Assessment of Vascular Change Using Swept-Source Optical Coherence Tomography Angiography: A New Theory Explains Central Visual Loss in Behcet's Disease

Thanapong Somkijrungroj, Sritatath Vongkulsiri, Wijak Kongwattananon, Peranut Chotcomwongse, Sasivarin Luangpitakchumpol, Korrawan Jaisuekul, Thanapong Somkijrungroj, Sritatath Vongkulsiri, Wijak Kongwattananon, Peranut Chotcomwongse, Sasivarin Luangpitakchumpol, Korrawan Jaisuekul

Abstract

Objective: To evaluate retinal vascular structural change in ocular Behcet's using optical coherence tomography angiography (OCTA) and fluorescein angiography (FA).

Methods: An analytic cross-sectional study of 37 eyes of 21 Behcet's uveitic patients was performed. Foveal retinal thickness (FRT), perifoveal hypoperfusion areas in superficial capillary plexus (SCP), and deep capillary plexus (DCP) were measured with swept-source optical coherence tomography and OCTA. FA images were used for assessing the vascular features and correlation.

Results: Twenty-one patients were enrolled (52.4% males). The average age at onset was 36.7 ± 12.93 years. The median of disease duration was 5 years (1-25). FRT was 118.1 ± 52.35 μm, which correlated with visual acuity (95% CI -60.47, -13.92). Using OCTA, the area of hypoperfusion in SCP (0.47 ± 0.17 mm2) was smaller than that in DCP (1.94 ± 3.87 mm2) (p < 0.001). Superficial to deep capillary plexus nonperfusion (SCP : DCP) ratio was 0.57 ± 0.27 which had the positive coefficient correlation with visual acuity (95% CI -0.644, -0.015).

Conclusions: OCTA is an alternative noninvasive method to monitor macular ischemia in Behcet. Behcet's uveitis affects DCP more than SCP. Decreasing SCP : DCP ratio and decrease FRT correlates with poor visual acuity. Macular ischemia and DCP loss can be found early and can explain vision loss in Behcet.

Figures

Figure 1
Figure 1
Multimodality imaging in the Behcet uveitis eye with 20/20 visual acuity complain about central visual loss. (a) Fundus photography shows generalized retinal artery attenuation. (b) Fluorescein angiography (FA) demonstrates hypoperfusion area measured in the early phase of FA (yellow area). (c) Superficial capillary plexus (SCP) slap in the optical coherence tomography angiography (OCTA) demonstrates hypoperfusion area in SCP (green area). (d) Deep capillary plexus (DCP) slap in the OCTA demonstrates hypoperfusion area in DCP (green area), and segmentation defect/artifact (red area) mimics hypoperfusion area caused by intraretinal cystoid change (arrow head) which corresponded with (e) structural en-face image and (f) B-scan OCT image. (e) Structural en-face image of DCP slap demonstrates intraretinal cystoid change.

References

    1. Evereklioglu C. Current concepts in the etiology and treatment of Behcet disease. Survey of Ophthalmology. 2005;50(4):297–350. doi: 10.1016/j.survophthal.2005.04.009.
    1. An L., Shen T. T., Wang R. K. Using ultrahigh sensitive optical microangiography to achieve comprehensive depth resolved microvasculature mapping for human retina. Journal of Biomedical Optics. 2011;16(10):p. 106013. doi: 10.1117/1.3642638.
    1. de Carlo T. E., Romano A., Waheed N. K., Duker J. S. A review of optical coherence tomography angiography (OCTA) International Journal Retina Vitreous. 2015;1:p. 5. doi: 10.1186/s40942-015-0005-8.
    1. Kam J., Zhang Q., Lin J., Liu J., Wang R. K., Rezaei K. Optical coherence tomography based microangiography findings in hydroxychloroquine toxicity. Quantitative Imaging in Medicine and Surgery. 2016;6(2):178–183. doi: 10.21037/qims.2016.01.01.
    1. Agrawal R., Xin W., Keane P. A., Chhablani J., Agarwal A. Optical coherence tomography angiography: a non-invasive tool to image end-arterial system. Expert Review of Medical Devices. 2016;13(6):519–521. doi: 10.1080/17434440.2016.1186540.
    1. Chalam K. V., Sambhav K. Optical coherence tomography angiography in retinal diseases. J. Ophthalmic Vis. Res. 2016;11(1):84–92. doi: 10.4103/2008-322X.180709.
    1. Khairallah M., Abroug N., Khochtali S., et al. Optical coherence tomography angiography in patients with Behcet uveitis. Retina. 2016 doi: 10.1097/IAE.0000000000001418.
    1. Criteria for diagnosis of Behcet’s disease. International study group for Behcet's disease. Lancet. 1990;335(8697):1078–1080.
    1. Wang J., Gao X., Huang W., Wang W., Chen S., Du S. Swept-source optical coherence tomography imaging of macular retinal and choroidal structures in healthy eyes. BMC Ophthalmology. 2015;15:p. 122. doi: 10.1186/s12886-015-0110-3.
    1. Kuehlewein L., Tepelus T. C., An L., Durbin M. K., Srinivas S., Sadda S. R. Noninvasive visualization and analysis of the human parafoveal capillary network using swept source OCT optical microangiography. Investigative Ophthalmology & Visual Science. 2015;56(6):3984–3988. doi: 10.1167/iovs.15-16510.
    1. John D., Kuriakose T., Devasahayam S., Braganza A. Dimensions of the foveal avascular zone using the Heidelberg retinal angiogram-2 in normal eyes. Indian Journal of Ophthalmology. 2011;59(1):9–11. doi: 10.4103/0301-4738.73706.
    1. Tan C. S., Chan J. C., Cheong K. X., Ngo W. K., Sadda S. R. Comparison of retinal thicknesses measured using swept-source and spectral-domain optical coherence tomography devices. Ophthalmic Surgery Lasers Imaging Retina. 2015;46(2):172–179. doi: 10.3928/23258160-20150213-23.
    1. Samara W. A., Say E. A., Khoo C. T., et al. Correlation of foveal avascular zone size with foveal morphology in normal eyes using optical coherence tomography angiography. Retina. 2015;35(11):2188–2195. doi: 10.1097/IAE.0000000000000847.
    1. Matsunaga D. R., Yi J. J., De Koo L. O., Ameri H., Puliafito C. A., Kashani A. H. Optical coherence tomography angiography of diabetic retinopathy in human subjects. Ophthalmic Surgery Lasers Imaging Retina. 2015;46(8):796–805. doi: 10.3928/23258160-20150909-03.
    1. Nemiroff J., Phasukkijwatana N., Sarraf D. Optical coherence tomography angiography of deep capillary ischemia. Developments in Ophthalmology. 2016;56:139–145. doi: 10.1159/000442806.
    1. Bozzoni-Pantaleoni F., Gharbiya M., Pirraglia M. P., Accorinti M., Pivetti-Pezzi P. Indocyanine green angiographic findings in Behcet disease. Retina. 2001;21(3):230–236. doi: 10.1097/00006982-200106000-00006.
    1. Atas M., Yuvaci I., Demircan S., et al. Evaluation of the macular, peripapillary nerve fiber layer and choroid thickness changes in Behcet's disease with spectral-domain OCT. Journal of Ophthalmology. 2014;2014:p. 8. doi: 10.1155/2014/865394.865394

Source: PubMed

3
S'abonner