Mast Cell Stabilizers in the Treatment of Rosacea: A Review of Existing and Emerging Therapies

Mark C Marchitto, Anna L Chien, Mark C Marchitto, Anna L Chien

Abstract

Rosacea is a chronic inflammatory skin disease characterized by centrofacial erythema, papules, pustules, and telangiectasias. The onset of rosacea typically occurs after 30 years of age. It is estimated that approximately 2-5% of adults worldwide are affected. While the exact etiology of rosacea remains unknown, its pathogenesis is thought to be multifactorial with both environmental and genetic factors implicated. Ultraviolet radiation, heat, steam, ingested agents, including spicy foods and alcohol, host vasculature, dermal matrix degeneration, genetic susceptibility, and microbial organisms, including Demodex mites and Heliobacter pylori, have been implicated in the development of rosacea. Recently, mast cells (MCs) have emerged as key players in the pathogenesis of rosacea through the release of pro-inflammatory cytokines, chemokines, proteases, and antimicrobial peptides leading to cutaneous vasodilation, angiogenesis, and tissue fibrosis. Several existing and emerging topical, oral, and injectable therapeutics have been associated with improvement of rosacea symptoms based on their ability to stabilize and downregulate activated MCs. Herein, we review the data implicating MCs in the pathogenesis of rosacea and discuss interventions that may stabilize this pathway.

Keywords: Angiogenesis; Dermatologic Therapy; Emerging Treatments; Erythema; Mast Cell; Papulopustular; Rosacea.

© 2021. The Author(s).

References

    1. Crawford GH, Pelle MT, James WD. Rosacea: I. Etiology, pathogenesis, and subtype classification. J Am Acad Dermatol. 2004;51(3):327–341. doi: 10.1016/j.jaad.2004.03.030.
    1. Gether L, Overgaard LK, Egeberg A, Thyssen JP. Incidence and prevalence of rosacea: a systematic review and meta-analysis. Br J Dermatol. 2018;179(2):282–289. doi: 10.1111/bjd.16481.
    1. Augustin M, Herberger K, Hintzen S, Heigel H, Franzke N, Schäfer I. Prevalence of skin lesions and need for treatment in a cohort of 90 880 workers. Br J Dermatol. 2011;165(4):865–873. doi: 10.1111/j.1365-2133.2011.10436.x.
    1. McAleer MA, Fitzpatrick P, Powell FC. Papulopustular rosacea: prevalence and relationship to photodamage. J Am Acad Dermatol. 2010;63(1):33–39. doi: 10.1016/j.jaad.2009.04.024.
    1. Rueda LJ, Motta A, Pabón JG, et al. Epidemiology of rosacea in Colombia. Int J Dermatol. 2017;56(5):510–513. doi: 10.1111/ijd.13491.
    1. Bamford JT. Rosacea: current thoughts on origin. Semin Cutan Med Surg. 2001;20(3):199–206. doi: 10.1053/sder.2001.27553.
    1. Katz AM. Rosacea: epidemiology and pathogenesis. J Cutan Med Surg. 1998;2(Suppl 4):S4–10.
    1. Janssens AS, Heide R, den Hollander JC, Mulder PG, Tank B, Oranje AP. Mast cell distribution in normal adult skin. J Clin Pathol. 2005;58(3):285–289. doi: 10.1136/jcp.2004.017210.
    1. Rothe MJ, Nowak M, Kerdel FA. The mast cell in health and disease. J Am Acad Dermatol. 1990;23(4 Pt 1):615–624. doi: 10.1016/0190-9622(90)70264-i.
    1. Weber S, Krüger-Krasagakes S, Grabbe J, Zuberbier T, Czarnetzki BM. Mast cells. Int J Dermatol. 1995;34(1):1–10. doi: 10.1111/j.1365-4362.1995.tb04366.x.
    1. Aroni K, Tsagroni E, Kavantzas N, Patsouris E, Ioannidis E. A study of the pathogenesis of rosacea: how angiogenesis and mast cells may participate in a complex multifactorial process. Arch Dermatol Res. 2008;300(3):125–131. doi: 10.1007/s00403-007-0816-z.
    1. Muto Y, Wang Z, Vanderberghe M, Two A, Gallo RL, Di Nardo A. Mast cells are key mediators of cathelicidin-initiated skin inflammation in rosacea. J Invest Dermatol. 2014;134(11):2728–2736. doi: 10.1038/jid.2014.222.
    1. Metcalfe DD, Baram D, Mekori YA. Mast cells. Physiol Rev. 1997;77(4):1033–1079. doi: 10.1152/physrev.1997.77.4.1033.
    1. Yamasaki K, Di Nardo A, Bardan A, et al. Increased serine protease activity and cathelicidin promotes skin inflammation in rosacea. Nat Med. 2007;13:975–980. doi: 10.1038/nm1616.
    1. Di Nardo A, Vitiello A, Gallo RL. Cutting edge: mast cell antimicrobial activity is mediated by expression of cathelicidin antimicrobial peptide. J Immunol. 2003;170(5):2274–2278. doi: 10.4049/jimmunol.170.5.2274.
    1. Two AM, Wu W, Gallo RL, Hata TR. Rosacea: part I. Introduction, categorization, histology, pathogenesis, and risk factors. J Am Acad Dermatol. 2015;72(5):749–758. doi: 10.1016/j.jaad.2014.08.028.
    1. Two AM, Wu W, Gallo RL, Hata TR. Rosacea: part II. Topical and systemic therapies in the treatment of rosacea. J Am Acad Dermatol. 2015;72(5):761–770. doi: 10.1016/j.jaad.2014.08.027.
    1. Ahn CS, Huang WW. Rosacea pathogenesis. Dermatol Clin. 2018;36(2):81–86. doi: 10.1016/j.det.2017.11.001.
    1. Kuzemko JA. Twenty years of sodium cromoglycate treatment: a short review. Respir Med. 1989;83(Suppl A):11–14. doi: 10.1016/s0954-6111(89)80245-8.
    1. Ben-Eli H, Solomon A. Topical antihistamines, mast cell stabilizers, and dual-action agents in ocular allergy: current trends. Curr Opin Allergy Clin Immunol. 2018;18(5):411–416. doi: 10.1097/ACI.0000000000000473.
    1. Castells M, Butterfield J. Mast cell activation syndrome and mastocytosis: initial treatment options and long-term management. J Allergy Clin Immunol Pract. 2019;7(4):1097–1106. doi: 10.1016/j.jaip.2019.02.002.
    1. Vieiraantos R, Magerl M, Martus P, et al. Topical sodium cromoglicate relieves allergen- and histamine-induced dermal pruritus. Br J Dermatol. 2010;162(3):674–676. doi: 10.1111/j.1365-2133.2009.09516.x.
    1. Simonsen E, Komenda P, Lerner B, et al. Treatment of uremic pruritus: a systematic review. Am J Kidney Dis. 2017;70(5):638–655. doi: 10.1053/j.ajkd.2017.05.018.
    1. Stevens MT, Edwards AM. The effect of 4% sodium cromoglicate cutaneous emulsion compared to vehicle in atopic dermatitis in children–A meta-analysis of total SCORAD scores. J Dermatolog Treat. 2015;26(3):284–290. doi: 10.3109/09546634.2014.933766.
    1. Spinelli FR, Moscarelli E, Ceccarelli F, et al. Treating lupus patients with antimalarials: analysis of safety profile in a single-center cohort. Lupus. 2018;27(10):1616–1623. doi: 10.1177/0961203318781008.
    1. Motten AG, Martínez LJ, Holt N, et al. Photophysical studies on antimalarial drugs. Photochem Photobiol. 1999;69(3):282–287. doi: 10.1562/0031-8655(1999)069<0282:psoad>;2.
    1. Fox R. Anti-malarial drugs: possible mechanisms of action in autoimmune disease and prospects for drug development. Lupus. 1996;5(Suppl 1):S4–10. doi: 10.1177/0961203396005001031.
    1. Espinosa E, Valitutti S, Laroche M, et al. Hydroxychloroquine as a novel therapeutic approach in mast cell activation diseases. Clin Immunol. 2018;194:75–79. doi: 10.1016/j.clim.2018.07.004.
    1. Li J, Yuan X, Tang Y, et al. Hydroxychloroquine is a novel therapeutic approach for rosacea. Int Immunopharmacol. 2020;79:106178. doi: 10.1016/j.intimp.2019.106178.
    1. Wang B, Yuan X, Huang X, et al. Efficacy and safety of hydroxychloroquine for treatment of patients with rosacea: a multicenter, randomized, double-blind, double-dummy, pilot study. J Am Acad Dermatol. 2021;84(2):543–545. doi: 10.1016/j.jaad.2020.05.050.
    1. An J, Minie M, Sasaki T, Woodward JJ, Elkon KB. Antimalarial drugs as immune modulators: new mechanisms for old drugs. Annu Rev Med. 2017;14:317–330. doi: 10.1146/annurev-med-043015-123453.
    1. Chen HH, Zhou HJ, Fang X. Inhibition of human cancer cell line growth and human umbilical vein endothelial cell angiogenesis by artemisinin derivatives in vitro. Pharmacol Res. 2003;48(3):231–236. doi: 10.1016/s1043-6618(03)00107-5.
    1. Yuan X, Li J, Li Y, et al. Artemisinin, a potential option to inhibit inflammation and angiogenesis in rosacea. Biomed Pharmacother. 2019;117:109181. doi: 10.1016/j.biopha.2019.109181.
    1. Wang GJ, Gao XY, Wu Y, et al. Evaluation of the efficacy and tolerance of artemether emulsion for the treatment of papulopustular rosacea: a randomized pilot study. J Dermatol Treat. 2019;30(8):809–812. doi: 10.1080/09546634.2019.1610549.
    1. Cheng C, Ng DS, Chan TK, et al. Anti-allergic action of anti-malarial drug artesunate in experimental mast cell-mediated anaphylactic models. Allergy. 2013;68(2):195–203. doi: 10.1111/all.12077.
    1. Fowler J, Jarratt M, Moore A, et al. Brimonidine Phase II Study Group Once-daily topical brimonidine tartrate gel 0·5% is a novel treatment for moderate to severe facial erythema of rosacea: results of two multicentre, randomized and vehicle-controlled studies. Br J Dermatol. 2012;166(3):633–641. doi: 10.1111/j.1365-2133.2011.10716.x.
    1. Jackson JM, Fowler J, Moore A, et al. Improvement in facial erythema within 30 minutes of initial application of brimonidine tartrate in patients with rosacea. J Drugs Dermatol. 2014;13(6):699–704.
    1. Kim M, Kim J, Jeong SW, Jo H, Woo YR, Park HJ. Inhibition of mast cell infiltration in an LL-37-induced rosacea mouse model using topical brimonidine tartrate 0.33% gel. Exp Dermatol. 2017;26(11):1143–1145. doi: 10.1111/exd.13381.
    1. Chen S. Clinical uses of botulinum neurotoxins: current indications, limitations and future developments. Toxins (Basel) 2012;4(10):913–939. doi: 10.3390/toxins4100913.
    1. Park KY, Hyun MY, Jeong SY, Kim BJ, Kim MN, Hong CK. Botulinum toxin for the treatment of refractory erythema and flushing of rosacea. Dermatology. 2015;230(4):299–301. doi: 10.1159/000368773.
    1. Dayan SH, Pritzker RN, Arkins JP. A new treatment regimen for rosacea: onabotulinumtoxinA. J Drugs Dermatol. 2012;11(12):e76–e79.
    1. Bharti J, Sonthalia S, Jakhar D. Mesotherapy with botulinum toxin for the treatment of refractory vascular and papulopustular rosacea. J Am Acad Dermatol. 2018;19:S0190–9622(18)30808–9. 10.1016/j.jaad.2018.05.014.
    1. Khan TT, Herne K, Dayan SH, Woodward JA. Facial blanching due to neurotoxins: proposed mechanisms. Dermatol Surg. 2013;39(1):24–29. doi: 10.1111/dsu.12057.
    1. Park TH. The effects of botulinum toxin A on mast cell activity: preliminary results. Burns. 2013;39:816–817. doi: 10.1016/j.burns.2012.07.031.
    1. Ramachandran R, Marino MJ, Paul S, et al. A study and review of effects of botulinum toxins on mast cell dependent and independent pruritus. Toxins (Basel). 2018;10(4):134. doi: 10.3390/toxins10040134.
    1. Choi JE, Werbel T, Wang Z, Wu CC, Yaksh TL, Di Nardo A. Botulinum toxin blocks mast cells and prevents rosacea like inflammation. J Dermatol Sci. 2019;93(1):58–64. doi: 10.1016/j.jdermsci.2018.12.004.
    1. Wang L, Wang YJ, Hao D, Wen X, Du D, He G, Jiang X. The theranostics role of mast cells in the pathophysiology of rosacea. Front Med (Lausanne) 2020;6:324. doi: 10.3389/fmed.2019.00324.

Source: PubMed

3
S'abonner