Bone Marrow Immune Microenvironment in Myelodysplastic Syndromes

Olga Kouroukli, Argiris Symeonidis, Periklis Foukas, Myrto-Kalliopi Maragkou, Eleni P Kourea, Olga Kouroukli, Argiris Symeonidis, Periklis Foukas, Myrto-Kalliopi Maragkou, Eleni P Kourea

Abstract

The BM, the major hematopoietic organ in humans, consists of a pleiomorphic environment of cellular, extracellular, and bioactive compounds with continuous and complex interactions between them, leading to the formation of mature blood cells found in the peripheral circulation. Systemic and local inflammation in the BM elicit stress hematopoiesis and drive hematopoietic stem cells (HSCs) out of their quiescent state, as part of a protective pathophysiologic process. However, sustained chronic inflammation impairs HSC function, favors mutagenesis, and predisposes the development of hematologic malignancies, such as myelodysplastic syndromes (MDS). Apart from intrinsic cellular mechanisms, various extrinsic factors of the BM immune microenvironment (IME) emerge as potential determinants of disease initiation and evolution. In MDS, the IME is reprogrammed, initially to prevent the development, but ultimately to support and provide a survival advantage to the dysplastic clone. Specific cellular elements, such as myeloid-derived suppressor cells (MDSCs) are recruited to support and enhance clonal expansion. The immune-mediated inhibition of normal hematopoiesis contributes to peripheral cytopenias of MDS patients, while immunosuppression in late-stage MDS enables immune evasion and disease progression towards acute myeloid leukemia (AML). In this review, we aim to elucidate the role of the mediators of immune response in the initial pathogenesis of MDS and the evolution of the disease.

Keywords: BM; CHIP; HSC niche; MDS; MDSC; immune dysregulation; immunosuppression; inflamm-aging; microenvironment; pathogenesis.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
(1) Megakaryocyte support the preservation of HSC quiescence, through the secretion of CXCL4, TGF-β and TPO. (2) Tregs also contribute to HSC quiescence by generating adenosine, which protects HSCs from oxidative stress. (3) Macrophages express DARC, whose interaction with CD82 on the surface of HSCs restrains their proliferative activity. (4) a-SMA(+) macrophages are capable of COX-2-mediated PGE2 production that maintains low ROS levels in HSCs. (5) Macrophages additionally hinder HSC mobilization through the induction of CXCL12 by stromal cells. (6) Dendritic cells further aid HSC retention in the BM via regulation of vascular permeability and endothelial CXCR2 signaling. HSC inactive, quiescent state inhibits self-renewal and differentiation. (CXCL4 = C-X-C motif ligand 4, CXCL12 = C-X-C motif chemokine ligand 12, CXCR2 = CXC chemokine receptor 2, DARC = Duffy antigen/receptor for chemokines, DC = Dendritic cell, HSC = Hematopoietic stem cell, MK = Megakaryocyte, MΦ = Macrophage, PGE2 = Prostaglandin E2, ROS = Reactive oxygen species, TGF-β = Transforming growth factor beta, TPO = Thrombopoietin, Treg = T regulatory cell).
Figure 2
Figure 2
In the aged BM, there is increased number of pro-inflammatory cytokines that act on HSC receptors (TLRs, TNFRs, IFNRs, IL-27Rα). Various abnormally activated pathways in HSCs (listed above) link HSC senescence and BM inflammation. The overstimulated HSCs are myeloid-biased. Immune cell alterations in the senescent BM are consistent with myeloid skewing. Aged macrophages drive platelet bias via IL-1β. Plasma cells are increased and induce myelopoiesis. Increased NK cells and ABCs in the aged BM lead to TNFα-mediated impairment of B lymphopoiesis. (ABC = Age-associated B cell, AIM2 = Absent in melanoma 2, C-GAS-STING = Cyclic guanosine monophosphate-adenosine monophosphate synthase—Stimulating interferon gene, CLP = Common lymphoid progenitor, CMP = Common myeloid progenitor, DAMPs = Damage-associated molecular patterns, HSC = Hematopoietic stem cell, IFNR = Interferon receptor, IL-1β = Interleukin-1 beta, IL-6 = Interleukin-6, IL-18 = Interleukin-18, IL-27Rα = Interleukin-27 receptor alpha, MΦ = Macrophage, NLRP3 = NOD-, LRR- and pyrin domain-containing protein 3, NK = Natural killer, TGF-β = Transforming growth factor beta, TLR = Toll-like receptor, TNF-α = Tumor necrosis factor-alpha, TNFR = Tumor necrosis factor receptor, Rantes = Regulated upon Activation, Normal T Cell Expressed and Presumably Secreted, RBCs = Red blood cells).
Figure 3
Figure 3
Low-risk MDS is characterized by a pro-apoptotic and cytotoxic microenvironment. (1) Apart from the elevated number of pro-inflammatory cytokines in the BM, there is increased responsiveness of the MDS cells that express the pro-apoptotic receptors, Fas and TNFR1. (2) CD8+ T-cells target MDS cells and exhibit augmented cytotoxicity, partly due to the expression of NKG2D and CD244 receptors. However, CD8+ T-cells suppress also normal hematopoietic cells and inhibit hematopoiesis. (3) MDS myeloid progenitor cells, derived from MDS HSCs, express the prophagocytic molecule CRT, possibly representing the main factor of cellular loss in low-risk MDS. (CRT = Calretinin, Fas = Fas receptor, FasL = Fas ligand, HSCs = Hematopoietic stem cells, IL-1β = Interleukin-1 beta, IL-7 = Interleukin-7, IL-8 = Interleukin-8, IL-12 = Interleukin-12, MΦ = Macrophage, NK2GD = Natural killer group 2D, TNFR1 = Tumor necrosis factor receptor 1).
Figure 4
Figure 4
In contrast to low-risk MDS, immune evasion and decreased apoptosis enable clonal expansion in the BM of high-risk MDS. (1) In high risk MDS cells, there is a preferential expression of the anti-apoptotic TNFR2 and the anti-phagocytic CD47. (2) Macrophages acquire a M2 phenotype and produce IL-10. (3) Tregs expand and contribute to immune suppression. (4) CD8+ T-cell exhaustion is mediated by the expression of immune checkpoint molecules PD-1, PD-L1 and TIM3. (5) TIM3-ligand, Gal9, is expressed on MDSCs, which are induced upon binding of alarmin S100A9 on their CD33 receptor. MDSCs are increased and provide a large amount of immunosuppressive cytokines in the BM of high risk MDS. (6) MSCs are implicated in the anti-inflammatory microenvironment as they are a source of S100A9 and inhibitory molecules, such as TGF-β1, which suppresses DC maturation. (7) NK cells receive inadequate support from MSCs and exhibit impaired maturation, numerical and functional deficiency. (GAL9 = Galectin9, DCs = Dendritic cells, IL-10 = Interleukin-10, M2 MΦ = M2 macrophage, MDSCs = Myeloid-derived suppressor cells, MSCs = Mesenchymal stromal cells, NK = Natural killer, NO = Nitric oxide, PD-1 = Programmed cell death protein 1, PD-L1 = Programmed death-ligand 1, S100A9 = S100 calcium-binding protein A9, SIRPa = Signal regulatory protein alpha, TGF-β = Transforming growth factor-beta, TIM3 = T-cell immunoglobulin and mucin-domain containing 3, TNFR2 = Tumor necrosis factor receptor 2, Tregs = T regulatory cells).

References

    1. Orkin S.H., Zon L.I. Hematopoiesis: An evolving paradigm for stem cell biology. Cell. 2008;132:631–644. doi: 10.1016/j.cell.2008.01.025.
    1. Signer R.A., Morrison S.J. Mechanisms that regulate stem cell aging and life span. Cell Stem Cell. 2013;12:152–165. doi: 10.1016/j.stem.2013.01.001.
    1. Bowman R.L., Busque L., Levine R.L. Clonal Hematopoiesis and Evolution to Hematopoietic Malignancies. Cell Stem Cell. 2018;22:157–170. doi: 10.1016/j.stem.2018.01.011.
    1. Benito A.I., Bryant E., Loken M.R., Sale G.E., Nash R.A., John Gass M., Deeg H.J. NOD/SCID mice transplanted with marrow from patients with myelodysplastic syndrome (MDS) show long-term propagation of normal but not clonal human precursors. Leuk. Res. 2003;27:425–436. doi: 10.1016/S0145-2126(02)00221-7.
    1. Raaijmakers M.H., Mukherjee S., Guo S., Zhang S., Kobayashi T., Schoonmaker J.A., Ebert B.L., Al-Shahrour F., Hasserjian R.P., Scadden E.O., et al. Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature. 2010;464:852–857. doi: 10.1038/nature08851.
    1. Yuan S., Sun G., Zhang Y., Dong F., Cheng H., Cheng T. Understanding the “SMART” features of hematopoietic stem cells and beyond. Sci. China Life Sci. 2021;64:2030–2044. doi: 10.1007/s11427-021-1961-1.
    1. Man Y., Yao X., Yang T., Wang Y. Hematopoietic Stem Cell Niche During Homeostasis, Malignancy, and Bone Marrow Transplantation. Front. Cell Dev. Biol. 2021;9:621214. doi: 10.3389/fcell.2021.621214.
    1. Pioli P.D., Casero D., Montecino-Rodriguez E., Morrison S.L., Dorshkind K. Plasma Cells Are Obligate Effectors of Enhanced Myelopoiesis in Aging Bone Marrow. Immunity. 2019;51:351–366.e6. doi: 10.1016/j.immuni.2019.06.006.
    1. Bruns I., Lucas D., Pinho S., Ahmed J., Lambert M.P., Kunisaki Y., Scheiermann C., Schiff L., Poncz M., Bergman A., et al. Megakaryocytes regulate hematopoietic stem cell quiescence through CXCL4 secretion. Nat. Med. 2014;20:1315–1320. doi: 10.1038/nm.3707.
    1. Zhao M., Perry J.M., Marshall H., Venkatraman A., Qian P., He X.C., Ahamed J., Li L. Megakaryocytes maintain homeostatic quiescence and promote post-injury regeneration of hematopoietic stem cells. Nat. Med. 2014;20:1321–1326. doi: 10.1038/nm.3706.
    1. Nakamura-Ishizu A., Takubo K., Fujioka M., Suda T. Megakaryocytes are essential for HSC quiescence through the production of thrombopoietin. Bioch. Biophys. Res. Commun. 2014;454:353–357. doi: 10.1016/j.bbrc.2014.10.095.
    1. Pinho S., Marchand T., Yang E., Wei Q., Nerlov C., Frenette P.S. Lineage-Biased Hematopoietic Stem Cells Are Regulated by Distinct Niches. Dev. Cell. 2018;44:634–641.e4. doi: 10.1016/j.devcel.2018.01.016.
    1. Hirata Y., Furuhashi K., Ishii H., Li H.W., Pinho S., Ding L., Robson S.C., Frenette P.S., Fujisaki J. CD150high Bone Marrow Tregs Maintain Hematopoietic Stem Cell Quiescence and Immune Privilege via Adenosine. Cell Stem Cell. 2018;22:445–453.e5. doi: 10.1016/j.stem.2018.01.017.
    1. Fujisaki J., Wu J., Carlson A.L., Silberstein L., Putheti P., Larocca R., Gao W., Saito T.I., Lo Celso C., Tsuyuzaki H., et al. In vivo imaging of Treg cells providing immune privilege to the haematopoietic stem-cell niche. Nature. 2011;474:216–219. doi: 10.1038/nature10160.
    1. Hur J., Choi J.I., Lee H., Nham P., Kim T.W., Chae C.W., Yun J.Y., Kang J.A., Kang J., Lee S.E., et al. CD82/KAI1 Maintains the Dormancy of Long-Term Hematopoietic Stem Cells through Interaction with DARC-Expressing Macrophages. Cell Stem Cell. 2016;18:508–521. doi: 10.1016/j.stem.2016.01.013.
    1. Chow A., Huggins M., Ahmed J., Hashimoto D., Lucas D., Kunisaki Y., Pinho S., Leboeuf M., Noizat C., van Rooijen N., et al. CD169⁺ macrophages provide a niche promoting erythropoiesis under homeostasis and stress. Nat. Med. 2013;19:429–436. doi: 10.1038/nm.3057.
    1. Christopher M.J., Rao M., Liu F., Woloszynek J.R., Link D.C. Expression of the G-CSF receptor in monocytic cells is sufficient to mediate hematopoietic progenitor mobilization by G-CSF in mice. J. Exp. Med. 2011;208:251–260. doi: 10.1084/jem.20101700.
    1. Chow A., Lucas D., Hidalgo A., Méndez-Ferrer S., Hashimoto D., Scheiermann C., Battista M., Leboeuf M., Prophete C., van Rooijen N., et al. Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. J. Exp. Med. 2011;208:261–271. doi: 10.1084/jem.20101688.
    1. Winkler I.G., Sims N.A., Pettit A.R., Barbier V., Nowlan B., Helwani F., Poulton I.J., van Rooijen N., Alexander K.A., Raggatt L.J., et al. Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs. Blood. 2010;116:4815–4828. doi: 10.1182/blood-2009-11-253534.
    1. Ludin A., Itkin T., Gur-Cohen S., Mildner A., Shezen E., Golan K., Kollet O., Kalinkovich A., Porat Z., D’Uva G., et al. Monocytes-macrophages that express α-smooth muscle actin preserve primitive hematopoietic cells in the bone marrow. Nat. Immunol. 2012;13:1072–1082. doi: 10.1038/ni.2408.
    1. Kumari A., Ludin A., Golan K., Kollet O., Niemeyer E., Friedlander N., Lapidot T. PGE2 Promotes BM Hematopoietic Stem Cell Retention Via Stromal Lactate Production, cAMP and CXCL12/CXCR4 Regulation. Blood. 2014;124:771. doi: 10.1182/blood.V124.21.771.771.
    1. Zhang J., Supakorndej T., Krambs J.R., Rao M., Abou-Ezzi G., Ye R.Y., Li S., Trinkaus K., Link D.C. Bone marrow dendritic cells regulate hematopoietic stem/progenitor cell trafficking. J. Clin. Investig. 2019;129:2920–2931. doi: 10.1172/JCI124829.
    1. Manz M.G., Boettcher S., Boettcher S. Emergency granulopoiesis. Nat. Rev. Immunol. 2014;14:302–314. doi: 10.1038/nri3660.
    1. Nagai Y., Garrett K.P., Ohta S., Bahrun U., Kouro T., Akira S., Takatsu K., Kincade P.W. Toll-like receptors on hematopoietic progenitor cells stimulate innate immune system replenishment. Immunity. 2006;24:801–812. doi: 10.1016/j.immuni.2006.04.008.
    1. Zhao J.L., Ma C., O’Connell R.M., Mehta A., DiLoreto R., Heath J.R., Baltimore D. Conversion of danger signals into cytokine signals by hematopoietic stem and progenitor cells for regulation of stress-induced hematopoiesis. Cell Stem Cell. 2014;14:445–459. doi: 10.1016/j.stem.2014.01.007.
    1. Pietras E.M., Lakshminarasimhan R., Techner J.M., Fong S., Flach J., Binnewies M., Passegué E. Re-entry into quiescence protects hematopoietic stem cells from the killing effect of chronic exposure to type I interferons. J. Exp. Med. 2014;211:245–262. doi: 10.1084/jem.20131043.
    1. Chavez J.S., Rabe J.L., Loeffler D., Higa K.C., Hernandez G., Mills T.S., Ahmed N., Gessner R.L., Ke Z., Idler B.M., et al. PU.1 enforces quiescence and limits hematopoietic stem cell expansion during inflammatory stress. J. Exp. Med. 2021;218:e20201169. doi: 10.1084/jem.20201169.
    1. Wang Z., Ema H. Mechanisms of self-renewal in hematopoietic stem cells. Int. J. Hematol. 2016;103:498–509. doi: 10.1007/s12185-015-1919-5.
    1. Bernitz J.M., Kim H.S., MacArthur B., Sieburg H., Moore K. Hematopoietic Stem Cells Count and Remember Self-Renewal Divisions. Cell. 2016;167:1296–1309.e10. doi: 10.1016/j.cell.2016.10.022.
    1. Dorshkind K., Montecino-Rodriguez E., Signer R.A. The ageing immune system: Is it ever too old to become young again? Nat. Rev. Immunol. 2009;9:57–62. doi: 10.1038/nri2471.
    1. Barreyro L., Chlon T.M., Starczynowski D.T. Chronic immune response dysregulation in MDS pathogenesis. Blood. 2018;132:1553–1560. doi: 10.1182/blood-2018-03-784116.
    1. Netea M.G., Joosten L.A., Latz E., Mills K.H., Natoli G., Stunnenberg H.G., O’Neill L.A., Xavier R.J. Trained immunity: A program of innate immune memory in health and disease. Science. 2016;352:aaf1098. doi: 10.1126/science.aaf1098.
    1. Kaufmann E., Sanz J., Dunn J.L., Khan N., Mendonça L.E., Pacis A., Tzelepis F., Pernet E., Dumaine A., Grenier J.C., et al. BCG Educates Hematopoietic Stem Cells to Generate Protective Innate Immunity against Tuberculosis. Cell. 2018;172:176–190.e19. doi: 10.1016/j.cell.2017.12.031.
    1. de Laval B., Maurizio J., Kandalla P.K., Brisou G., Simonnet L., Huber C., Gimenez G., Matcovitch-Natan O., Reinhardt S., David E., et al. C/EBPβ-Dependent Epigenetic Memory Induces Trained Immunity in Hematopoietic Stem Cells. Cell Stem Cell. 2020;26:657–674.e8. doi: 10.1016/j.stem.2020.01.017.
    1. Yamamoto R., Wilkinson A.C., Ooehara J., Lan X., Lai C.Y., Nakauchi Y., Pritchard J.K., Nakauchi H. Large-Scale Clonal Analysis Resolves Aging of the Mouse Hematopoietic Stem Cell Compartment. Cell Stem Cell. 2018;22:600–607.e4. doi: 10.1016/j.stem.2018.03.013.
    1. Ho Y.H., Del Toro R., Rivera-Torres J., Rak J., Korn C., García-García A., Macías D., González-Gómez C., Del Monte A., Wittner M., et al. Remodeling of Bone Marrow Hematopoietic Stem Cell Niches Promotes Myeloid Cell Expansion during Premature or Physiological Aging. Cell Stem Cell. 2019;25:407–418.e6. doi: 10.1016/j.stem.2019.06.007.
    1. Valletta S., Thomas A., Meng Y., Ren X., Drissen R., Sengül H., Di Genua C., Nerlov C. Micro-environmental sensing by bone marrow stroma identifies IL-6 and TGFβ1 as regulators of hematopoietic ageing. Nat. Commun. 2020;11:4075. doi: 10.1038/s41467-020-17942-7.
    1. Frisch B.J., Hoffman C.M., Latchney S.E., LaMere M.W., Myers J., Ashton J., Li A.J., Saunders J., 2nd, Palis J., Perkins A., et al. Aged marrow macrophages expand platelet-biased hematopoietic stem cells via Interleukin1B. JCI Insight. 2019;5:e124213. doi: 10.1172/jci.insight.124213.
    1. Geiger H., de Haan G., Florian M.C. The ageing haematopoietic stem cell compartment. Nat. Rev. Immunol. 2013;13:376–389. doi: 10.1038/nri3433.
    1. Morita Y., Ema H., Nakauchi H. Heterogeneity and hierarchy within the most primitive hematopoietic stem cell compartment. J. Exp. Med. 2010;207:1173–1182. doi: 10.1084/jem.20091318.
    1. Shimazu T., Iida R., Zhang Q., Welner R.S., Medina K.L., Alberola-Lla J., Kincade P.W. CD86 is expressed on murine hematopoietic stem cells and denotes lymphopoietic potential. Blood. 2012;119:4889–4897. doi: 10.1182/blood-2011-10-388736.
    1. Mann M., Mehta A., de Boer C.G., Kowalczyk M.S., Lee K., Haldeman P., Rogel N., Knecht A.R., Farouq D., Regev A., et al. Heterogeneous Responses of Hematopoietic Stem Cells to Inflammatory Stimuli Are Altered with Age. Cell Rep. 2018;25:2992–3005.e5. doi: 10.1016/j.celrep.2018.11.056.
    1. Pang W.W., Price E.A., Sahoo D., Beerman I., Maloney W.J., Rossi D.J., Schrier S.L., Weissman I.L. Human bone marrow hematopoietic stem cells are increased in frequency and myeloid-biased with age. Proc. Natl. Acad. Sci. USA. 2011;108:20012–20017. doi: 10.1073/pnas.1116110108.
    1. Florian M.C., Klose M., Sacma M., Jablanovic J., Knudson L., Nattamai K.J., Marka G., Vollmer A., Soller K., Sakk V., et al. alters the epigenetic asymmetry of HSC division. PLoS Biol. 2018;16:e2003389. doi: 10.1371/journal.pbio.2003389.
    1. Bogeska R., Kaschutnig P., Fawaz M., Mikecin A.-M., Büchler-Schäff M., Paffenholz S., Asada N., Frauhammer F., Buettner F., Ball M., et al. Hematopoietic stem cells fail to regenerate following inflammatory challenge. bioRxiv. 2020. in press .
    1. Essers M.A., Offner S., Blanco-Bose W.E., Waibler Z., Kalinke U., Duchosal M.A., Trumpp A. IFNalpha activates dormant haematopoietic stem cells in vivo. Nature. 2009;458:904–908. doi: 10.1038/nature07815.
    1. Takizawa H., Fritsch K., Kovtonyuk L.V., Saito Y., Yakkala C., Jacobs K., Ahuja A.K., Lopes M., Hausmann A., Hardt W.D., et al. Pathogen-Induced TLR4-TRIF Innate Immune Signaling in Hematopoietic Stem Cells Promotes Proliferation but Reduces Competitive Fitness. Cell Stem Cell. 2020;27:177. doi: 10.1016/j.stem.2020.06.010.
    1. Ergen A.V., Boles N.C., Goodell M.A. Rantes/Ccl5 influences hematopoietic stem cell subtypes and causes myeloid skewing. Blood. 2012;119:2500–2509. doi: 10.1182/blood-2011-11-391730.
    1. Pietras E.M., Mirantes-Barbeito C., Fong S., Loeffler D., Kovtonyuk L.V., Zhang S., Lakshminarasimhan R., Chin C.P., Techner J.M., Will B., et al. Chronic interleukin-1 exposure drives haematopoietic stem cells towards precocious myeloid differentiation at the expense of self-renewal. Nat. Cell Biol. 2016;18:607–618. doi: 10.1038/ncb3346.
    1. Helbling P.M., Piñeiro-Yáñez E., Gerosa R., Boettcher S., Al-Shahrour F., Manz M.G., Nombela-Arrieta C. Global Transcriptomic Profiling of the Bone Marrow Stromal Microenvironment during Postnatal Development, Aging, and Inflammation. Cell Rep. 2019;29:3313–3330.e4. doi: 10.1016/j.celrep.2019.11.004.
    1. Franceschi C., Bonafè M., Valensin S., Olivieri F., De Luca M., Ottaviani E., De Benedictis G. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann. N. Y. Acad. Sci. 2020;908:244–254. doi: 10.1111/j.1749-6632.2000.tb06651.x.
    1. Fulop T., Witkowski J.M., Olivieri F., Larbi A. The integration of inflammaging in age-related diseases. Semin. Immunol. 2018;40:17–35. doi: 10.1016/j.smim.2018.09.003.
    1. He H., Xu P., Zhang X., Liao M., Dong Q., Cong T., Tang B., Yang X., Ye M., Chang Y., et al. Aging-induced IL27Ra signaling impairs hematopoietic stem cells. Blood. 2020;136:183–198. doi: 10.1182/blood.2019003910.
    1. Hernandez G., Mills T.S., Rabe J.L., Chavez J.S., Kuldanek S., Kirkpatrick G., Noetzli L., Jubair W.K., Zanche M., Myers J.R., et al. Pro-inflammatory cytokine blockade attenuates myeloid expansion in a murine model of rheumatoid arthritis. Haematologica. 2020;105:585–597. doi: 10.3324/haematol.2018.197210.
    1. Yamashita M., Passegué E. TNF-α Coordinates Hematopoietic Stem Cell Survival and Myeloid Regeneration. Cell Stem Cell. 2019;25:357–372.e7. doi: 10.1016/j.stem.2019.05.019.
    1. Esplin B.L., Shimazu T., Welner R.S., Garrett K.P., Nie L., Zhang Q., Humphrey M.B., Yang Q., Borghesi L.A., Kincade P.W. Chronic exposure to a TLR ligand injures hematopoietic stem cells. J. Immunol. 2011;186:5367–5375. doi: 10.4049/jimmunol.1003438.
    1. He H., Wang J. Inflammation and hematopoietic stem cells aging. Blood Sci. 2020;3:1–5. doi: 10.1097/BS9.0000000000000063.
    1. Li T., Chen Z.J. The cGAS-cGAMP-STING pathway connects DNA damage to inflammation, senescence, and cancer. J. Exp. Med. 2018;215:1287–1299. doi: 10.1084/jem.20180139.
    1. Rathinam V.A., Jiang Z., Waggoner S.N., Sharma S., Cole L.E., Waggoner L., Vanaja S.K., Monks B.G., Ganesan S., Latz E., et al. The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nat. Immunol. 2010;11:395–402. doi: 10.1038/ni.1864.
    1. Chambers S.M., Shaw C.A., Gatza C., Fisk C.J., Donehower L.A., Goodell M.A. Aging hematopoietic stem cells decline in function and exhibit epigenetic dysregulation. PLoS Biol. 2007;5:e201. doi: 10.1371/journal.pbio.0050201.
    1. Ho T.T., Warr M.R., Adelman E.R., Lansinger O.M., Flach J., Verovskaya E.V., Figueroa M.E., Passegué E. Autophagy maintains the metabolism and function of young and old stem cells. Nature. 2017;543:205–210. doi: 10.1038/nature21388.
    1. Yabal M., Calleja D.J., Simpson D.S., Lawlor K.E. Stressing out the mitochondria: Mechanistic insights into NLRP3 inflammasome activation. J. Leukoc. Biol. 2019;105:377–399. doi: 10.1002/JLB.MR0318-124R.
    1. Royce G.H., Brown-Borg H.M., Deepa S.S. The potential role of necroptosis in inflammaging and aging. GeroScience. 2019;41:795–811. doi: 10.1007/s11357-019-00131-w.
    1. Sebastian-Valverde M., Pasinetti G.M. The NLRP3 Inflammasome as a Critical Actor in the Inflammaging Process. Cells. 2020;9:1552. doi: 10.3390/cells9061552.
    1. King A.M., Keating P., Prabhu A., Blomberg B.B., Riley R.L. NK cells in the CD19- B220+ bone marrow fraction are increased in senescence and reduce E2A and surrogate light chain proteins in B cell precursors. Mech. Ageing Dev. 2019;130:384–392. doi: 10.1016/j.mad.2009.03.002.
    1. Ratliff M., Alter S., Frasca D., Blomberg B.B., Riley R.L. In senescence, age-associated B cells secrete TNFα and inhibit survival of B-cell precursors. Aging Cell. 2013;12:303–311. doi: 10.1111/acel.12055.
    1. Takizawa H., Boettcher S., Manz M.G. Demand-adapted regulation of early hematopoiesis in infection and inflammation. Blood. 2012;119:2991–3002. doi: 10.1182/blood-2011-12-380113.
    1. Xie M., Lu C., Wang J., McLellan M.D., Johnson K.J., Wendl M.C., McMichael J.F., Schmidt H.K., Yellapantula V., Miller C.A., et al. Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat. Med. 2014;20:1472–1478. doi: 10.1038/nm.3733.
    1. Genovese G., Kähler A.K., Handsaker R.E., Lindberg J., Rose S.A., Bakhoum S.F., Chambert K., Mick E., Neale B.M., Fromer M., et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N. Eng. J. Med. 2014;371:2477–2487. doi: 10.1056/NEJMoa1409405.
    1. Jaiswal S., Fontanillas P., Flannick J., Manning A., Grauman P.V., Mar B.G., Lindsley R.C., Mermel C.H., Burtt N., Chavez A., et al. Age-related clonal hematopoiesis associated with adverse outcomes. N. Eng. J. Med. 2014;371:2488–2498. doi: 10.1056/NEJMoa1408617.
    1. Steensma D.P. Clinical consequences of clonal hematopoiesis of indeterminate potential. Blood Adv. 2018;2:3404–3410. doi: 10.1182/bloodadvances.2018020222.
    1. Tubbs A., Nussenzweig A. Endogenous DNA Damage as a Source of Genomic Instability in Cancer. Cell. 2017;168:644–656. doi: 10.1016/j.cell.2017.01.002.
    1. Williams N., Lee J., Mitchell E., Moore L., Baxter E.J., Hewinson J., Dawson K.J., Menzies A., Godfrey A.L., Green A.R., et al. Life histories of myeloproliferative neoplasms inferred from phylogenies. Nature. 2022;602:162–168. doi: 10.1038/s41586-021-04312-6.
    1. Abegunde S.O., Buckstein R., Wells R.A., Rauh M.J. An inflammatory environment containing TNFα favors Tet2-mutant clonal hematopoiesis. Exp. Hematol. 2018;59:60–65. doi: 10.1016/j.exphem.2017.11.002.
    1. Trowbridge J.J., Starczynowski D.T. Innate immune pathways and inflammation in hematopoietic aging, clonal hematopoiesis, and MDS. J. Exp. Med. 2021;218:e20201544. doi: 10.1084/jem.20201544.
    1. Muto T., Walker C.S., Choi K., Hueneman K., Smith M.A., Gul Z., Garcia-Manero G., Ma A., Zheng Y., Starczynowski D.T. Adaptive response to inflammation contributes to sustained myelopoiesis and confers a competitive advantage in myelodysplastic syndrome HSCs. Nat. Immunol. 2020;21:535–545. doi: 10.1038/s41590-020-0663-z.
    1. Fuster J.J., Zuriaga M.A., Zorita V., MacLauchlan S., Polackal M.N., Viana-Huete V., Ferrer-Pérez A., Matesanz N., Herrero-Cervera A., Sano S., et al. TET2-Loss-of-Function-Driven Clonal Hematopoiesis Exacerbates Experimental Insulin Resistance in Aging and Obesity. Cell Rep. 2020;33:108326. doi: 10.1016/j.celrep.2020.108326.
    1. Jaiswal S., Natarajan P., Silver A.J., Gibson C.J., Bick A.G., Shvartz E., McConkey M., Gupta N., Gabriel S., Ardissino D., et al. Clonal Hematopoiesis and Risk of Atherosclerotic Cardiovascular Disease. N. Eng. J. Med. 2017;377:111–121. doi: 10.1056/NEJMoa1701719.
    1. Dorsheimer L., Assmus B., Rasper T., Ortmann C.A., Ecke A., Abou-El-Ardat K., Schmid T., Brüne B., Wagner S., Serve H., et al. Association of Mutations Contributing to Clonal Hematopoiesis with Prognosis in Chronic Ischemic Heart Failure. JAMA Cardiol. 2019;4:25–33. doi: 10.1001/jamacardio.2018.3965.
    1. Libby P., Kobold S. Inflammation: A common contributor to cancer, aging, and cardiovascular diseases-expanding the concept of cardio-oncology. Cardiovasc. Res. 2019;115:824–829. doi: 10.1093/cvr/cvz058.
    1. Cook E.K., Izukawa T., Young S., Rosen G., Jamali M., Zhang L., Johnson D., Bain E., Hilland J., Ferrone C.K. Comorbid and inflammatory characteristics of genetic subtypes of clonal hematopoiesis. Blood Adv. 2019;3:2482–2486. doi: 10.1182/bloodadvances.2018024729.
    1. Papa V., Marracino L., Fortini F., Rizzo P., Campo G., Vaccarezza M., Vieceli Dalla Sega F. Translating Evidence from Clonal Hematopoiesis to Cardiovascular Disease: A Systematic Review. J Clin. Med. 2020;9:2480. doi: 10.3390/jcm9082480.
    1. Fuster J.J., MacLauchlan S., Zuriaga M.A., Polackal M.N., Ostriker A.C., Chakraborty R., Wu C.L., Sano S., Muralidharan S., Rius C., et al. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice. Science. 2017;355:842–847. doi: 10.1126/science.aag1381.
    1. Lin A.E., Libby P., Ebert B.L. A new opening on aortic stenosis: Predicting prognosis with clonal haematopoiesis. Eur. Heart J. 2020;41:940–942. doi: 10.1093/eurheartj/ehz752.
    1. Starczynowski D.T., Kuchenbauer F., Argiropoulos B., Sung S., Morin R., Muranyi A., Hirst M., Hogge D., Marra M., Wells R.A., et al. Identification of miR-145 and miR-146a as mediators of the 5q− syndrome phenotype. Nat. Med. 2010;16:49–58. doi: 10.1038/nm.2054.
    1. Corral L.G., Haslett P.A., Muller G.W., Chen R., Wong L.M., Ocampo C.J., Patterson R.T., Stirling D.I., Kaplan G. Differential cytokine modulation and T cell activation by two distinct classes of thalidomide analogues that are potent inhibitors of TNF-alpha. J. Immunol. 1999;163:380–386.
    1. Grants J.M., Wegrzyn J., Hui T., O’Neill K., Shadbolt M., Knapp D., Parker J., Deng Y., Gopal A., Docking T.R., et al. Altered microRNA expression links IL6 and TNF-induced inflammaging with myeloid malignancy in humans and mice. Blood. 2020;135:2235–2251. doi: 10.1182/blood.2019003105.
    1. Wei Y., Dimicoli S., Bueso-Ramos C., Chen R., Yang H., Neuberg D., Pierce S., Jia Y., Zheng H., Wang H., et al. Toll-like receptor alterations in myelodysplastic syndrome. Leukemia. 2013;27:1832–1840. doi: 10.1038/leu.2013.180.
    1. Maratheftis C.I., Andreakos E., Moutsopoulos H.M., Voulgarelis M. Toll-like receptor-4 is up-regulated in hematopoietic progenitor cells and contributes to increased apoptosis in myelodysplastic syndromes. Clin. Cancer Res. 2007;13:1154–1160. doi: 10.1158/1078-0432.CCR-06-2108.
    1. Monlish D.A., Greenberg Z.J., Bhatt S.T., Leonard K.M., Romine M.P., Dong Q., Bendesky L., Duncavage E.J., Magee J.A., Schuettpelz L.G. TLR2/6 signaling promotes the expansion of premalignant hematopoietic stem and progenitor cells in the NUP98-HOXD13 mouse model of MDS. Exp. Hematol. 2020;88:42–55. doi: 10.1016/j.exphem.2020.07.001.
    1. Sallman D.A., List A. The central role of inflammatory signaling in the pathogenesis of myelodysplastic syndromes. Blood. 2019;133:1039–1048. doi: 10.1182/blood-2018-10-844654.
    1. Basiorka A.A., McGraw K.L., Eksioglu E.A., Chen X., Johnson J., Zhang L., Zhang Q., Irvine B.A., Cluzeau T., Sallman D.A., et al. The NLRP3 inflammasome functions as a driver of the myelodysplastic syndrome phenotype. Blood. 2016;128:2960–2975. doi: 10.1182/blood-2016-07-730556.
    1. Bewersdorf J.P., Zeidan A.M. Transforming growth factor (TGF)-β pathway as a therapeutic target in lower risk myelodysplastic syndromes. Leukemia. 2019;33:1303–1312. doi: 10.1038/s41375-019-0448-2.
    1. Zhou L., McMahon C., Bhagat T., Alencar C., Yu Y., Fazzari M., Sohal D., Heuck C., Gundabolu K., Ng C., et al. Reduced SMAD7 leads to overactivation of TGF-beta signaling in MDS that can be reversed by a specific inhibitor of TGF-beta receptor I kinase. Cancer Res. 2011;71:955–963. doi: 10.1158/0008-5472.CAN-10-2933.
    1. Smith M.A., Choudhary G.S., Pellagatti A., Choi K., Bolanos L.C., Bhagat T.D., Gordon-Mitchell S., Von Ahrens D., Pradhan K., Steeples V., et al. U2AF1 mutations induce oncogenic IRAK4 isoforms and activate innate immune pathways in myeloid malignancies. Nat. Cell Biol. 2019;21:640–650. doi: 10.1038/s41556-019-0314-5.
    1. Lee S.C., North K., Kim E., Jang E., Obeng E., Lu S.X., Liu B., Inoue D., Yoshimi A., Ki M., et al. Synthetic Lethal and Convergent Biological Effects of Cancer-Associated Spliceosomal Gene Mutations. Cancer Cell. 2018;34:225–241.e8. doi: 10.1016/j.ccell.2018.07.003.
    1. Klune J.R., Dhupar R., Cardinal J., Billiar T.R., Tsung A. HMGB1: Endogenous danger signaling. Mol. Med. 2008;14:476–484. doi: 10.2119/2008-00034.Klune.
    1. Yuan S., Liu Z., Xu Z., Liu J., Zhang J. High mobility group box 1 (HMGB1): A pivotal regulator of hematopoietic malignancies. J. Hematol. Oncol. 2020;13:91. doi: 10.1186/s13045-020-00920-3.
    1. Velegraki M., Papakonstanti E., Mavroudi I., Psyllaki M., Tsatsanis C., Oulas A., Iliopoulos I., Katonis P., Papadaki H.A. Impaired clearance of apoptotic cells leads to HMGB1 release in the bone marrow of patients with myelodysplastic syndromes and induces TLR4-mediated cytokine production. Haematologica. 2013;98:1206–1215. doi: 10.3324/haematol.2012.064642.
    1. Apodaca-Chávez E., Demichelis-Gómez R., Rosas-López A., Mejía-Domínguez N.R., Galvan-López I., Addorosio M., Tracey K.J., Valdés-Ferrer S.I. Circulating HMGB1 is increased in myelodysplastic syndrome but not in other bone marrow failure syndromes: Proof-of-concept cross-sectional study. Ther. Adv. Hematol. 2022;13:20406207221125990. doi: 10.1177/20406207221125990.
    1. Willingham S.B., Allen I.C., Bergstralh D.T., Brickey W.J., Huang M.T., Taxman D.J., Duncan J.A., Ting J.P. NLRP3 (NALP3, Cryopyrin) facilitates in vivo caspase-1 activation, necrosis, and HMGB1 release via inflammasome-dependent and -independent pathways. J. Immunol. 2009;183:2008–2015. doi: 10.4049/jimmunol.0900138.
    1. Kam A., Piryani S.O., McCall C.M., Park H.S., Rizzieri D.A., Doan P.L. Targeting High Mobility Group Box-1 (HMGB1) Promotes Cell Death in Myelodysplastic Syndrome. Clin. Cancer Res. 2019;25:4155–4167. doi: 10.1158/1078-0432.CCR-18-3517.
    1. Kitagawa M., Saito I., Kuwata T., Yoshida S., Yamaguchi S., Takahashi M., Tanizawa T., Kamiyama R., Hirokawa K. Overexpression of tumor necrosis factor (TNF)-alpha and interferon (IFN)-gamma by bone marrow cells from patients with myelodysplastic syndromes. Leukemia. 1997;11:2049–2054. doi: 10.1038/sj.leu.2400844.
    1. Gañán-Gómez I., Wei Y., Starczynowski D.T., Colla S., Yang H., Cabrero-Calvo M., Bohannan Z.S., Verma A., Steidl U., Garcia-Manero G. Deregulation of innate immune and inflammatory signaling in myelodysplastic syndromes. Leukemia. 2015;29:1458–1469. doi: 10.1038/leu.2015.69.
    1. Shi X., Zheng Y., Xu L., Cao C., Dong B., Chen X. The inflammatory cytokine profile of myelodysplastic syndromes: A meta-analysis. Medicine. 2019;98:e15844. doi: 10.1097/MD.0000000000015844.
    1. D’Silva S., Rajadhyaksha S.B., Singh M. Immune Dysregulation in MDS: The Role of Cytokines and Immune Cells. In: Fuchs O., editor. Recent Developments in Myelodysplastic Syndromes. IntechOpen; London, UK: 2019. [(accessed on 22 October 2022)]. Available online: .
    1. Kordasti S.Y., Afzali B., Lim Z., Ingram W., Hayden J., Barber L., Matthews K., Chelliah R., Guinn B., Lombardi G., et al. IL-17-producing CD4(+) T cells, pro-inflammatory cytokines and apoptosis are increased in low risk myelodysplastic syndrome. Br. J. Haematol. 2009;145:64–72. doi: 10.1111/j.1365-2141.2009.07593.x.
    1. Zoumbos N., Symeonidis A., Kourakli A., Katevas P., Matsoukas P., Perraki M., Georgoulias V. Increased levels of soluble interleukin-2 receptors and tumor necrosis factor in serum of patients with myelodysplastic syndromes. Blood. 1991;77:413–414. doi: 10.1182/blood.V77.2.413.413.
    1. Lopes M.R., Traina F., Campos P., Pereira J.K., Machado-Neto J.A., Machado H., Gilli S.C., Saad S.T., Favaro P. IL10 inversely correlates with the percentage of CD8⁺ cells in MDS patients. Leuk. Res. 2013;37:541–546. doi: 10.1016/j.leukres.2013.01.019.
    1. Pellagatti A., Cazzola M., Giagounidis A., Perry J., Malcovati L., Della Porta M.G., Jädersten M., Killick S., Verma A., Norbury C.J., et al. Deregulated gene expression pathways in myelodysplastic syndrome hematopoietic stem cells. Leukemia. 2010;24:756–764. doi: 10.1038/leu.2010.31.
    1. Michalopoulou S., Micheva I., Kouraklis-Symeonidis A., Kakagianni T., Symeonidis A., Zoumbos N.C. Impaired clonogenic growth of myelodysplastic bone marrow progenitors in vitro is irrelevant to their apoptotic state. Leuk. Res. 2004;28:805–812. doi: 10.1016/j.leukres.2003.12.004.
    1. Deeg H.J., Beckham C., Loken M.R., Bryant E., Lesnikova M., Shulman H.M., Gooley T. Negative regulators of hemopoiesis and stroma function in patients with myelodysplastic syndrome. Leuk. Lymphoma. 2000;37:405–414. doi: 10.3109/10428190009089441.
    1. Gersuk G.M., Beckham C., Loken M.R., Kiener P., Anderson J.E., Farrand A., Troutt A.B., Ledbetter J.A., Deeg H.J. A role for tumour necrosis factor-alpha, Fas and Fas-Ligand in marrow failure associated with myelodysplastic syndrome. Br. J. Haematol. 1998;103:176–188. doi: 10.1046/j.1365-2141.1998.00933.x.
    1. Zeng W., Miyazato A., Chen G., Kajigaya S., Young N.S., Maciejewski J.P. Interferon-gamma-induced gene expression in CD34 cells: Identification of pathologic cytokine-specific signature profiles. Blood. 2006;107:167–175. doi: 10.1182/blood-2005-05-1884.
    1. Aggarwal B.B. Signalling pathways of the TNF superfamily: A double-edged sword. Nat. Rev. Immunol. 2003;3:745–756. doi: 10.1038/nri1184.
    1. Sawanobori M., Yamaguchi S., Hasegawa M., Inoue M., Suzuki K., Kamiyama R., Hirokawa K., Kitagawa M. Expression of TNF receptors and related signaling molecules in the bone marrow from patients with myelodysplastic syndromes. Leuk. Res. 2003;27:583–591. doi: 10.1016/S0145-2126(02)00095-4.
    1. Tsimberidou A.M., Estey E., Wen S., Pierce S., Kantarjian H., Albitar M., Kurzrock R. The prognostic significance of cytokine levels in newly diagnosed acute myeloid leukemia and high-risk myelodysplastic syndromes. Cancer. 2008;113:1605–1613. doi: 10.1002/cncr.23785.
    1. Pardanani A., Finke C., Lasho T.L., Al-Kali A., Begna K.H., Hanson C.A., Tefferi A. IPSS-independent prognostic value of plasma CXCL10, IL-7 and IL-6 levels in myelodysplastic syndromes. Leukemia. 2012;26:693–699. doi: 10.1038/leu.2011.251.
    1. Epperson D.E., Nakamura R., Saunthararajah Y., Melenhorst J., Barrett A.J. Oligoclonal T cell expansion in myelodysplastic syndrome: Evidence for an autoimmune process. Leuk. Res. 2001;25:1075–1083. doi: 10.1016/S0145-2126(01)00083-2.
    1. Molldrem J.J., Jiang Y.Z., Stetler-Stevenson M., Mavroudis D., Hensel N., Barrett A.J. Haematological response of patients with myelodysplastic syndrome to antithymocyte globulin is associated with a loss of lymphocyte-mediated inhibition of CFU-GM and alterations in T-cell receptor Vbeta profiles. Br. J. Haematol. 1998;102:1314–1322. doi: 10.1046/j.1365-2141.1998.00920.x.
    1. Epling-Burnette P.K., Painter J.S., Rollison D.E., Ku E., Vendron D., Widen R., Boulware D., Zou J.X., Bai F., List A.F. Prevalence and clinical association of clonal T-cell expansions in Myelodysplastic Syndrome. Leukemia. 2007;21:659–667. doi: 10.1038/sj.leu.2404590.
    1. Melenhorst J.J., Eniafe R., Follmann D., Nakamura R., Kirby M., Barrett A.J. Molecular and flow cytometric characterization of the CD4 and CD8 T-cell repertoire in patients with myelodysplastic syndrome. Br. J. Haematol. 2002;119:97–105. doi: 10.1046/j.1365-2141.2002.03802.x.
    1. Kook H., Zeng W., Guibin C., Kirby M., Young N.S., Maciejewski J.P. Increased cytotoxic T cells with effector phenotype in aplastic anemia and myelodysplasia. Exp. Hematol. 2001;29:1270–1277. doi: 10.1016/S0301-472X(01)00736-6.
    1. Strioga M., Pasukoniene V., Characiejus D. CD8+ CD28- and CD8+ CD57+ T cells and their role in health and disease. Immunology. 2011;134:17–32. doi: 10.1111/j.1365-2567.2011.03470.x.
    1. Ximeri M., Galanopoulos A., Klaus M., Parcharidou A., Giannikou K., Psyllaki M., Symeonidis A., Pappa V., Kartasis Z., Liapi D., et al. Effect of lenalidomide therapy on hematopoiesis of patients with myelodysplastic syndrome associated with chromosome 5q deletion. Haematologica. 2010;95:406–414. doi: 10.3324/haematol.2009.010876.
    1. Zheng Z., Qianqiao Z., Qi H., Feng X., Chunkang C., Xiao L. In vitro deprivation of CD8(+)CD57(+)T cells promotes the malignant growth of bone marrow colony cells in patients with lower-risk myelodysplastic syndrome. Exp. Hematol. 2010;38:677–684. doi: 10.1016/j.exphem.2010.04.002.
    1. Sloand E.M., Rezvani K. The role of the immune system in myelodysplasia: Implications for therapy. Semin. Hematol. 2008;45:39–48. doi: 10.1053/j.seminhematol.2007.11.006.
    1. Sloand E.M., Melenhorst J.J., Tucker Z.C., Pfannes L., Brenchley J.M., Yong A., Visconte V., Wu C., Gostick E., Scheinberg P., et al. T-cell immune responses to Wilms tumor 1 protein in myelodysplasia responsive to immunosuppressive therapy. Blood. 2011;117:2691–2699. doi: 10.1182/blood-2010-04-277921.
    1. Gang A.O., Frøsig T.M., Brimnes M.K., Lyngaa R., Treppendahl M.B., Grønbæk K., Dufva I.H., Straten P.T., Hadrup S.R. 5-Azacytidine treatment sensitizes tumor cells to T-cell mediated cytotoxicity and modulates NK cells in patients with myeloid malignancies. Blood Cancer J. 2014;4:e197. doi: 10.1038/bcj.2014.14.
    1. Wong K.K., Hassan R., Yaacob N.S. Hypomethylating Agents and Immunotherapy: Therapeutic Synergism in Acute Myeloid Leukemia and Myelodysplastic Syndromes. Front. Oncol. 2021;11:624742. doi: 10.3389/fonc.2021.624742.
    1. Symeonidis A., Kourakli, Katevas P., Perraki M., Tiniakou M., Matsouka P., Georgoulias V., Zoumbos N. Immune function parameters at diagnosis in patients with myelodysplastic syndromes: Correlation with the FAB classification and prognosis. Eur. J. Haematol. 1991;47:277–281. doi: 10.1111/j.1600-0609.1991.tb01571.x.
    1. Zou J.X., Rollison D.E., Boulware D., Chen D.T., Sloand E.M., Pfannes L.V., Goronzy J.J., Bai F., Painter J.S., Wei S., et al. Altered naive and memory CD4+ T-cell homeostasis and immunosenescence characterize younger patients with myelodysplastic syndrome. Leukemia. 2009;23:1288–1296. doi: 10.1038/leu.2009.14.
    1. Sugimori C., List A.F., Epling-Burnette P.K. Immune dysregulation in myelodysplastic syndrome. Hematol. Rep. 2010;2:e1. doi: 10.4081/hr.2010.e1.
    1. Kotsianidis I., Bouchliou I., Nakou E., Spanoudakis E., Margaritis D., Christophoridou A.V., Anastasiades A., Tsigalou C., Bourikas G., Karadimitris A., et al. Kinetics, function and bone marrow trafficking of CD4+CD25+FOXP3+ regulatory T cells in myelodysplastic syndromes (MDS) Leukemia. 2009;23:510–518. doi: 10.1038/leu.2008.333.
    1. Kordasti S.Y., Ingram W., Hayden J., Darling D., Barber L., Afzali B., Lombardi G., Wlodarski M.W., Maciejewski J.P., Farzaneh F., et al. CD4+CD25high Foxp3+ regulatory T cells in myelodysplastic syndrome (MDS) Blood. 2007;110:847–850. doi: 10.1182/blood-2007-01-067546.
    1. Epling-Burnette P.K., Bai F., Painter J.S., Rollison D.E., Salih H.R., Krusch M., Zou J., Ku E., Zhong B., Boulware D., et al. Reduced natural killer (NK) function associated with high-risk myelodysplastic syndrome (MDS) and reduced expression of activating NK receptors. Blood. 2007;109:4816–4824. doi: 10.1182/blood-2006-07-035519.
    1. Symeonidis A., Zoumbos N. Defective autologous and allogeneic mixed lymphocyte reaction in patients with primary myelodysplastic syndromes. Leuk. Res. 1991;15:29. doi: 10.1016/0145-2126(91)90436-W.
    1. Jiang Y., Li Y., Zhu B. T-cell exhaustion in the tumor microenvironment. Cell Death Dis. 2015;6:e1792. doi: 10.1038/cddis.2015.162.
    1. Hofmeyer K.A., Jeon H., Zang X. The PD-1/PD-L1 (B7-H1) pathway in chronic infection-induced cytotoxic T lymphocyte exhaustion. J. Biomed. Biotechnol. 2011;2011:451694. doi: 10.1155/2011/451694.
    1. Haroun F., Solola S.A., Nassereddine S., Tabbara I. PD-1 signaling and inhibition in AML and MDS. Ann. Hematol. 2017;96:1441–1448. doi: 10.1007/s00277-017-3051-5.
    1. Yang H., Bueso-Ramos C., DiNardo C., Estecio M.R., Davanlou M., Geng Q.R., Fang Z., Nguyen M., Pierce S., Wei Y., et al. Expression of PD-L1, PD-L2, PD-1 and CTLA4 in myelodysplastic syndromes is enhanced by treatment with hypomethylating agents. Leukemia. 2014;28:1280–1288. doi: 10.1038/leu.2013.355.
    1. Wang X., Yang L., Huang F., Zhang Q., Liu S., Ma L., You Z. Inflammatory cytokines IL-17 and TNF-α up-regulate PD-L1 expression in human prostate and colon cancer cells. Immunol. Lett. 2017;184:7–14. doi: 10.1016/j.imlet.2017.02.006.
    1. Garcia-Diaz A., Shin D.S., Moreno B.H., Saco J., Escuin-Ordinas H., Rodriguez G.A., Zaretsky J.M., Sun L., Hugo W., Wang X., et al. Interferon Receptor Signaling Pathways Regulating PD-L1 and PD-L2 Expression. Cell Rep. 2017;19:1189–1201. doi: 10.1016/j.celrep.2017.04.031.
    1. Cheng P., Eksioglu E.A., Chen X., Kandell W., Le Trinh T., Cen L., Qi J., Sallman D.A., Zhang Y., Tu N., et al. S100A9-induced overexpression of PD-1/PD-L1 contributes to ineffective hematopoiesis in myelodysplastic syndromes. Leukemia. 2019;33:2034–2046. doi: 10.1038/s41375-019-0397-9.
    1. Ferrari V., Tarke A., Fields H., Tanaka T.N., Searles S., Zanetti M. Tumor-specific T cell-mediated upregulation of PD-L1 in myelodysplastic syndrome cells does not affect T-cell killing. Front. Oncol. 2022;12:915629. doi: 10.3389/fonc.2022.915629.
    1. Pang W.W., Pluvinage J.V., Price E.A., Sridhar K., Arber D.A., Greenberg P.L., Schrier S.L., Park C.Y., Weissman I.L. Hematopoietic stem cell and progenitor cell mechanisms in myelodysplastic syndromes. Proc. Natl. Acad. Sci. USA. 2013;110:3011–3016. doi: 10.1073/pnas.1222861110.
    1. Han Y., Wang H., Shao Z. Monocyte-Derived Macrophages Are Impaired in Myelodysplastic Syndrome. J. Immunol. Res. 2016;2016:5479013. doi: 10.1155/2016/5479013.
    1. Zhang G., Yang L., Han Y., Niu H., Yan L., Shao Z., Xing L., Wang H. Abnormal Macrophage Polarization in Patients with Myelodysplastic Syndrome. Mediators Inflamm. 2021;2021:9913382. doi: 10.1155/2021/9913382.
    1. Liu J., Geng X., Hou J., Wu G. New insights into M1/M2 macrophages: Key modulators in cancer progression. Cancer Cell Int. 2021;21:389. doi: 10.1186/s12935-021-02089-2.
    1. Sica A., Mantovani A. Macrophage plasticity and polarization: In vivo veritas. J. Clin. Investig. 2012;122:787–795. doi: 10.1172/JCI59643.
    1. Al-Matary Y.S., Botezatu L., Opalka B., Hönes J.M., Lams R.F., Thivakaran A., Schütte J., Köster R., Lennartz K., Schroeder T., et al. Acute myeloid leukemia cells polarize macrophages towards a leukemia supporting state in a Growth factor independence 1 dependent manner. Haematologica. 2016;101:1216–1227. doi: 10.3324/haematol.2016.143180.
    1. Petty A.J., Yang Y. Tumor-Associated Macrophages in Hematologic Malignancies: New Insights and Targeted Therapies. Cells. 2019;8:1526. doi: 10.3390/cells8121526.
    1. Yang X., Feng W., Wang R., Yang F., Wang L., Chen S., Ru Y., Cheng T., Zheng G. Repolarizing heterogeneous leukemia-associated macrophages with more M1 characteristics eliminates their pro-leukemic effects. Oncoimmunology. 2017;7:e1412910. doi: 10.1080/2162402X.2017.1412910.
    1. Kiladjian J.J., Bourgeois E., Lobe I., Braun T., Visentin G., Bourhis J.H., Fenaux P., Chouaib S., Caignard A. Cytolytic function and survival of natural killer cells are severely altered in myelodysplastic syndromes. Leukemia. 2006;20:463–470. doi: 10.1038/sj.leu.2404080.
    1. Carlsten M., Baumann B.C., Simonsson M., Jädersten M., Forsblom A.M., Hammarstedt C., Bryceson Y.T., Ljunggren H.G., Hellström-Lindberg E., Malmberg K.J. Reduced DNAM-1 expression on bone marrow NK cells associated with impaired killing of CD34+ blasts in myelodysplastic syndrome. Leukemia. 2010;24:1607–1616. doi: 10.1038/leu.2010.149.
    1. Hejazi M., Manser A.R., Fröbel J., Kündgen A., Zhao X., Schönberg K., Germing U., Haas R., Gattermann N., Uhrberg M. Impaired cytotoxicity associated with defective natural killer cell differentiation in myelodysplastic syndromes. Haematologica. 2015;100:643–652. doi: 10.3324/haematol.2014.118679.
    1. Geyh S., Oz S., Cadeddu R.P., Fröbel J., Brückner B., Kündgen A., Fenk R., Bruns I., Zilkens C., Hermsen D., et al. Insufficient stromal support in MDS results from molecular and functional deficits of mesenchymal stromal cells. Leukemia. 2013;27:1841–1851. doi: 10.1038/leu.2013.193.
    1. Miller J.S., McCullar V. Human natural killer cells with polyclonal lectin and immunoglobulinlike receptors develop from single hematopoietic stem cells with preferential expression of NKG2A and KIR2DL2/L3/S2. Blood. 2001;98:705–713. doi: 10.1182/blood.V98.3.705.
    1. Miura I., Kobayashi Y., Takahashi N., Saitoh K., Miura A.B. Involvement of natural killer cells in patients with myelodysplastic syndrome carrying monosomy 7 revealed by the application of fluorescence in situ hybridization to cells collected by means of fluorescence-activated cell sorting. Br. J. Haematol. 2000;110:876–879. doi: 10.1046/j.1365-2141.2000.02294.x.
    1. Carlsten M., Järås M. Natural Killer Cells in Myeloid Malignancies: Immune Surveillance, NK Cell Dysfunction, and Pharmacological Opportunities to Bolster the Endogenous NK Cells. Front. Immunol. 2019;10:2357. doi: 10.3389/fimmu.2019.02357.
    1. Dickinson R.E., Milne P., Jardine L., Zandi S., Swierczek S.I., McGovern N., Cookson S., Ferozepurwalla Z., Langridge A., Pagan S., et al. The evolution of cellular deficiency in GATA2 mutation. Blood. 2014;123:863–874. doi: 10.1182/blood-2013-07-517151.
    1. Tesi B., Davidsson J., Voss M., Rahikkala E., Holmes T.D., Chiang S., Komulainen-Ebrahim J., Gorcenco S., Rundberg Nilsson A., Ripperger T., et al. Gain-of-function SAMD9L mutations cause a syndrome of cytopenia, immunodeficiency, MDS, and neurological symptoms. Blood. 2017;129:2266–2279. doi: 10.1182/blood-2016-10-743302.
    1. Ma L., Delforge M., van Duppen V., Verhoef G., Emanuel B., Boogaerts M., Hagemeijer A., Vandenberghe P. Circulating myeloid and lymphoid precursor dendritic cells are clonally involved in myelodysplastic syndromes. Leukemia. 2004;18:1451–1456. doi: 10.1038/sj.leu.2403430.
    1. Micheva I., Thanopoulou E., Michalopoulou S., Kakagianni T., Kouraklis-Symeonidis A., Symeonidis A., Zoumbos N. Impaired generation of bone marrow CD34-derived dendritic cells with low peripheral blood subsets in patients with myelodysplastic syndrome. Br. J. Haematol. 2004;126:806–814. doi: 10.1111/j.1365-2141.2004.05132.x.
    1. Micheva I., Thanopoulou E., Michalopoulou S., Karakantza M., Kouraklis-Symeonidis A., Mouzaki A., Zoumbos N. Defective tumor necrosis factor alpha-induced maturation of monocyte-derived dendritic cells in patients with myelodysplastic syndromes. Clin. Immunol. 2004;113:310–317. doi: 10.1016/j.clim.2004.08.007.
    1. Matteo Rigolin G., Howard J., Buggins A., Sneddon C., Castoldi G., Hirst W.J., Mufti G.J. Phenotypic and functional characteristics of monocyte-derived dendritic cells from patients with myelodysplastic syndromes. Br. J. Haematol. 1999;107:844–850. doi: 10.1046/j.1365-2141.1999.01781.x.
    1. Ma L., Ceuppens J., Kasran A., Delforge M., Boogaerts M., Vandenberghe P. Immature and mature monocyte-derived dendritic cells in myelodysplastic syndromes of subtypes refractory anemia or refractory anemia with ringed sideroblasts display an altered cytokine profile. Leuk. Res. 2007;31:1373–1382. doi: 10.1016/j.leukres.2006.11.007.
    1. Van Leeuwen-Kerkhoff N., Westers T.M., Poddighe P.J., Povoleri G., Timms J.A., Kordasti S., De Gruijl T.D., Van de Loosdrecht A.A. Reduced frequencies and functional impairment of dendritic cell subsets and non-classical monocytes in myelodysplastic syndromes. Haematologica. 2022;107:655–667. doi: 10.3324/haematol.2020.268136.
    1. Gabrilovich D.I., Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat. Rev. Immunol. 2009;9:162–174. doi: 10.1038/nri2506.
    1. Marvel D., Gabrilovich D.I. Myeloid-derived suppressor cells in the tumor microenvironment: Expect the unexpected. J. Clin. Investig. 2015;125:3356–3364. doi: 10.1172/JCI80005.
    1. Gabrilovich D.I., Ostrand-Rosenberg S., Bronte V. Coordinated regulation of myeloid cells by tumours. Nat. Rev. Immunol. 2012;12:253–268. doi: 10.1038/nri3175.
    1. Velegraki M., Stiff A., Papadaki H.A., Li Z. Myeloid-Derived Suppressor Cells: New Insights into the Pathogenesis and Therapy of MDS. J. Clin. Med. 2022;11:4908. doi: 10.3390/jcm11164908.
    1. Kittang A.O., Kordasti S., Sand K.E., Costantini B., Kramer A.M., Perezabellan P., Seidl T., Rye K.P., Hagen K.M., Kulasekararaj A. Expansion of myeloid derived suppressor cells correlates with number of T regulatory cells and disease progression in myelodysplastic syndrome. Oncoimmunology. 2015;5:e1062208. doi: 10.1080/2162402X.2015.1062208.
    1. Chen X., Eksioglu E.A., Zhou J., Zhang L., Djeu J., Fortenbery N., Epling-Burnette P., Van Bijnen S., Dolstra H., Cannon J., et al. Induction of myelodysplasia by myeloid-derived suppressor cells. J. Clin. Investig. 2013;123:4595–4611. doi: 10.1172/JCI67580.
    1. Schroeter A., Roesel M.J., Matsunaga T., Xiao Y., Zhou H., Tullius S.G. Aging Affects the Role of Myeloid-Derived Suppressor Cells in Alloimmunity. Front. Immunol. 2022;13:917972. doi: 10.3389/fimmu.2022.917972.
    1. Flores R.R., Clauson C.L., Cho J., Lee B.C., McGowan S.J., Baker D.J., Niedernhofer L.J., Robbins P.D. Expansion of myeloid-derived suppressor cells with aging in the bone marrow of mice through a NF-κB-dependent mechanism. Aging Cell. 2017;16:480–487. doi: 10.1111/acel.12571.
    1. Sinha P., Okoro C., Foell D., Freeze H.H., Ostrand-Rosenberg S., Srikrishna G. Proinflammatory S100 proteins regulate the accumulation of myeloid-derived suppressor cells. J. Immunol. 2008;181:4666–4675. doi: 10.4049/jimmunol.181.7.4666.
    1. Qi X., Jiang H., Liu P., Xie N., Fu R., Wang H., Liu C., Zhang T., Wang H., Shao Z. Increased myeloid-derived suppressor cells in patients with myelodysplastic syndromes suppress CD8+ T lymphocyte function through the STAT3-ARG1 pathway. Leuk. Lymphoma. 2021;62:218–223. doi: 10.1080/10428194.2020.1817431.
    1. Tao J., Han D., Gao S., Zhang W., Yu H., Liu P., Fu R., Li L., Shao Z. CD8+ T cells exhaustion induced by myeloid-derived suppressor cells in myelodysplastic syndromes patients might be through TIM3/Gal-9 pathway. J. Cell. Mol. Med. 2020;24:1046–1058. doi: 10.1111/jcmm.14825.
    1. Yu S., Ren X., Meng F., Guo X., Tao J., Zhang W., Liu Z., Fu R., Li L. TIM3/CEACAM1 pathway involves in myeloid-derived suppressor cells induced CD8+ T cells exhaustion and bone marrow inflammatory microenvironment in myelodysplastic syndrome. Immunology. 2022. ahead of print .
    1. Winter S., Shoaie S., Kordasti S., Platzbecker U. Integrating the “Immunome” in the Stratification of Myelodysplastic Syndromes and Future Clinical Trial Design. J. Clin. Oncol. 2020;38:1723–1735. doi: 10.1200/JCO.19.01823.
    1. Zhou S., Greenberger J.S., Epperly M.W., Goff J.P., Adler C., Leboff M.S., Glowacki J. Age-related intrinsic changes in human bone-marrow-derived mesenchymal stem cells and their differentiation to osteoblasts. Aging cell. 2008;7:335–343. doi: 10.1111/j.1474-9726.2008.00377.x.
    1. Blau O., Baldus C.D., Hofmann W.K., Thiel G., Nolte F., Burmeister T., Türkmen S., Benlasfer O., Schümann E., Sindram A., et al. Mesenchymal stromal cells of myelodysplastic syndrome and acute myeloid leukemia patients have distinct genetic abnormalities compared with leukemic blasts. Blood. 2011;118:5583–5592. doi: 10.1182/blood-2011-03-343467.
    1. Bhagat T.D., Chen S., Bartenstein M., Barlowe A.T., Von Ahrens D., Choudhary G.S., Tivnan P., Amin E., Marcondes A.M., Sanders M.A., et al. Epigenetically Aberrant Stroma in MDS Propagates Disease via Wnt/β-Catenin Activation. Cancer Res. 2017;77:4846–4857. doi: 10.1158/0008-5472.CAN-17-0282.
    1. Ping Z., Chen S., Hermans S., Kenswil K., Feyen J., van Dijk C., Bindels E., Mylona A.M., Adisty N.M., Hoogenboezem R.M., et al. Activation of NF-κB driven inflammatory programs in mesenchymal elements attenuates hematopoiesis in low-risk myelodysplastic syndromes. Leukemia. 2019;33:536–541. doi: 10.1038/s41375-018-0267-x.
    1. Zambetti N.A., Ping Z., Chen S., Kenswil K., Mylona M.A., Sanders M.A., Hoogenboezem R.M., Bindels E., Adisty M.N., Van Strien P., et al. Mesenchymal Inflammation Drives Genotoxic Stress in Hematopoietic Stem Cells and Predicts Disease Evolution in Human Pre-leukemia. Cell Stem Cell. 2016;19:613–627. doi: 10.1016/j.stem.2016.08.021.
    1. Wang Z., Tang X., Xu W., Cao Z., Sun L., Li W., Li Q., Zou P., Zhao Z. The different immunoregulatory functions on dendritic cells between mesenchymal stem cells derived from bone marrow of patients with low-risk or high-risk myelodysplastic syndromes. PLoS ONE. 2013;8:e57470. doi: 10.1371/journal.pone.0057470.
    1. Sarhan D., Wang J., Sunil Arvindam U., Hallstrom C., Verneris M.R., Grzywacz B., Warlick E., Blazar B.R., Miller J.S. Mesenchymal stromal cells shape the MDS microenvironment by inducing suppressive monocytes that dampen NK cell function. JCI Insight. 2020;5:e130155. doi: 10.1172/jci.insight.130155.
    1. Chao M.P., Takimoto C.H., Feng D.D., McKenna K., Gip P., Liu J., Volkmer J.-P., Weissman I.L., Majeti R. Therapeutic Targeting of the Macrophage Immune Checkpoint CD47 in Myeloid Malignancies. Front. Oncol. 2020;9:1380. doi: 10.3389/fonc.2019.01380.
    1. Sallman D.A., Asch A.S., Al Malki M.M., Lee D.J., Donnellan W.B., Marcucci G., Kambhampati S., Daver N.G., Garcia-Manero G., Komrokji R.S., et al. The First-in-Class Anti-CD47 Antibody Magrolimab (5F9) in Combination with Azacitidine Is Effective in MDS and AML Patients: Ongoing Phase 1b Results. Blood. 2019;134:569. doi: 10.1182/blood-2019-126271.
    1. Brunner A.M., Esteve J., Porkka K., Knapper S., Traer E., Scholl S., Garcia-Manero G., Vey N., Wermke M., Janssen J., et al. Efficacy and Safety of Sabatolimab (MBG453) in Combination with Hypomethylating Agents (HMAs) in Patients (Pts) with Very High/High-Risk Myelodysplastic Syndrome (vHR/HR-MDS) and Acute Myeloid Leukemia (AML): Final Analysis from a Phase Ib Study. Blood. 2021;138((Suppl. 1)):244. doi: 10.1182/blood-2021-146039.
    1. Borate U., Esteve J., Porkka K., Knapper S., Vey N., Scholl S., Garcia-Manero G., Wermke M., Janssen J., Traer E., et al. Phase Ib Study of the Anti-TIM-3 Antibody MBG453 in Combination with Decitabine in Patients with High-Risk Myelodysplastic Syndrome (MDS) and Acute Myeloid Leukemia (AML) Blood. 2019;134:570. doi: 10.1182/blood-2019-128178.
    1. Chien K.S., Kim K., Nogueras-Gonzalez G.M., Borthakur G., Naqvi K., Daver N.G., Montalban-Bravo G., Cortes J.E., DiNardo C.D., Jabbour E., et al. Phase II study of azacitidine with pembrolizumab in patients with intermediate-1 or higher-risk myelodysplastic syndrome. Br. J. Haematol. 2021;195:378–387. doi: 10.1111/bjh.17689.
    1. Garcia-Manero G., Montalban-Bravo G., Yang H., Wei Y., Alvarado Y., DiNardo C.D., Naval G., Daver N.G., Konopleva M., Hearn K.P., et al. A Clinical Study of OPN-305, a Toll-like Receptor 2 (TLR-2) Antibody, in Patients with Lower Risk Myelodysplastic Syndromes (MDS) That Have Received Prior Hypomethylating Agent (HMA) Therapy. Blood. 2016;128:227. doi: 10.1182/blood.V128.22.227.227.
    1. Lee P., Yim R., Yung Y., Chu H.T., Yip P.K., Gill H. Molecular Targeted Therapy and Immunotherapy for Myelodysplastic Syndrome. Int. J. Mol. Sci. 2021;22:10232. doi: 10.3390/ijms221910232.

Source: PubMed

3
S'abonner