherosclerotic plaque, platelets respond rapidly through adhesion and aggregation, then thrombins generate a fibrin network to reinforce platelet aggregation and trap a large number of red blood cells, leading to the formation of thrombosis and vascular occlusion. The immune system are also involved in this process through activating the leukocytes and releasing large amount of cytokines. RIC is proven to reduce stroke recurrence in sICAS patients. The underlying mechanisms may involve the attenuation of excessive platelet aggregation and inflammation and the promotion of coagulation system. (B) Hypertension is characterized by and increased vascular resistance, which plays an important role in VCI. Vascular remodeling occurs at the early stage in hypertension and is associated with chronic inflammation response, hypertrophy of vascular smooth muscle cells (VSMCs) and deposition of extracellular matrix. RIC is efficient in blood pressure lowering in both hypertensive and prehypertensive patients. One of underlying mechanisms is the suppression of pathological vascular remodeling and downregulation of inflammation response.
FIGURE 2
FIGURE 2
Potential effects of RIC on VCI pathobiologies. The beneficial effects of RIC on VCI is associated with (A) increased CFB: the NOTCH1 signaling pathway may be involved in angiogenesis, which increases vascular diameter and promotes collateral formation. The eNOS/Nitrite/NO system plays an important role in the process of angiogenesis. The sheer stress induced by RIC upregulates the synthesis of eNOS in triggered organ and increases the concentration of nitrite in the circulation (not shown in this illustration). Nitrite reduces to NO under hypoxia condition and promotes new capillary formation. In addition, NO is an essential vasoactive agent in the regulation of vascular tension and cerebral autoregulation. (B) improved WM integrity (C) decreased neuronal death (D) restoration of endothelial function (E) reduced oligodendrocyte loss: the potential underlying mechanism is associated with decreased apoptosis of oligodendrocytes through activation of the PTEN/Akt/mTOR pathway. (F) attenuated oxidative stress: RIC can upregulate the expression of Nrf2 and attenuate the oxidative stress induced by hypoperfusion through promoting the expression of anti-oxidant enzymes, such as GSH and HO-1. This may partially mediated by the elevation of ET-1 in the plasma, which further upregulates the concentration of H2S within the brain. (G) decreased inflammation response: RIC can decrease the systemic inflammation by downregulating the level of inflammatory cytokines and leukocyte count. Meanwhile, RIC can mitigate neuroinflammation as evidenced by decreased expression of IBA-1 and GFAP, which are the markers of reactive microglial and reactive astrocytes, respectively. The expression of ICAM-1 and VCAM-1, markers of endothelial activation, are also downregulated. In addition, this was accompanied with less deposition of Ab protein.

References

    1. Alber J., Alladi S., Bae H. J., Barton D. A., Beckett L. A., Bell J. M., et al. (2019). White matter hyperintensities in vascular contributions to cognitive impairment and dementia (VCID): knowledge gaps and opportunities. Alzheimers Dement. 5 107–117.
    1. Arlier Z., Basar M., Kocamaz E., Kiraz K., Tanriover G., Kocer G., et al. (2015). Hypertension alters phosphorylation of VASP in brain endothelial cells. Int. J. Neurosci. 125 288–297. 10.3109/00207454.2014.930740
    1. Bagi Z., Brandner D. D., Le P., McNeal D. W., Gong X., Dou H., et al. (2018). Vasodilator dysfunction and oligodendrocyte dysmaturation in aging white matter. Ann. Neurol. 83 142–152. 10.1002/ana.25129
    1. Bartsch T., Wulff P. (2015). The hippocampus in aging and disease: from plasticity to vulnerability. Neuroscience 309 1–16. 10.1016/j.neuroscience.2015.07.084
    1. Bauer I., Raupach A. (2019). The role of heme oxygenase-1 in remote ischemic and anesthetic organ conditioning. Antioxidants 8:403. 10.3390/antiox8090403
    1. Casado A., Encarnacion Lopez-Fernandez M., Concepcion Casado M., de La Torre R. (2008). Lipid peroxidation and antioxidant enzyme activities in vascular and Alzheimer dementias. Neurochem. Res. 33 450–458. 10.1007/s11064-007-9453-3
    1. Chandran R., Li W., Ahmed H. A., Dong G., Ward R. A., He L., et al. (2020). Diabetic rats are more susceptible to cognitive decline in a model of microemboli-mediated vascular contributions to cognitive impairment and dementia. Brain Res. 1749:147132. 10.1016/j.brainres.2020.147132
    1. Chen T. T., Zhou X., Xu Y. N., Li Y., Wu X. Y., Xiang Q., et al. (2021). Gastrodin ameliorates learning and memory impairment in rats with vascular dementia by promoting autophagy flux via inhibition of the Ca(2+)/CaMKII signal pathway. Aging 13 9542–9565. 10.18632/aging.202667
    1. Chimowitz M. I., Lynn M. J., Howlett-Smith H., Stern B. J., Hertzberg V. S., Frankel M. R., et al. (2005). Comparison of warfarin and aspirin for symptomatic intracranial arterial stenosis. N. Engl. J. Med. 352 1305–1316.
    1. Choi D. H., Lee J. (2017). A mini-review of the NADPH oxidases in vascular dementia: correlation with NOXs and risk factors for VaD. Int. J. Mol. Sci. 18:2500. 10.3390/ijms18112500
    1. Choi D. H., Lee K. H., Kim J. H., Seo J. H., Kim H. Y., Shin C. Y., et al. (2014). NADPH oxidase 1, a novel molecular source of ROS in hippocampal neuronal death in vascular dementia. Antioxid. Redox Signal. 21 533–550. 10.1089/ars.2012.5129
    1. Cooke J. P., Meng S. (2020). Vascular regeneration in peripheral artery disease. Arterioscler. Thromb. Vasc. Biol. 40 1627–1634. 10.1161/atvbaha.120.312862
    1. Cremers L. G. M., Wolters F. J., de Groot M., Ikram M. K., van der Lugt A., Niessen W. J., et al. (2020). Structural disconnectivity and the risk of dementia in the general population. Neurology 95 e1528–e1537.
    1. Cristofaro B., Shi Y., Faria M., Suchting S., Leroyer A. S., Trindade A., et al. (2013). Dll4-Notch signaling determines the formation of native arterial collateral networks and arterial function in mouse ischemia models. Development 140 1720–1729. 10.1242/dev.092304
    1. de Montgolfier O., Pouliot P., Gillis M. A., Ferland G., Lesage F., Thorin-Trescases N., et al. (2019a). Systolic hypertension-induced neurovascular unit disruption magnifies vascular cognitive impairment in middle-age atherosclerotic LDLr(-/-):hApoB(+/+) mice. Geroscience 41 511–532. 10.1007/s11357-019-00070-6
    1. de Montgolfier O., Pincon A., Pouliot P., Gillis M. A., Bishop J., Sled J. G., et al. (2019b). High systolic blood pressure induces cerebral microvascular endothelial dysfunction, neurovascular unit damage, and cognitive decline in mice. Hypertension 73 217–228. 10.1161/hypertensionaha.118.12048
    1. Deindl E., Quax P. H. A. (2020). Arteriogenesis and therapeutic angiogenesis in its multiple aspects. Cells 9:1439.
    1. Deng M., Huang L., Zhong X., Huang M. (2020). Dynamic changes of Beclin-1 in the hippocampus of male mice with vascular dementia at different time points. J. Mol. Neurosci. 70 1611–1618. 10.1007/s12031-020-01591-y
    1. Deramecourt V., Slade J. Y., Oakley A. E., Perry R. H., Ince P. G., Maurage C. A., et al. (2012). Staging and natural history of cerebrovascular pathology in dementia. Neurology 78 1043–1050. 10.1212/wnl.0b013e31824e8e7f
    1. Dezfulian C., Taft M., Corey C., Hill G., Krehel N., Rittenberger J. C., et al. (2017). Biochemical signaling by remote ischemic conditioning of the arm versus thigh: is one raise of the cuff enough? Redox Biol. 12 491–498. 10.1016/j.redox.2017.03.010
    1. Ding J. Y., Shang S. L., Sun Z. S., Asmaro K., Li W. L., Yang Q., et al. (2020). Remote ischemic conditioning for the treatment of ischemic moyamoya disease. CNS Neurosci. Ther. 26 549–557. 10.1111/cns.13279
    1. Ding R., Hase Y., Ameen-Ali K. E., Ndung’u M., Stevenson W., Barsby J., et al. (2020). Loss of capillary pericytes and the blood-brain barrier in white matter in poststroke and vascular dementias and Alzheimer’s disease. Brain Pathol. 30 1087–1101. 10.1111/bpa.12888
    1. Donato A. J., Machin D. R., Lesniewski L. A. (2018). Mechanisms of dysfunction in the aging vasculature and role in age-related disease. Circ. Res. 123 825–848. 10.1161/circresaha.118.312563
    1. Duncombe J., Kitamura A., Hase Y., Ihara M., Kalaria R. N., Horsburgh K. (2017). Chronic cerebral hypoperfusion: a key mechanism leading to vascular cognitive impairment and dementia. closing the translational gap between rodent models and human vascular cognitive impairment and dementia. Clin. Sci. 131 2451–2468. 10.1042/cs20160727
    1. Eldahshan W., Fagan S. C., Ergul A. (2019). Inflammation within the neurovascular unit: focus on microglia for stroke injury and recovery. Pharmacol. Res. 147:104349. 10.1016/j.phrs.2019.104349
    1. Faraco G., Sugiyama Y., Lane D., Garcia-Bonilla L., Chang H., Santisteban M. M., et al. (2016). Perivascular macrophages mediate the neurovascular and cognitive dysfunction associated with hypertension. J. Clin. Invest. 126 4674–4689. 10.1172/JCI86950
    1. Farah C., Michel L. Y. M., Balligand J. L. (2018). Nitric oxide signalling in cardiovascular health and disease. Nat. Rev. Cardiol. 15 292–316. 10.1038/nrcardio.2017.224
    1. Feng X., Huang L., Wang Z., Wang L., Du X., Wang Q., et al. (2019). Efficacy of remote limb ischemic conditioning on poststroke cognitive impairment. J. Integr. Neurosci. 18 377–385. 10.31083/j.jin.2019.04.1192
    1. Figlia G., Gerber D., Suter U. (2018). Myelination and mTOR. Glia 66 693–707.
    1. Freitas-Andrade M., Raman-Nair J., Lacoste B. (2020). Structural and functional remodeling of the brain vasculature following stroke. Front. Physiol. 11:948.
    1. Gao Y., Ren C., Li X., Yu W., Li S., Li H., et al. (2021). Ischemic conditioning ameliorated hypertension and vascular remodeling of spontaneously hypertensive rat via inflammatory regulation. Aging Dis. 12 116–131. 10.14336/ad.2020.0320
    1. Geng X., Wang Q., Lee H., Huber C., Wills M., Elkin K., et al. (2021). Remote ischemic postconditioning vs. physical exercise after stroke: an alternative rehabilitation strategy? Mol. Neurobiol. 10.1007/s12035-021-02329-2326 Online ahead of print.
    1. Goebbels S., Oltrogge J. H., Kemper R., Heilmann I., Bormuth I., Wolfer S., et al. (2010). Elevated phosphatidylinositol 3,4,5-trisphosphate in glia triggers cell-autonomous membrane wrapping and myelination. J. Neurosci. 30 8953–8964. 10.1523/jneurosci.0219-10.2010
    1. Gorelick P. B., Scuteri A., Black S. E., Decarli C., Greenberg S. M., Iadecola C., et al. (2011). Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the american heart association/american stroke association. Stroke 42 2672–2713. 10.1161/str.0b013e3182299496
    1. Gorog D. A., Farag M., Spinthakis N., Yellon D. M., Botker H. E., Kharbanda R. K., et al. (2021). Effect of remote ischaemic conditioning on platelet reactivity and endogenous fibrinolysis in ST-elevation myocardial infarction: a substudy of the CONDI-2/ERIC-PPCI randomized controlled trial. Cardiovasc. Res. 117 623–634. 10.1093/cvr/cvaa061
    1. Gottesman R. F., Albert M. S., Alonso A., Coker L. H., Coresh J., Davis S. M., et al. (2017). Associations between midlife vascular risk factors and 25-year incident dementia in the atherosclerosis risk in communities (ARIC) cohort. JAMA Neurol. 74 1246–1254.
    1. Gottesman R. F., Schneider A. L., Albert M., Alonso A., Bandeen-Roche K., Coker L., et al. (2014). Midlife hypertension and 20-year cognitive change: the atherosclerosis risk in communities neurocognitive study. JAMA Neurol. 71 1218–1227. 10.1001/jamaneurol.2014.1646
    1. Guo Z. N., Guo W. T., Liu J., Chang J., Ma H., Zhang P., et al. (2019). Changes in cerebral autoregulation and blood biomarkers after remote ischemic preconditioning. Neurology 93 e8–e19.
    1. Gustaw-Rothenberg K., Kowalczuk K., Stryjecka-Zimmer M. (2010). Lipids’ peroxidation markers in Alzheimer’s disease and vascular dementia. Geriatr. Gerontol. Int. 10 161–166.
    1. Haarmann A., Nowak E., Deiss A., van der Pol S., Monoranu C. M., Kooij G., et al. (2015). Soluble VCAM-1 impairs human brain endothelial barrier integrity via integrin alpha-4-transduced outside-in signalling. Acta Neuropathol. 129 639–652. 10.1007/s00401-015-1417-0
    1. Hachinski V. C., Lassen N. A., Marshall J. (1974). Multi-infarct dementia. a cause of mental deterioration in the elderly. Lancet 2 207–210. 10.1016/s0140-6736(74)91496-2
    1. Hachinski V., Einhaupl K., Ganten D., Alladi S., Brayne C., Stephan B. C. M., et al. (2019). Preventing dementia by preventing stroke: the berlin manifesto. Alzheimers Dement. 15 961–984. 10.1016/j.jalz.2019.06.001
    1. Hainsworth A. H., Allan S. M., Boltze J., Cunningham C., Farris C., Head E., et al. (2017). Translational models for vascular cognitive impairment: a review including larger species. BMC Med. 15:16.
    1. Han B., Jiang W., Liu H., Wang J., Zheng K., Cui P., et al. (2020). Upregulation of neuronal PGC-1alpha ameliorates cognitive impairment induced by chronic cerebral hypoperfusion. Theranostics 10 2832–2848. 10.7150/thno.37119
    1. Hansen C. S., Jorgensen M. E., Fleischer J., Botker H. E., Rossing P. (2019). Efficacy of long-term remote ischemic conditioning on vascular and neuronal function in type 2 diabetes patients with peripheral arterial disease. J. Am. Heart Assoc. 8:e011779.
    1. Hao Y., Xin M., Feng L., Wang X., Wang X., Ma D., et al. (2020). Review cerebral ischemic tolerance and preconditioning: methods, mechanisms, clinical applications, and challenges. Front. Neurol. 11:812.
    1. Hausenloy D. J., Barrabes J. A., Botker H. E., Davidson S. M., Di Lisa F., Downey J., et al. (2016). Ischaemic conditioning and targeting reperfusion injury: a 30 year voyage of discovery. Basic Res. Cardiol. 111:70.
    1. He J. T., Li H., Yang L., Cheng K. L. (2019). Involvement of Endothelin-1, H2S and Nrf2 in beneficial effects of remote ischemic preconditioning in global cerebral ischemia-induced vascular dementia in mice. Cell Mol. Neurobiol. 39 671–686. 10.1007/s10571-019-00670-y
    1. He Z., Ning N., Zhou Q., Khoshnam S. E., Farzaneh M. (2020). Mitochondria as a therapeutic target for ischemic stroke. Free Radic. Biol. Med. 146 45–58. 10.1016/j.freeradbiomed.2019.11.005
    1. Hess D. C., Khan M. B., Hoda N., Morgan J. C. (2015). Remote ischemic conditioning: a treatment for vascular cognitive impairment. Brain Circ. 1 133–139. 10.4103/2394-8108.172885
    1. Hill R. A., Tong L., Yuan P., Murikinati S., Gupta S., Grutzendler J. (2015). Regional blood flow in the normal and ischemic brain is controlled by arteriolar smooth muscle cell contractility and not by capillary pericytes. Neuron 87 95–110. 10.1016/j.neuron.2015.06.001
    1. Hoda M. N., Bhatia K., Hafez S. S., Johnson M. H., Siddiqui S., Ergul A., et al. (2014). Remote ischemic perconditioning is effective after embolic stroke in ovariectomized female mice. Transl. Stroke Res. 5 484–490. 10.1007/s12975-013-0318-6
    1. Hoda M. N., Siddiqui S., Herberg S., Periyasamy-Thandavan S., Bhatia K., Hafez S. S., et al. (2012). Remote ischemic perconditioning is effective alone and in combination with intravenous tissue-type plasminogen activator in murine model of embolic stroke. Stroke 43 2794–2799. 10.1161/strokeaha.112.660373
    1. Hosford P. S., Gourine A. V. (2019). What is the key mediator of the neurovascular coupling response? Neurosci. Biobehav. Rev. 96 174–181. 10.1016/j.neubiorev.2018.11.011
    1. Hu M., Liu Z., Lv P., Wang H., Zhu Y., Qi Q., et al. (2017). Nimodipine activates neuroprotective signaling events and inactivates autophages in the VCID rat hippocampus. Neurol. Res. 39 904–909. 10.1080/01616412.2017.1356157
    1. Hu X., Lu Y., Zhang Y., Li Y., Jiang L. (2013). Remote ischemic preconditioning improves spatial learning and memory ability after focal cerebral ischemia-reperfusion in rats. Perfusion 28 546–551. 10.1177/0267659113487766
    1. Hurford R., Wolters F. J., Li L., Lau K. K., Kuker W., Rothwell P. M., et al. (2020). Prevalence, predictors, and prognosis of symptomatic intracranial stenosis in patients with transient ischaemic attack or minor stroke: a population-based cohort study. Lancet Neurol. 19 413–421. 10.1016/s1474-4422(20)30079-x
    1. Hyngstrom A. S., Nguyen J. N., Wright M. T., Tarima S. S., Schmit B. D., Gutterman D. D., et al. (2020). Two weeks of remote ischemic conditioning improves brachial artery flow mediated dilation in chronic stroke survivors. J. Appl. Physiol. 129 1348–1354. 10.1152/japplphysiol.00398.2020
    1. Iadecola C. (2013). The pathobiology of vascular dementia. Neuron 80 844–866. 10.1016/j.neuron.2013.10.008
    1. Iadecola C. (2017). The neurovascular unit coming of age: a journey through neurovascular coupling in health and disease. Neuron 96 17–42. 10.1016/j.neuron.2017.07.030
    1. Iadecola C., Gottesman R. F. (2019). Neurovascular and cognitive dysfunction in hypertension. Circ. Res. 124 1025–1044. 10.1161/circresaha.118.313260
    1. Iadecola C., Duering M., Hachinski V., Joutel A., Pendlebury S. T., Schneider J. A., et al. (2019). Vascular cognitive impairment and dementia: JACC scientific expert panel. J. Am. Coll. Cardiol. 73 3326–3344.
    1. Ikonomidis I., Vlastos D., Andreadou I., Gazouli M., Efentakis P., Varoudi M., et al. (2021). Vascular conditioning prevents adverse left ventricular remodelling after acute myocardial infarction: a randomised remote conditioning study. Basic Res. Cardiol. 116:9.
    1. Immink R. V., van Montfrans G. A., Stam J., Karemaker J. M., Diamant M., van Lieshout J. J. (2005). Dynamic cerebral autoregulation in acute lacunar and middle cerebral artery territory ischemic stroke. Stroke 36 2595–2600. 10.1161/01.str.0000189624.06836.03
    1. Ishii A., Furusho M., Macklin W., Bansal R. (2019). Independent and cooperative roles of the Mek/ERK1/2-MAPK and PI3K/Akt/mTOR pathways during developmental myelination and in adulthood. Glia 67 1277–1295. 10.1002/glia.23602
    1. Jia J., Zhou A., Wei C., Jia X., Wang F., Li F., et al. (2014). The prevalence of mild cognitive impairment and its etiological subtypes in elderly Chinese. Alzheimers Dement. 10 439–447.
    1. Jia L., Du Y., Chu L., Zhang Z., Li F., Lyu D., et al. (2020). Prevalence, risk factors, and management of dementia and mild cognitive impairment in adults aged 60 years or older in China: a cross-sectional study. Lancet Public Health 5 e661–e671.
    1. Jia Y., Jin W., Xiao Y., Dong Y., Wang T., Fan M., et al. (2015). Lipoxin A4 methyl ester alleviates vascular cognition impairment by regulating the expression of proteins related to autophagy and ER stress in the rat hippocampus. Cell Mol. Biol. Lett. 20 475–487.
    1. Jiang W. W., Huang B. S., Han Y., Deng L. H., Wu L. X. (2017). Sodium hydrosulfide attenuates cerebral ischemia/reperfusion injury by suppressing overactivated autophagy in rats. FEBS Open Bio 7 1686–1695. 10.1002/2211-5463.12301
    1. Jin G., Gao Z., Liu Y., Zhao J., Ou H., Xu F., et al. (2021). Polymeric nitric oxide delivery nanoplatforms for treating cancer, cardiovascular diseases, and infection. Adv. Healthc. Mater. 10:e2001550.
    1. Johnsen J., Pryds K., Salman R., Lofgren B., Kristiansen S. B., Botker H. E. (2016). The remote ischemic preconditioning algorithm: effect of number of cycles, cycle duration and effector organ mass on efficacy of protection. Basic Res. Cardiol. 111:10.
    1. Johnston S. C., Amarenco P., Denison H., Evans S. R., Himmelmann A., James S., et al. (2020). Ticagrelor and aspirin or aspirin alone in acute ischemic stroke or TIA. N. Engl. J. Med. 383 207–217. 10.1056/nejmoa1916870
    1. Jones H., Nyakayiru J., Bailey T. G., Green D. J., Cable N. T., Sprung V. S., et al. (2015). Impact of eight weeks of repeated ischaemic preconditioning on brachial artery and cutaneous microcirculatory function in healthy males. Eur. J. Prev. Cardiol. 22 1083–1087. 10.1177/2047487314547657
    1. Joutel A., Chabriat H. (2017). Pathogenesis of white matter changes in cerebral small vessel diseases: beyond vessel-intrinsic mechanisms. Clin. Sci. 131 635–651. 10.1042/cs20160380
    1. Khan M. B., Hafez S., Hoda M. N., Baban B., Wagner J., Awad M. E., et al. (2018). Chronic remote ischemic conditioning is cerebroprotective and induces vascular remodeling in a VCID model. Transl. Stroke Res. 9 51–63. 10.1007/s12975-017-0555-1
    1. Khan M. B., Hoda M. N., Vaibhav K., Giri S., Wang P., Waller J. L., et al. (2015). Remote ischemic postconditioning: harnessing endogenous protection in a murine model of vascular cognitive impairment. Transl. Stroke Res. 6 69–77. 10.1007/s12975-014-0374-6
    1. Kikuchi R., Takeshita K., Uchida Y., Kondo M., Cheng X. W., Nakayama T., et al. (2011). Pitavastatin-induced angiogenesis and arteriogenesis is mediated by Notch1 in a murine hindlimb ischemia model without induction of VEGF. Lab. Invest. 91 691–703. 10.1038/labinvest.2011.5
    1. Kisler K., Nikolakopoulou A. M., Sweeney M. D., Lazic D., Zhao Z., Zlokovic B. V. (2020). Acute ablation of cortical pericytes leads to rapid neurovascular uncoupling. Front. Cell Neurosci. 14:27.
    1. Klionsky D. J., Abdelmohsen K., Abe A., Abedin M. J., Abeliovich H., Acevedo Arozena A., et al. (2016). Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12 1–222.
    1. Kuzma E., Lourida I., Moore S. F., Levine D. A., Ukoumunne O. C., Llewellyn D. J. (2018). Stroke and dementia risk: a systematic review and meta-analysis. Alzheimers Dement. 14 1416–1426. 10.1016/j.jalz.2018.06.3061
    1. Lanza G. A., Stazi A., Villano A., Torrini F., Milo M., Laurito M., et al. (2016). Effect of remote ischemic preconditioning on platelet activation induced by coronary procedures. Am. J. Cardiol. 117 359–365. 10.1016/j.amjcard.2015.10.056
    1. Lassen N. A. (1964). Autoregulation of cerebral blood flow. Circ. Res. 15 201–204.
    1. Launer L. J., Ross G. W., Petrovitch H., Masaki K., Foley D., White L. R., et al. (2000). Midlife blood pressure and dementia: the Honolulu-Asia aging study. Neurobiol. Aging 21 49–55. 10.1016/s0197-4580(00)00096-8
    1. Lerman L. O., Kurtz T. W., Touyz R. M., Ellison D. H., Chade A. R., Crowley S. D., et al. (2019). Animal models of hypertension: a scientific statement from the american heart association. Hypertension 73 e87–e120.
    1. Levit A., Hachinski V., Whitehead S. N. (2020). Neurovascular unit dysregulation, white matter disease, and executive dysfunction: the shared triad of vascular cognitive impairment and Alzheimer disease. Geroscience 42 445–465. 10.1007/s11357-020-00164-6
    1. Li C., Wang Y., Yan X. L., Guo Z. N., Yang Y. (2021). Pathological changes in neurovascular units: lessons from cases of vascular dementia. CNS Neurosci. Ther. 27 17–25. 10.1111/cns.13572
    1. Li X., Ren C., Li S., Han R., Gao J., Huang Q., et al. (2017). Limb remote ischemic conditioning promotes myelination by upregulating PTEN/Akt/mTOR signaling activities after chronic cerebral hypoperfusion. Aging Dis. 8 392–401. 10.14336/ad.2016.1227
    1. Li Y. J., Liang K. K., Zhang L., Pan R., Hu Y. M., Zhao J. H. (2020). Remote ischemic post-conditioning may improve post-stroke cognitive impairment: a pilot single center randomized controlled trial. J. Stroke Cerebrovasc. Dis. 29:105217. 10.1016/j.jstrokecerebrovasdis.2020.105217
    1. Liao Z., Bu Y., Li M., Han R., Zhang N., Hao J., et al. (2019). Remote ischemic conditioning improves cognition in patients with subcortical ischemic vascular dementia. BMC Neurol. 19:206.
    1. Limbourg A., Ploom M., Elligsen D., Sorensen I., Ziegelhoeffer T., Gossler A., et al. (2007). Notch ligand Delta-like 1 is essential for postnatal arteriogenesis. Circ. Res. 100 363–371. 10.1161/01.res.0000258174.77370.2c
    1. Liu C., Yang J., Zhang C., Geng X., Zhao H. (2020). Remote ischemic conditioning reduced cerebral ischemic injury by modulating inflammatory responses and ERK activity in type 2 diabetic mice. Neurochem. Int. 135:104690. 10.1016/j.neuint.2020.104690
    1. Liu L., Locascio L. M., Dore S. (2019). Critical role of Nrf2 in experimental ischemic stroke. Front. Pharmacol. 10:153.
    1. Liu L., Wong K. S., Leng X., Pu Y., Wang Y., Jing J., et al. (2015). Dual antiplatelet therapy in stroke and ICAS: subgroup analysis of CHANCE. Neurology 85 1154–1162. 10.1212/wnl.0000000000001972
    1. Liyanagamage D., Martinus R. D. (2020). Role of mitochondrial stress Protein HSP60 in diabetes-induced neuroinflammation. Mediators Inflamm. 2020:8073516.
    1. Madias J. E. (2015). Sustained blood pressure lowering effect of twice daily remote ischemic conditioning sessions in a normotensive/prehypertensive subject. Int. J. Cardiol. 182 392–394. 10.1016/j.ijcard.2014.12.159
    1. Manning B. D., Toker A. (2017). AKT/PKB signaling: navigating the network. Cell 169 381–405. 10.1016/j.cell.2017.04.001
    1. Mao L., Yang T., Li X., Lei X., Sun Y., Zhao Y., et al. (2019). Protective effects of sulforaphane in experimental vascular cognitive impairment: contribution of the Nrf2 pathway. J. Cereb. Blood Flow Metab. 39 352–366. 10.1177/0271678x18764083
    1. Matin N., Fisher C., Jackson W. F., Diaz-Otero J. M., Dorrance A. M. (2018). Carotid artery stenosis in hypertensive rats impairs dilatory pathways in parenchymal arterioles. Am. J. Physiol. Heart Circ. Physiol. 314 H122–H130.
    1. Mazighi M., Tanasescu R., Ducrocq X., Vicaut E., Bracard S., Houdart E., et al. (2006). Prospective study of symptomatic atherothrombotic intracranial stenoses: the GESICA study. Neurology 66 1187–1191. 10.1212/01.wnl.0000208404.94585.b2
    1. Meftahi G. H., Bayat M., Zarifkar A. H., Akbari S., Borhani Haghighi A., Naseh M., et al. (2021). Treatment with edaravone improves the structure and functional changes in the hippocampus after chronic cerebral hypoperfusion in rat. Brain Res. Bull. 174 122–130. 10.1016/j.brainresbull.2021.06.006
    1. Meng R., Asmaro K., Meng L., Liu Y., Ma C., Xi C., et al. (2012). Upper limb ischemic preconditioning prevents recurrent stroke in intracranial arterial stenosis. Neurology 79 1853–1861. 10.1212/wnl.0b013e318271f76a
    1. Meng R., Ding Y., Asmaro K., Brogan D., Meng L., Sui M., et al. (2015). Ischemic conditioning is safe and effective for octo- and nonagenarians in stroke prevention and treatment. Neurotherapeutics 12 667–677. 10.1007/s13311-015-0358-6
    1. Mi T., Yu F., Ji X., Sun Y., Qu D. (2016). The interventional effect of remote ischemic preconditioning on cerebral small vessel disease: a pilot randomized clinical trial. Eur. Neurol. 76 28–34. 10.1159/000447536
    1. Montagne A., Nikolakopoulou A. M., Zhao Z., Sagare A. P., Si G., Lazic D., et al. (2018). Pericyte degeneration causes white matter dysfunction in the mouse central nervous system. Nat. Med. 24 326–337. 10.1038/nm.4482
    1. Moonen J. E., Sabayan B., Sigurdsson S., van Buchem M. A., Gudnason V., Meirelles O., et al. (2021). Contributions of cerebral blood flow to associations between blood pressure levels and cognition: the age, gene/environment susceptibility-reykjavik study. Hypertension 77 2075–2083. 10.1161/hypertensionaha.120.16894
    1. Muller N. (2019). The role of intercellular adhesion molecule-1 in the pathogenesis of psychiatric disorders. Front. Pharmacol. 10:1251.
    1. Najar J., Ostling S., Gudmundsson P., Sundh V., Johansson L., Kern S., et al. (2019). Cognitive and physical activity and dementia: a 44-year longitudinal population study of women. Neurology 92 e1322–e1330.
    1. Narayanan S. P., Flores A. I., Wang F., Macklin W. B. (2009). Akt signals through the mammalian target of rapamycin pathway to regulate CNS myelination. J. Neurosci. 29 6860–6870. 10.1523/jneurosci.0232-09.2009
    1. Ohtomo R., Arai K. (2020). Recent updates on mechanisms of cell-cell interaction in oligodendrocyte regeneration after white matter injury. Neurosci. Lett. 715:134650. 10.1016/j.neulet.2019.134650
    1. Ozkan E., Cetin-Tas Y., Sekerdag E., Kizilirmak A. B., Tas A., Yildiz E., et al. (2021). Blood-brain barrier leakage and perivascular collagen accumulation precede microvessel rarefaction and memory impairment in a chronic hypertension animal model. Metab. Brain Dis. 10.1007/s11011-021-00767-8 Online ahead of print.
    1. Pendlebury S. T., Rothwell P. M. (2009). Prevalence, incidence, and factors associated with pre-stroke and post-stroke dementia: a systematic review and meta-analysis. Lancet Neurol. 8 1006–1018. 10.1016/s1474-4422(09)70236-4
    1. Pi X., Xie L., Patterson C. (2018). Emerging roles of vascular endothelium in metabolic homeostasis. Circ. Res. 123 477–494. 10.1161/circresaha.118.313237
    1. Poh L., Fann D. Y., Wong P., Lim H. M., Foo S. L., Kang S. W., et al. (2020). AIM2 inflammasome mediates hallmark neuropathological alterations and cognitive impairment in a mouse model of vascular dementia. Mol. Psychiatry 10.1038/s41380-020-00971-5
    1. Popa-Wagner A., Buga A. M., Popescu B., Muresanu D. (2015). Vascular cognitive impairment, dementia, aging and energy demand. a vicious cycle. J. Neural. Transm. 122(Suppl. 1), S47–S54.
    1. Portegies M. L., Wolters F. J., Hofman A., Ikram M. K., Koudstaal P. J., Ikram M. A. (2016). Prestroke vascular pathology and the risk of recurrent stroke and poststroke dementia. Stroke 47 2119–2122. 10.1161/strokeaha.116.014094
    1. Presa J. L., Saravia F., Bagi Z., Filosa J. A. (2020). Vasculo-neuronal coupling and neurovascular coupling at the neurovascular unit: impact of hypertension. Front. Physiol. 11:584135.
    1. Pretnar-Oblak J., Sabovic M., Sebestjen M., Pogacnik T., Zaletel M. (2006). Influence of atorvastatin treatment on L-arginine cerebrovascular reactivity and flow-mediated dilatation in patients with lacunar infarctions. Stroke 37 2540–2545. 10.1161/01.str.0000239659.99112.fb
    1. Przyklenk K., Whittaker P. (2017). Ischemic conditioning attenuates platelet-mediated thrombosis: a tale of reverse translation. J. Cardiovasc. Pharmacol. Ther. 22 391–396. 10.1177/1074248417724871
    1. Purkayastha S., Fadar O., Mehregan A., Salat D. H., Moscufo N., Meier D. S., et al. (2014). Impaired cerebrovascular hemodynamics are associated with cerebral white matter damage. J. Cereb. Blood Flow Metab. 34 228–234. 10.1038/jcbfm.2013.180
    1. Qin C., Liu Q., Hu Z. W., Zhou L. Q., Shang K., Bosco D. B., et al. (2018). Microglial TLR4-dependent autophagy induces ischemic white matter damage via STAT1/6 pathway. Theranostics 8 5434–5451. 10.7150/thno.27882
    1. Ramagiri S., Taliyan R. (2017a). Protective effect of remote limb post conditioning via upregulation of heme oxygenase-1/BDNF pathway in rat model of cerebral ischemic reperfusion injury. Brain Res. 1669 44–54. 10.1016/j.brainres.2017.05.016
    1. Ramagiri S., Taliyan R. (2017b). Remote limb ischemic post conditioning during early reperfusion alleviates cerebral ischemic reperfusion injury via GSK-3beta/CREB/BDNF pathway. Eur. J. Pharmacol. 803 84–93. 10.1016/j.ejphar.2017.03.028
    1. Ren C., Gao X., Steinberg G. K., Zhao H. (2008). Limb remote-preconditioning protects against focal ischemia in rats and contradicts the dogma of therapeutic time windows for preconditioning. Neuroscience 151 1099–1103. 10.1016/j.neuroscience.2007.11.056
    1. Ren C., Li N., Li S., Han R., Huang Q., Hu J., et al. (2018a). Limb ischemic conditioning improved cognitive deficits via eNOS-dependent augmentation of angiogenesis after chronic cerebral hypoperfusion in rats. Aging Dis. 9 869–879. 10.14336/ad.2017.1106
    1. Ren C., Li S., Wang B., Han R., Li N., Gao J., et al. (2018b). Limb remote ischemic conditioning increases Notch signaling activity and promotes arteriogenesis in the ischemic rat brain. Behav. Brain Res. 340 87–93. 10.1016/j.bbr.2016.10.036
    1. Ripley A. J., Jeffers M. S., McDonald M. W., Montroy J., Dykes A., Fergusson D. A., et al. (2021). Neuroprotection by remote ischemic conditioning in rodent models of focal ischemia: a systematic review and meta-analysis. Transl. Stroke Res. 12 461–473. 10.1007/s12975-020-00882-1
    1. Rockwood K., Wentzel C., Hachinski V., Hogan D. B., MacKnight C., McDowell I. (2000). Prevalence and outcomes of vascular cognitive impairment. vascular cognitive impairment investigators of the canadian study of health and aging. Neurology 54 447–451.
    1. Roman G. C., Tatemichi T. K., Erkinjuntti T., Cummings J. L., Masdeu J. C., Garcia J. H., et al. (1993). Vascular dementia: diagnostic criteria for research studies. report of the NINDS-AIREN international workshop. Neurology 43 250–260. 10.1212/wnl.43.2.250
    1. Ropcke D. M., Hjortdal V. E., Toft G. E., Jensen M. O., Kristensen S. D. (2012). Remote ischemic preconditioning reduces thrombus formation in the rat. J. Thromb. Haemost. 10 2405–2406. 10.1111/j.1538-7836.2012.04914.x
    1. Rytter N., Carter H., Piil P., Sorensen H., Ehlers T., Holmegaard F., et al. (2020). Ischemic preconditioning improves microvascular endothelial function in remote vasculature by enhanced prostacyclin production. J. Am. Heart Assoc. 9:e016017.
    1. Sachdev P. S., Brodaty H., Valenzuela M. J., Lorentz L., Looi J. C., Wen W., et al. (2004). The neuropsychological profile of vascular cognitive impairment in stroke and TIA patients. Neurology 62 912–919. 10.1212/01.wnl.0000115108.65264.4b
    1. Saxton R. A., Sabatini D. M. (2017). mTOR signaling in growth, metabolism, and disease. Cell 169 361–371. 10.1016/j.cell.2017.03.035
    1. Schmidt R., Berghold A., Jokinen H., Gouw A. A., van der Flier W. M., Barkhof F., et al. (2012). White matter lesion progression in LADIS: frequency, clinical effects, and sample size calculations. Stroke 43 2643–2647. 10.1161/strokeaha.112.662593
    1. Sexton E., McLoughlin A., Williams D. J., Merriman N. A., Donnelly N., Rohde D., et al. (2019). Systematic review and meta-analysis of the prevalence of cognitive impairment no dementia in the first year post-stroke. Eur. Stroke J. 4 160–171. 10.1177/2396987318825484
    1. Shaji K. S., Sivakumar P. T., Rao G. P., Paul N. (2018). Clinical practice guidelines for management of dementia. Indian J. Psychiatry 60(Suppl. 3), S312–S328.
    1. Shekhar S., Liu R., Travis O. K., Roman R. J., Fan F. (2017). Cerebral autoregulation in hypertension and ischemic stroke: a mini review. J. Pharm. Sci. Exp. Pharmacol. 2017 21–27. 10.29199/japs.101013
    1. Shi Y., Thrippleton M. J., Makin S. D., Marshall I., Geerlings M. I., de Craen A. J. M., et al. (2016). Cerebral blood flow in small vessel disease: a systematic review and meta-analysis. J. Cereb. Blood Flow Metab. 36 1653–1667. 10.1177/0271678x16662891
    1. Sigfridsson E., Marangoni M., Hardingham G. E., Horsburgh K., Fowler J. H. (2020). Deficiency of Nrf2 exacerbates white matter damage and microglia/macrophage levels in a mouse model of vascular cognitive impairment. J. Neuroinflammation 17:367.
    1. Sigfridsson E., Marangoni M., Johnson J. A., Hardingham G. E., Fowler J. H., Horsburgh K. (2018). Astrocyte-specific overexpression of Nrf2 protects against optic tract damage and behavioural alterations in a mouse model of cerebral hypoperfusion. Sci. Rep. 8:12552.
    1. Sinha K., Sun C., Kamari R., Bettermann K. (2020). Current status and future prospects of pathophysiology-based neuroprotective drugs for the treatment of vascular dementia. Drug Discov. Today 25 793–799. 10.1016/j.drudis.2020.01.003
    1. Skrobot O. A., O’Brien J., Black S., Chen C., DeCarli C., Erkinjuntti T., et al. (2017). The vascular impairment of cognition classification consensus study. Alzheimers Dement. 13 624–633.
    1. Song M. K., Kim Y. J., Lee J. M., Kim Y. J. (2020). Neurovascular integrative effects of long-term environmental enrichment on chronic cerebral hypoperfusion rat model. Brain Res. Bull. 163 160–169. 10.1016/j.brainresbull.2020.07.020
    1. Su S. H., Wu Y. F., Wang D. P., Hai J. (2018). Inhibition of excessive autophagy and mitophagy mediates neuroprotective effects of URB597 against chronic cerebral hypoperfusion. Cell Death Dis. 9:733.
    1. Sun Z., Gao C., Gao D., Sun R., Li W., Wang F., et al. (2021). Reduction in pericyte coverage leads to blood-brain barrier dysfunction via endothelial transcytosis following chronic cerebral hypoperfusion. Fluids Barriers CNS 18:21.
    1. Tarantini S., Valcarcel-Ares M. N., Toth P., Yabluchanskiy A., Tucsek Z., Kiss T., et al. (2019a). Nicotinamide mononucleotide (NMN) supplementation rescues cerebromicrovascular endothelial function and neurovascular coupling responses and improves cognitive function in aged mice. Redox Biol. 24:101192. 10.1016/j.redox.2019.101192
    1. Tarantini S., Valcarcel-Ares N. M., Yabluchanskiy A., Fulop G. A., Hertelendy P., Gautam T., et al. (2018). Treatment with the mitochondrial-targeted antioxidant peptide SS-31 rescues neurovascular coupling responses and cerebrovascular endothelial function and improves cognition in aged mice. Aging Cell 17:e12731. 10.1111/acel.12731
    1. Tarantini S., Yabluchanskiy A., Csipo T., Fulop G., Kiss T., Balasubramanian P., et al. (2019b). Treatment with the poly(ADP-ribose) polymerase inhibitor PJ-34 improves cerebromicrovascular endothelial function, neurovascular coupling responses and cognitive performance in aged mice, supporting the NAD+ depletion hypothesis of neurovascular aging. Geroscience 41 533–542. 10.1007/s11357-019-00101-2
    1. Thammisetty S. S., Renaud L., Picher-Martel V., Weng Y. C., Calon F., Saikali S., et al. (2021). Targeting TDP-43 pathology alleviates cognitive and motor deficits caused by chronic cerebral hypoperfusion. Neurotherapeutics 10.1007/s13311-021-01015-1018 Online ahead of print.
    1. Tian A., Ma X., Li H., Zhang R. (2020). Dl-3n-butylphthalide improves spatial learning and memory in rats with vascular dementia by reducing autophagy via regulation of the mTOR signaling pathway. Exp. Ther. Med. 19 1940–1946.
    1. Tirziu D., Jaba I. M., Yu P., Larrivee B., Coon B. G., Cristofaro B., et al. (2012). Endothelial nuclear factor-kappaB-dependent regulation of arteriogenesis and branching. Circulation 126 2589–2600. 10.1161/circulationaha.112.119321
    1. Tong X. Z., Cui W. F., Li Y., Su C., Shao Y. J., Liang J. W., et al. (2019). Chronic remote ischemic preconditioning-induced increase of circulating hSDF-1alpha level and its relation with reduction of blood pressure and protection endothelial function in hypertension. J. Hum. Hypertens. 33 856–862. 10.1038/s41371-018-0151-1
    1. Touyz R. M., Rios F. J., Alves-Lopes R., Neves K. B., Camargo L. L., Montezano A. C. (2020). Oxidative stress: a unifying paradigm in hypertension. Can. J. Cardiol. 36 659–670. 10.1016/j.cjca.2020.02.081
    1. Uemura M. T., Maki T., Ihara M., Lee V. M. Y., Trojanowski J. Q. (2020). Brain microvascular pericytes in vascular cognitive impairment and dementia. Front. Aging Neurosci. 12:80.
    1. Ungvari Z., Tarantini S., Donato A. J., Galvan V., Csiszar A. (2018). Mechanisms of vascular aging. Circ. Res. 123 849–867.
    1. van der Flier W. M., Skoog I., Schneider J. A., Pantoni L., Mok V., Chen C. L. H., et al. (2018). Vascular cognitive impairment. Nat. Rev. Dis. Primers 4: 18003.
    1. van der Veen P. H., Muller M., Vincken K. L., Hendrikse J., Mali W. P., van der Graaf Y., et al. (2015). Longitudinal relationship between cerebral small-vessel disease and cerebral blood flow: the second manifestations of arterial disease-magnetic resonance study. Stroke 46 1233–1238. 10.1161/strokeaha.114.008030
    1. Vanhoutte P. M., Zhao Y., Xu A., Leung S. W. (2016). Thirty years of saying NO: sources, fate, actions, and misfortunes of the endothelium-derived vasodilator mediator. Circ. Res. 119 375–396. 10.1161/circresaha.116.306531
    1. Verouhis D., Saleh N., Settergren M., Sorensson P., Gourine A., Pernow J. (2019). Remote ischemic conditioning protects against endothelial ischemia-reperfusion injury via a glucagon-like peptide-1 receptor-mediated mechanism in humans. Int. J. Cardiol. 274 40–44. 10.1016/j.ijcard.2018.09.061
    1. Wallin A., Román G. C., Esiri M., Kettunen P., Svensson J., Paraskevas G. P., et al. (2018). Update on vascular cognitive impairment associated with subcortical small-vessel disease. J. Alzheimers Dis. 62 1417–1441. 10.3233/jad-170803
    1. Wan K., Mao F., Li Q., Wang L., Wei Z., Wang P., et al. (2020). Neuritin-overexpressing transgenic mice demonstrate enhanced neuroregeneration capacity and improved spatial learning and memory recovery after ischemia-reperfusion injury. Aging 13 2681–2699. 10.18632/aging.202318
    1. Wang F., Zhang C., Hou S., Geng X. (2019). Synergistic effects of mesenchymal stem cell transplantation and repetitive transcranial magnetic stimulation on promoting autophagy and synaptic plasticity in vascular dementia. J. Gerontol. A Biol. Sci. Med. Sci. 74 1341–1350. 10.1093/gerona/gly221
    1. Wang H., Zhang Q., Xu Y., Bian H., Si C., Yan Z., et al. (2017). Remote ischemic conditioning improves cognitive function during cerebral vascular injury through the induction of autophagy. Curr. Neurovasc. Res. 14 250–257.
    1. Wang N., He J., Pan C., Wang J., Ma M., Shi X., et al. (2019). Resveratrol activates autophagy via the AKT/mTOR signaling pathway to improve cognitive dysfunction in rats with chronic cerebral hypoperfusion. Front. Neurosci. 13:859.
    1. Wang X. X., Zhang B., Xia R., Jia Q. Y. (2020). Inflammation, apoptosis and autophagy as critical players in vascular dementia. Eur. Rev. Med. Pharmacol. Sci. 24 9601–9614.
    1. Wang X., Wang Y., Wang L., Shi S., Yang C., Jiang W., et al. (2020). Oligogenesis in the “oligovascular unit” involves PI3K/AKT/mTOR signaling in hypoxic-ischemic neonatal mice. Brain Res. Bull. 155 81–91. 10.1016/j.brainresbull.2019.11.013
    1. Wang Y., Meng R., Song H., Liu G., Hua Y., Cui D., et al. (2017). Remote ischemic conditioning may improve outcomes of patients with cerebral small-vessel disease. Stroke 48 3064–3072. 10.1161/strokeaha.117.017691
    1. Wojsiat J., Zoltowska K. M., Laskowska-Kaszub K., Wojda U. (2018). Oxidant/Antioxidant imbalance in Alzheimer’s disease: therapeutic and diagnostic prospects. Oxid. Med. Cell Longev. 2018:6435861.
    1. Wolters F. J., Zonneveld H. I., Hofman A., van der Lugt A., Koudstaal P. J., Vernooij M. W., et al. (2017). Cerebral perfusion and the risk of dementia: a population-based study. Circulation 136 719–728. 10.1161/circulationaha.117.027448
    1. Wu Y. T., Beiser A. S., Breteler M. M. B., Fratiglioni L., Helmer C., Hendrie H. C., et al. (2017). The changing prevalence and incidence of dementia over time - current evidence. Nat. Rev. Neurol. 13 327–339. 10.1038/nrneurol.2017.63
    1. Xia D., Sui R., Min L., Zhang L., Zhang Z. (2019). Fastigial nucleus stimulation ameliorates cognitive impairment via modulating autophagy and inflammasomes activation in a rat model of vascular dementia. J. Cell Biochem. 120 5108–5117. 10.1002/jcb.27787
    1. Xu L., Qu C., Qu C., Shen J., Song H., Li Y., et al. (2020). Improvement of autophagy dysfunction as a potential mechanism for environmental enrichment to protect blood-brain barrier in rats with vascular cognitive impairment. Neurosci. Lett. 739:135437. 10.1016/j.neulet.2020.135437
    1. Xu T., Gong Z., Zhu W. Z., Wang J. F., Li B., Chen F., et al. (2011). Remote ischemic preconditioning protects neurocognitive function of rats following cerebral hypoperfusion. Med. Sci. Monit. 17 BR299–BR304.
    1. Yamada M., Mimori Y., Kasagi F., Miyachi T., Ohshita T., Sasaki H. (2009). Incidence and risks of dementia in Japanese women: radiation effects research foundation adult health study. J. Neurol. Sci. 283 57–61. 10.1016/j.jns.2009.02.338
    1. Yang C., Zhang X., Gao J., Wang M., Yang Z. (2017). Arginine vasopressin ameliorates spatial learning impairments in chronic cerebral hypoperfusion via V1a receptor and autophagy signaling partially. Transl. Psychiatry 7:e1174. 10.1038/tp.2017.121
    1. Yang T., Sun Y., Lu Z., Leak R. K., Zhang F. (2017). The impact of cerebrovascular aging on vascular cognitive impairment and dementia. Ageing Res. Rev. 34 15–29. 10.1016/j.arr.2016.09.007
    1. Yang Y., Tian T., Wang Y., Li Z., Xing K., Tian G. (2019). SIRT6 protects vascular endothelial cells from angiotensin II-induced apoptosis and oxidative stress by promoting the activation of Nrf2/ARE signaling. Eur. J. Pharmacol. 859:172516. 10.1016/j.ejphar.2019.172516
    1. Yang Y., Zhao L., Li N., Dai C., Yin N., Chu Z., et al. (2020). Estrogen exerts neuroprotective effects in vascular dementia rats by suppressing autophagy and activating the wnt/beta-catenin signaling pathway. Neurochem. Res. 45 2100–2112. 10.1007/s11064-020-03072-5
    1. Yehia L., Ngeow J., Eng C. (2019). PTEN-opathies: from biological insights to evidence-based precision medicine. J. Clin. Invest. 129 452–464. 10.1172/jci121277
    1. You J., Feng L., Bao L., Xin M., Ma D., Feng J. (2019). Potential applications of remote limb ischemic conditioning for chronic cerebral circulation insufficiency. Front. Neurol. 10:467.
    1. Zare Mehrjerdi F., Aboutaleb N., Habibey R., Ajami M., Soleimani M., Arabian M., et al. (2013). Increased phosphorylation of mTOR is involved in remote ischemic preconditioning of hippocampus in mice. Brain Res. 1526 94–101. 10.1016/j.brainres.2013.06.018
    1. Zhang S. Q., Ding F. F., Liu Q., Tian Y. Y., Wang W., Qin C. (2019). Autophagy inhibition exerts neuroprotection on white matter ischemic damage after chronic cerebral hypoperfusion in mice. Brain Res. 1721:146337. 10.1016/j.brainres.2019.146337
    1. Zhao W., Li S., Ren C., Meng R., Ji X. (2018). Chronic remote ischemic conditioning may mimic regular exercise:perspective from clinical studies. Aging Dis. 9 165–171. 10.14336/ad.2017.1015
    1. Zhou D., Ding J., Ya J., Pan L., Bai C., Guan J., et al. (2019). Efficacy of remote ischemic conditioning on improving WMHs and cognition in very elderly patients with intracranial atherosclerotic stenosis. Aging 11 634–648. 10.18632/aging.101764
    1. Zlokovic B. V., Gottesman R. F., Bernstein K. E., Seshadri S., McKee A., Snyder H., et al. (2020). Vascular contributions to cognitive impairment and dementia (VCID): a report from the 2018 national heart, lung, and blood institute and national institute of neurological disorders and stroke workshop. Alzheimers Dement. 16 1714–1733. 10.1002/alz.12157

Source: PubMed

3
S'abonner