Feasibility of Cognitive-Motor Exergames in Geriatric Inpatient Rehabilitation: A Pilot Randomized Controlled Study

Patrizia Altorfer, Manuela Adcock, Eling D de Bruin, Florian Graf, Eleftheria Giannouli, Patrizia Altorfer, Manuela Adcock, Eling D de Bruin, Florian Graf, Eleftheria Giannouli

Abstract

Objective: The aim of this pilot randomized clinical trial was to test the feasibility and efficacy of an exergame-based cognitive-motor training program in geriatric inpatients. Methods: The study participants were randomly allocated to either the exergame intervention group or the control group. The control group received the standard rehabilitation treatment offered in the clinic. In addition to the standard rehabilitation program, the intervention group conducted supervised exergame training on 5 days per week using the Dividat Senso, an exergame system specifically designed for older adults. The primary outcome was feasibility, as measured by e.g., adherence rate, attrition rate, occurrence of adverse events, System Usability Scale (SUS) and NASA-TLX score. Secondary outcomes included measures of physical and cognitive functioning such as comfortable walking speed, maximal walking speed, dual task walking speed, Short Physical Performance Battery (SPPB), Timed Up and Go test (TUG), Color-Word Interference test (D-KEFS), Trail Making test A and B (TMT), Go/No-Go test and Step Reaction Time test (SRTT). All secondary outcome measures were assessed pre- and post-intervention. Results: Thirty-nine persons were included in the study. Average adherence rate was 99%, there were no intervention-related dropouts and no adverse events. The mean System Usability Scale (SUS) score was 83.6 and the mean NASA-TLX score 45.5. Significant time-group interaction effects were found for the dual task walking speed, the Go/No-Go test and Step Reaction Time test (SRTT). Conclusion: Exergaming is a feasible, safe and effective cognitive-motor training approach in inpatient rehabilitation of geriatric patients. Incorporating exergaming in the rehabilitation program of geriatric patients offers potential to reduce fall risk factors and to increase patients' exercise motivation and rehabilitation success.

Keywords: balance training; cognitive training; exercise; exergaming; fall prevention; older adults; step training.

Conflict of interest statement

EB was a co-founder of Dividat, the spin-off company that developed the video step platform used for the training of the seniors and is associated to the company as an external advisor. No revenue was paid (or promised to be paid) directly to EB or his institution over the 36 months prior to submission of the work. MA works as a Head of Research at Dividat. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Altorfer, Adcock, de Bruin, Graf and Giannouli.

Figures

FIGURE 1
FIGURE 1
Flow diagram of screening and group allocation (based on Eldridge et al., 2016).
FIGURE 2
FIGURE 2
Feasibility outcomes. (A) Mean ratings ± standard deviation of each item of the NASA-TLX to assess training workload, (B) median and interquartile range of the ratings of each SUS item.
FIGURE 3
FIGURE 3
Boxplots of physical outcomes of each group at pre- and post-measurements. (A) Velocity for normal walking 10 m, (B) maximal velocity for walking 10 m, (C) velocity for walking 10 m while dual tasking, (D) Time required to stand up five times, (E) Total Score achieved in the Short Physical Performance Battery (SPPB), (F) Time required for the Timed Up and Go (TUG). *P < 0.05, **P < 0.01, ***P < 0.001.
FIGURE 4
FIGURE 4
Boxplots of cognitive outcomes of each group at pre- and post-measurements. (A) Reaction Time in the Go/No-Go Test on the Dividat Senso, (B) Reaction Time in the 6-Step Reaction Time test (SRTT) on the Dividat Senso, (C) Time required for the first Stroop task (Color Naming), (D) time required for the second Stroop task (Word Reading), (E) time required for the third Stroop task (Inhibition), (F) time required for the fourth Stroop task (Inhibition/Switching), (G) time required for the Trail Making Test (TMT) part A, (H) time required for the Trail Making Test (TMT) part B. *P < 0.05, **P < 0.01, ***P < 0.001.

References

    1. Abbott J. H. (2014). The distinction between randomized clinical trials (RCTs) and preliminary feasibility and pilot studies: what they are and are not. J. Orthopaedic Sports Phys. Ther. Movement Sci. Media 44 555–558. 10.2519/jospt.2014.0110
    1. Bamidis P. D., Fissler P., Papageorgiou S. G., Zilidou V., Konstantinidis E. I., Billis A. S., et al. (2015). Gains in cognition through combined cognitive and physical training: the role of training dosage and severity of neurocognitive disorder. Front. Aging Neurosci. 7:152. 10.3389/fnagi.2015.00152
    1. Bangor A., Kortum P., Miller J. (2009). Determining what individual SUS scores mean. J. Usabil. Stud. 4 114–123.
    1. Bayot M., Dujardin K., Dissaux L., Tard C., Defebvre L., Bonnet C. T., et al. (2020). Can dual-task paradigms predict Falls better than single task? A systematic literature review. Neurophysiol. Clin. 50 401–440. 10.1016/j.neucli.2020.10.008
    1. Bonnechère B., Jansen B., Omelina L., Van Sint Jan S. (2016). The use of commercial video games in rehabilitation: a systematic review. Int. J. Rehabil. Res. 39 277–290. 10.1097/mrr.0000000000000190
    1. Brooke J. (1996). SUS-A quick and dirty usability scale. Usability Eval. Ind. 189, 4–7.
    1. Cadore E. L., Rodríguez-Mañas L., Sinclair A., Izquierdo M. (2013). Effects of different exercise interventions on risk of falls, gait ability, and balance in physically frail older adults: a systematic review. Rejuvenation Res. 16 105–114. 10.1089/rej.2012.1397
    1. Chao Y. Y., Scherer Y. K., Montgomery C. A., Wu Y. W., Lucke K. T. (2015). Physical and psychosocial effects of wii fit exergames use in assisted living residents: a pilot study. Clin. Nurs. Res. 24 589–603. 10.1177/1054773814562880
    1. Cho B. L., Scarpace D., Alexander N. B. (2004). Tests of stepping as indicators of mobility, balance, and fall risk in balance-impaired older adults. J. Am. Geriatr. Soc. 52 1168–1173. 10.1111/j.1532-5415.2004.52317.x
    1. Choi S. D., Guo L., Kang D., Xiong S. (2017). Exergame technology and interactive interventions for elderly fall prevention: a systematic literature review. Appl. Ergon. 65 570–581. 10.1016/j.apergo.2016.10.013
    1. Cogliati M., Cudicio A., Negro F., Gaffurini P., Bissolotti L. M., Orizio C. (2019). Influence of age on motor control accuracy during static ramp contractions. Exp. Brain Res. 237 1889–1897. 10.1007/s00221-019-05524-z
    1. Corregidor-Sánchez A. I., Segura-Fragoso A., Rodríguez-Hernández M., Criado-Alvarez J. J., González-Gonzalez J., Polonio-López B. (2020a). Can exergames contribute to improving walking capacity in older adults? A systematic review and meta-analysis. Maturitas 132 40–48. 10.1016/j.maturitas.2019.12.006
    1. Corregidor-Sánchez A. I., Segura-Fragoso A., Rodríguez-Hernández M., Jiménez-Rojas C., Polonio-López B., Criado-Álvarez J. J. (2020b). Effectiveness of virtual reality technology on functional mobility of older adults: systematic review and meta-analysis. Age Ageing 50 370–379. 10.1093/ageing/afaa197
    1. Crotty M., Laver K., Quinn S., Ratcliffe J., George S., Whitehead C., et al. (2011). “Is use of the nintendo wii fit in physiotherapy as effective as conventional physiotherapy training for hospitalised older adults?” in Procceding of the 2011 International Conference on Virtual Rehabilitation.
    1. Crowe S. F. (1998). The differential contribution of mental tracking, cognitive flexibility, visual search, and motor speed to performance on parts A and B of the trail making test. J. Clin. Psychol. 54 585–591. 10.1002/(sici)1097-4679(199808)54:5&lt;585::aid-jclp4&gt;;2-k
    1. Cuevas-Lara C., Izquierdo M., Sáez de Asteasu M. L., Ramírez-Vélez R., Zambom-Ferraresi F., Zambom-Ferraresi F., et al. (2021). Impact of game-based interventions on health-related outcomes in hospitalized older patients: a systematic review. J. Am. Med. Directors Assoc. 22 364–371.e1. 10.1016/j.jamda.2020.07.027
    1. De Bruin E., Reith A., Dorflinger M. (2011). Feasibility of strength-balance training extended with computer game dancing in older people; does it affect dual task costs of walking? J. Nov. Physiother. 1 1–7.
    1. Delis D. C., Kaplan E., Kramer J. H. (2001). Delis-Kaplan Executive Function Scale. San Antonio, TX: Psychol Corp.
    1. Donath L., Rössler R., Faude O. (2016). Effects of virtual reality training (exergaming) compared to alternative exercise training and passive control on standing balance and functional mobility in healthy community-dwelling seniors: a meta-analytical review. Sports Med. 46 1293–1309. 10.1007/s40279-016-0485-1
    1. Eldridge S. M., Chan C. L., Campbell M. J., Bond C. M., Hopewell S., Thabane L., et al. (2016). CONSORT 2010 statement: extension to randomised pilot and feasibility trials. Pilot Feasibil. Stud. 2 1–32.
    1. Fang Q., Ghanouni P., Anderson S. E., Touchett H., Shirley R., Fang F., et al. (2020). Effects of exergaming on balance of healthy older adults: a systematic review and meta-analysis of randomized controlled trials. Games Health J. 9 11–23. 10.1089/g4h.2019.0016
    1. Franco J. R., Jacobs K., Inzerillo C., Kluzik J. (2012). The effect of the nintendo wii fit and exercise in improving balance and quality of life in community dwelling elders. Technol. Health Care 20 95–115. 10.3233/THC-2011-0661
    1. Gao M., Kortum P., Oswald F. L. (2020). Multi-language toolkit for the system usability scale. Int. J. Hum. Comput. Interact. 36 1883–1901. 10.1080/10447318.2020.1801173
    1. Giannouli E., Morat T., Zijlstra W. A. (2020). Novel square-stepping exercise program for older adults (StepIt): rationale and implications for falls prevention. Front. Med. 6:318. 10.3389/fmed.2019.00318
    1. Grier R. A. (2015). “How high is high? A meta-analysis of NASA-TLX global workload scores,” in Proceedings of the Human Factors and Ergonomics Society, 1727–1731. 10.1177/1541931215591373
    1. Hart S. G., Staveland L. E. (1988). “Development of NASA-TLX (Task Load Index): results of empirical and theoretical research,” in Advances in Psychology, Vol. 52, eds Hancock P., Meshkati N. (Amsterdam: North-Holland: ), 139–183.
    1. Hartholt K. A., Van Beeck E. F., Polinder S., Van Der Velde N., Van Lieshout E. M. M., Panneman M. J. M., et al. (2011). Societal consequences of falls in the older population: injuries, healthcare costs, and long-term reduced quality of life. J. Trauma Inj. Infect Crit. Care 71 748–753. 10.1097/TA.0b013e3181f6f5e5
    1. Herman T., Mirelman A., Giladi N., Schweiger A., Hausdorff J. M. (2010). Executive control deficits as a prodrome to falls in healthy older adults: a prospective study linking thinking, walking, and falling. J. Gerontol Ser Biol. Sci. Med. Sci. 65 1086–1092. 10.1093/gerona/glq077
    1. Homack S., Lee D., Riccio C. A. (2005). Test review: delis-kaplan executive function system. J. Clin. Exp. Neuropsychol. 27 599–609. 10.1080/13803390490918444
    1. Jones Chesters M. (2008). D-KEFS Validity: An Update of the Research. Oxford: Oxford Pearson Assessment.
    1. Jorgensen M. G., Laessoe U., Hendriksen C., Nielsen O. B. F., Aagaard P. (2013). Efficacy of nintendo wii training on mechanical leg muscle function and postural balance in community-dwelling older adults: a randomized controlled trial. J. Gerontol Ser. A Biol. Sci. Med. Sci. 68 845–852. 10.1093/gerona/gls222
    1. Jung D. I., Ko D. S., Jeong M. A. (2015). Kinematic effect of nintendo wiitm sports program exercise on obstacle gait in elderly women with falling risk. J. Phys. Ther. Sci. 27 1397–1400. 10.1589/jpts.27.1397
    1. Kamkarhaghighi M., Mirza-Babaei P., El-Khatib K., Gerling K. M. (2017). Architecture guideline for game-based stroke rehabilitation. World J. Sci. Technol. Sustain Dev. 14 228–240. 10.1108/wjstsd-06-2016-0039
    1. Kappen D. L., Mirza-Babaei P., Nacke L. E. (2019). Older adults’ physical activity and exergames: a systematic review. Int. J. Hum. Comput. Interact. 35 140–167.
    1. Khow K. S. F., Visvanathan R. (2017). Falls in the aging population. Clin. Geriatr. Med. 33 357–368.
    1. Kim J., Son J., Ko N., Yoon B. (2013). Unsupervised virtual reality-based exercise program improves hip muscle strength and balance control in older adults: a pilot study. Arch. Phys. Med. Rehabil. 94 937–943. 10.1016/j.apmr.2012.12.010
    1. Knols R. H., Vanderhenst T., Verra M. L., De Bruin E. D. (2016). Exergames for patients in acute care settings: systematic review of the reporting of methodological quality, FITT components, and program intervention details. Games Health J. 5 224–235. 10.1089/g4h.2015.0067
    1. Kojima G., Kendrick D., Skelton D. A., Morris R. W., Gawler S., Iliffe S. (2015). Frailty predicts short-term incidence of future falls among British community-dwelling older people: a prospective cohort study nested within a randomised controlled trial. BMC Geriatr. 15:155. 10.1186/s12877-015-0152-7
    1. Kramer A. F., Hahn S., Cohen N. J., Banich M. T., McAuley E., Harrison C. R., et al. (1999). Ageing, fitness and neurocognitive function. Nature 400 418–419. 10.1038/22682
    1. Lai C. H., Peng C. W., Chen Y. L., Huang C. P., Hsiao Y. L., Chen S. C. (2013). Effects of interactive video-game based system exercise on the balance of the elderly. Gait Posture. 37 511–515.
    1. Lee A., Biggan J. R., Taylor W., Ray C. (2014). The effects of a nintendo wii exercise intervention on gait in older adults. Act. Adapt. Aging. 38 53–69.
    1. Levin O., Netz Y., Ziv G. (2017). The beneficial effects of different types of exercise interventions on motor and cognitive functions in older age: a systematic review. Eur. Rev. Aging Phys. Activity 14:20.
    1. Lövdén M., Bäckman L., Lindenberger U., Schaefer S., Schmiedek F. A. (2010). Theoretical framework for the study of adult cognitive plasticity. Psychol. Bull. 136 659–676. 10.1037/a0020080
    1. Luchies C. W., Alexander N. B., Schultz A. B., Ashton-Miller J. (1994). Stepping responses of young and old adults to postural disturbances: kinematics. J. Am. Geriatr. Soc. 42 506–512. 10.1111/j.1532-5415.1994.tb04972.x
    1. Maki B. E., Edmondstone M. A., McIlroy W. E. (2000). Age-related differences in laterally directed compensatory stepping behavior. J. Gerontol Ser A Biol. Sci. Med. Sci. 55 M270–M277.
    1. McAllister L. S., Palombaro K. M. (2020). Modified 30-second sit-to-stand test: reliability and validity in older adults unable to complete traditional sit-to-stand testing. J. Geriatr. Phys. Ther. 43 153–158. 10.1519/JPT.0000000000000227
    1. Melzer I., Kurz I., Shahar D., Levi M., Oddsson L. (2007). Application of the voluntary step execution test to identify elderly fallers. Age Ageing 36 532–537. 10.1093/ageing/afm068
    1. Middleton A., Fritz S. L., Lusardi M. (2015). Walking speed: the functional vital sign. J. Aging Phys. Activity 23 314–322.
    1. Mijnarends D. M., Meijers J. M. M., Halfens R. J. G., Ter Borg S., Luiking Y. C., Verlaan S., et al. (2013). Validity and reliability of tools to measure muscle mass, strength, and physical performance in community-dwelling older people: a systematic review. J. Am. Med. Directors Assoc. 14 170–178. 10.1016/j.jamda.2012.10.009
    1. Moore A. J., Holden M. A., Foster N. E., Jinks C. (2020). Therapeutic alliance facilitates adherence to physiotherapy-led exercise and physical activity for older adults with knee pain: a longitudinal qualitative study. J. Physiother. 66 45–53. 10.1016/j.jphys.2019.11.004
    1. Morat M., Bakker J., Hammes V., Morat T., Giannouli E., Zijlstra W., et al. (2019). Effects of stepping exergames under stable versus unstable conditions on balance and strength in healthy community-dwelling older adults: a three-armed randomized controlled trial. Exp. Gerontol. 127:110719. 10.1016/j.exger.2019.110719
    1. Muir-Hunter S. W., Wittwer J. E. (2016). Dual-task testing to predict falls in community-dwelling older adults: a systematic review. Physiotherapy 102 29–40. 10.1016/j.physio.2015.04.011
    1. Nyman S. R., Victor C. R. (2011). Older people’s recruitment, sustained participation, and adherence to falls prevention interventions in institutional settings: a supplement to the cochrane systematic review. Age Ageing 40 430–436. 10.1093/ageing/afr016
    1. Okubo Y., Schoene D., Lord S. R. (2017). Step training improves reaction time, gait and balance and reduces falls in older people: a systematic review and meta-analysis. Br. J. Sports Med. 51 586–593. 10.1136/bjsports-2015-095452
    1. Okubo Y., Schoene D., Caetano M. J., Pliner E. M., Osuka Y., Toson B., et al. (2021). Stepping impairment and falls in older adults: a systematic review and meta-analysis of volitional and reactive step tests. Ageing Res. Rev. 66:101238. 10.1016/j.arr.2020.101238
    1. Pacheco T. B. F., De Medeiros C. S. P., De Oliveira V. H. B., Vieira E. R., De Cavalcanti F. A. C. (2020). Effectiveness of exergames for improving mobility and balance in older adults: a systematic review and meta-analysis. Syst. Rev. 9:163. 10.1186/s13643-020-01421-7
    1. Padala K. P., Padala P. R., Lensing S. Y., Dennis R. A., Bopp M. M., Parkes C. M., et al. (2017). Efficacy of wii-fit on static and dynamic balance in community dwelling older veterans: a randomized controlled pilot trial. J. Aging Res. 2017:4653635. 10.1155/2017/4653635
    1. Park D. C. (2000). The basic mechanism, accounting for age-related decline in cognitive function. Cogn. Aging Prim. 2000 3–21.
    1. Park E. C., Kim S. G., Lee C. W. (2015). The effects of virtual reality game exercise on balance and gait of the elderly. J. Phys. Ther. Sci. 27 1157–1159.
    1. Perera S., Mody S. H., Woodman R. C., Studenski S. A. (2006). Meaningful change and responsiveness in common physical performance measures in older adults. J. Am. Geriatr. Soc. 54 743–749.
    1. Podsiadlo D., Richardson S. (1991). The timed up and go: a test of basic functional mobility for frail elderly persons. J. Am. Geriatr. Soc. 39 142–148.
    1. Proffitt R., Lange B., Chen C., Winstein C. (2015). A comparison of older adults’ subjective experiences with virtual and real environments during dynamic balance activities. J. Aging Phys. Act. 23 24–33. 10.1123/japa.2013-0126
    1. Raichlen D. A., Alexander G. E. (2017). Adaptive capacity: an evolutionary neuroscience model linking exercise, cognition, and brain health. Trends Neurosci. 40 408–421. 10.1016/j.tins.2017.05.001
    1. Raichlen D. A., Bharadwaj P. K., Nguyen L. A., Franchetti M. K., Zigman E. K., Solorio A. R., et al. (2020). Effects of simultaneous cognitive and aerobic exercise training on dual-task walking performance in healthy older adults: results from a pilot randomized controlled trial. BMC Geriatr. 20:83. 10.1186/s12877-020-1484-5
    1. Randriambelonoro M., Perrin C., Blocquet A., Kozak D., Fernandez J. T., Marfaing T., et al. (2020). Hospital-to-home transition for older patients: using serious games to improve the motivation for rehabilitationa qualitative study. J. Popul. Ageing. 13 187–205.
    1. Reuter-Lorenz P. A., Festini S. B., Jantz T. K. (2015). “Executive functions and neurocognitive aging,” in Handbook of the Psychology of Aging, eds Schaie K. W., Willis S. (Academic Press; ), 245–262. 10.1016/b978-0-12-411469-2.00013-3
    1. Rowe J. W., Kahn R. L. (1997). Successful aging. Gerontologist 37 433–440.
    1. Said S., Gozdzik M., Roche T. R., Braun J., Rössler J., Kaserer A., et al. (2020). Validation of the raw national aeronautics and space administration task load index (NASA-TLX) questionnaire to assess perceived workload in patient monitoring tasks: pooled analysis study using mixed models. J. Med. Internet Res. 22:e19472. 10.2196/19472
    1. Schoene D., Lord S. R., Delbaere K., Severino C., Davies T. A., Smith S. T. A. (2013). Randomized controlled pilot study of home-based step training in older people using videogame technology. PLoS One 8:e57734. 10.1371/journal.pone.0057734
    1. Schoene D., Valenzuela T., Lord S. R., De Bruin E. D. (2014). The effect of interactive cognitive-motor training in reducing fall risk in older people: a systematic review. BMC Geriatr. 14:107. 10.1186/1471-2318-14-107
    1. Schulz B. W., Jongprasithporn M., Hart-Hughes S. J., Bulat T. (2013). Effects of step length, age, and fall history on hip and knee kinetics and knee co-contraction during the maximum step length test. Clin. Biomech. 28 933–940. 10.1016/j.clinbiomech.2013.08.002
    1. Segev-Jacubovski O., Herman T., Yogev-Seligmann G., Mirelman A., Giladi N., Hausdorff J. M. (2011). The interplay between gait, falls and cognition: can cognitive therapy reduce fall risk? Exp. Rev. Neurother. 11 1057–1075. 10.1586/ern.11.69
    1. Seidler R. D., Bernard J. A., Burutolu T. B., Fling B. W., Gordon M. T., Gwin J. T., et al. (2010). Motor control and aging: links to age-related brain structural, functional, and biochemical effects. Neurosci. Biobehav. Rev. 34 721–733. 10.1016/j.neubiorev.2009.10.005
    1. Short Physical Performance Battery (SPPB) (2021). National Institutes of Health. Available online at: (accessed March 19, 2021)
    1. Shunk A. W., Davis A. S., Dean R. S. (2007). Review of the delis kaplan executive function system (D-KEFS). Appl. Neuropsychol. 13 275–279.
    1. Sibley K. M., Thomas S. M., Veroniki A. A., Rodrigues M., Hamid J. S., Lachance C. C., et al. (2021). Comparative effectiveness of exercise interventions for preventing falls in older adults: a secondary analysis of a systematic review with network meta-analysis. Exp. Gerontol. 143:111151. 10.1016/j.exger.2020.111151
    1. Silveira P., Van De Langenberg R., Van Het Reve E., Daniel F., Casati F., De Bruin E. D. (2013). Tablet-based strength-balance training to motivate and improve adherence to exercise in independently living older people: a phase II preclinical exploratory trial. J. Med. Internet. Res. 15:e159. 10.2196/jmir.3055
    1. Stanmore E., Stubbs B., Vancampfort D., de Bruin E. D., Firth J. (2017). The effect of active video games on cognitive functioning in clinical and non-clinical populations: a meta-analysis of randomized controlled trials. Neurosci. Biobehav. Rev. 78 34–43. 10.1016/j.neubiorev.2017.04.011
    1. Stevens J. A., Corso P. S., Finkelstein E. A., Miller T. R. (2006). The costs of fatal and non-fatal falls among older adults. Inj. Prev. 12 290–295. 10.1136/ip.2005.011015
    1. Stroop J. R. (1935). Studies of interference in serial verbal reactions. J. Exp. Psychol. 18 643–662.
    1. Sturnieks D. L., St George R., Lord S. R. (2008). Balance disorders in the elderly troubles de l’équilibre chez les personnes âgées. Neurophys. Clin. 38 467–478.
    1. Stürze im Laufe eines Jahre (2017). Federal Statistical Office. Available online at: (accessed April 29, 2021)
    1. Su C. H., Cheng C. H. (2016). Developing and evaluating creativity gamification rehabilitation system: the application of PCA-ANFIS based emotions model. Eurasia J. Math Sci. Technol. Educ. 12 1443–1468.
    1. Tait J. L., Duckham R. L., Milte C. M., Main L. C., Daly R. M. (2017). Influence of sequential vs. simultaneous dual-task exercise training on cognitive function in older adults. Front. Aging Neurosci. 9:368. 10.3389/fnagi.2017.00368
    1. Tombaugh T. N. (2004). Trail making test A and B: normative data stratified by age and education. Arch. Clin. Neuropsychol. 19 203–214. 10.1016/S0887-6177(03)00039-8
    1. Tomczak M., Tomczak E. (2014). The need to report effect size estimates revisited. an overview of some recommended measures of effect size. Trends Sport Sci. 1 19–25. 10.1186/s13054-016-1208-6
    1. Toulotte C., Toursel C., Olivier N. (2012). Wii fit® training vs. adapted physical activities: which one is the most appropriate to improve the balance of independent senior subjects? A randomized controlled study. Clin. Rehabil. 26 827–835. 10.1177/0269215511434996
    1. Tullis T., Albert W. (2008). Measuring the User Experience: Collecting, Analyzing, and Presenting Usability Metrics (Interactive Technologies). Amsterdam: Morgan Kaufmann.
    1. Valenzuela T., Okubo Y., Woodbury A., Lord S. R., Delbaere K. (2018). Adherence to technology-based exercise programs in older adults: a systematic review. J. Geriatr. Phys. Ther. 41 49–61. 10.1519/JPT.0000000000000095
    1. Van Dieën J. H., Pijnappels M. (2017). “Balance control in older adults,” in Locomotion and Posture in Older Adults: The Role of Aging and Movement Disorders, eds Barbieri F., Vitório R. (Cham: Springer; ).
    1. Williams M. A., Soiza R. L., Jenkinson A. M. E., Stewart A. (2010). EXercising with C-omputers in L-ater L-ife (EXCELL) - pilot and feasibility study of the acceptability of the nintendo® WIIFIT in community-dwelling fallers. BMC Res. Notes 3:238.
    1. Wollesen B., Wildbredt A., Van Schooten K. S., Lim M. L., Delbaere K. (2020). The effects of cognitive-motor training interventions on executive functions in older people: a systematic review and meta-analysis. Eur. Rev. Aging Phys. Activity 17:9. 10.1186/s11556-020-00240-y
    1. Zeng N., Pope Z., Lee J. E., Gao Z. (2017). A systematic review of active video games on rehabilitative outcomes among older patients. J. Sport Health Sci. 6 33–43. 10.1016/j.jshs.2016.12.002

Source: PubMed

3
S'abonner