Pheochromocytomas and Paragangliomas: From Genetic Diversity to Targeted Therapies

Ying Pang, Yang Liu, Karel Pacak, Chunzhang Yang, Ying Pang, Yang Liu, Karel Pacak, Chunzhang Yang

Abstract

Pheochromocytoma and paraganglioma (PCPGs) are rare neuroendocrine tumors that arise from the chromaffin tissue of adrenal medulla and sympathetic ganglia. Although metastatic PCPGs account for only 10% of clinical cases, morbidity and mortality are high because of the uncontrollable mass effect and catecholamine level generated by these tumors. Despite our expanding knowledge of PCPG genetics, the clinical options to effectively suppress PCPG progression remain limited. Several recent translational studies revealed that PCPGs with different molecular subtypes exhibit distinctive oncogenic pathways and spectrum of therapy resistance. This suggests that therapeutics can be adjusted based on the signature molecular and metabolic pathways of PCPGs. In this review, we summarized the latest findings on PCPG genetics, novel therapeutic targets, and perspectives for future personalized medicine.

Keywords: neuroendocrine tumor; paraganglioma; pheochromocytoma; targeted therapy; therapy resistance.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Schematic illustrations of cancer-associated mutations in pheochromocytomas and paragangliomas (PCPGs). Cluster I PCPGs exhibit dysfunction in the Krebs cycle and hypoxia sensing pathways. Loss-of-function mutations in SDHx, FH, EGLN1 or VHL are commonly identified in this disease cluster. HIF2A mutations that activate hypoxia signaling are also found in Cluster I disease. Cluster II PCPGs exhibit abnormal kinase activity. This is caused by mutations of major regulators in the feedback loop, such as NF1, MAX and TMEM127. Gain-of-function mutations in RET prompt cellular proliferation and survival by initiating kinase pathways such as Ras/MEK and PI3K/Akt.

References

    1. Crona J., Delgado Verdugo A., Maharjan R., Stalberg P., Granberg D., Hellman P., Bjorklund P. Somatic mutations in H-RAS in sporadic pheochromocytoma and paraganglioma identified by exome sequencing. J. Clin. Endocrinol. Metab. 2013;98:E1266–E1271.
    1. Luchetti A., Walsh D., Rodger F., Clark G., Martin T., Irving R., Sanna M., Yao M., Robledo M., Neumann H.P., et al. Profiling of somatic mutations in phaeochromocytoma and paraganglioma by targeted next generation sequencing analysis. Int. J. Endocrinol. 2015;2015:138573. doi: 10.1155/2015/138573.
    1. King K.S., Prodanov T., Kantorovich V., Fojo T., Hewitt J.K., Zacharin M., Wesley R., Lodish M., Raygada M., Gimenez-Roqueplo A.P., et al. Metastatic pheochromocytoma/paraganglioma related to primary tumor development in childhood or adolescence: Significant link to SDHB mutations. J. Clin. Oncol. 2011;29:4137–4142. doi: 10.1200/JCO.2011.34.6353.
    1. Erlic Z., Neumann H.P. Familial pheochromocytoma. Hormones (Athens) 2009;8:29–38. doi: 10.14310/horm.2002.1219.
    1. Burnichon N., Vescovo L., Amar L., Libe R., de Reynies A., Venisse A., Jouanno E., Laurendeau I., Parfait B., Bertherat J., et al. Integrative genomic analysis reveals somatic mutations in pheochromocytoma and paraganglioma. Hum. Mol. Genet. 2011;20:3974–3985. doi: 10.1093/hmg/ddr324.
    1. Huang H., Abraham J., Hung E., Averbuch S., Merino M., Steinberg S.M., Pacak K., Fojo T. Treatment of malignant pheochromocytoma/paraganglioma with cyclophosphamide, vincristine, and dacarbazine: Recommendation from a 22-year follow-up of 18 patients. Cancer. 2008;113:2020–2028. doi: 10.1002/cncr.23812.
    1. Jochmanova I., Pacak K. Genomic Landscape of Pheochromocytoma and Paraganglioma. Trends Cancer. 2018;4:6–9. doi: 10.1016/j.trecan.2017.11.001.
    1. Fishbein L., Leshchiner I., Walter V., Danilova L., Robertson A.G., Johnson A.R., Lichtenberg T.M., Murray B.A., Ghayee H.K., Else T., et al. Comprehensive Molecular Characterization of Pheochromocytoma and Paraganglioma. Cancer Cell. 2017;31:181–193. doi: 10.1016/j.ccell.2017.01.001.
    1. Castro-Vega L.J., Letouze E., Burnichon N., Buffet A., Disderot P.H., Khalifa E., Loriot C., Elarouci N., Morin A., Menara M., et al. Multi-omics analysis defines core genomic alterations in pheochromocytomas and paragangliomas. Nat. Commun. 2015;6:6044. doi: 10.1038/ncomms7044.
    1. Gill A.J., Benn D.E., Chou A., Clarkson A., Muljono A., Meyer-Rochow G.Y., Richardson A.L., Sidhu S.B., Robinson B.G., Clifton-Bligh R.J. Immunohistochemistry for SDHB triages genetic testing of SDHB, SDHC, and SDHD in paraganglioma-pheochromocytoma syndromes. Hum. Pathol. 2010;41:805–814. doi: 10.1016/j.humpath.2009.12.005.
    1. Gottlieb E., Tomlinson I.P. Mitochondrial tumour suppressors: A genetic and biochemical update. Nat. Rev. Cancer. 2005;5:857–866. doi: 10.1038/nrc1737.
    1. Vicha A., Taieb D., Pacak K. Current views on cell metabolism in SDHx-related pheochromocytoma and paraganglioma. Endocr. Relat. Cancer. 2014;21:R261–277. doi: 10.1530/ERC-13-0398.
    1. Baysal B.E., Ferrell R.E., Willett-Brozick J.E., Lawrence E.C., Myssiorek D., Bosch A., van der Mey A., Taschner P.E., Rubinstein W.S., Myers E.N., et al. Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science. 2000;287:848–851. doi: 10.1126/science.287.5454.848.
    1. Niemann S., Muller U. Mutations in SDHC cause autosomal dominant paraganglioma, type 3. Nat. Genet. 2000;26:268–270. doi: 10.1038/81551.
    1. Jafri M., Maher E.R. The genetics of phaeochromocytoma: Using clinical features to guide genetic testing. Eur. J. Endocrinol. 2012;166:151–158. doi: 10.1530/EJE-11-0497.
    1. Pasini B., Stratakis C.A. SDH mutations in tumorigenesis and inherited endocrine tumours: Lesson from the phaeochromocytoma-paraganglioma syndromes. J. Intern. Med. 2009;266:19–42. doi: 10.1111/j.1365-2796.2009.02111.x.
    1. Bayley J.P., Oldenburg R.A., Nuk J., Hoekstra A.S., van der Meer C.A., Korpershoek E., McGillivray B., Corssmit E.P., Dinjens W.N., de Krijger R.R., et al. Paraganglioma and pheochromocytoma upon maternal transmission of SDHD mutations. BMC Med. Genet. 2014;15:111. doi: 10.1186/s12881-014-0111-8.
    1. Van der Mey A.G., Maaswinkel-Mooy P.D., Cornelisse C.J., Schmidt P.H., van de Kamp J.J. Genomic imprinting in hereditary glomus tumours: Evidence for new genetic theory. Lancet. 1989;2:1291–1294. doi: 10.1016/S0140-6736(89)91908-9.
    1. Hao H.X., Khalimonchuk O., Schraders M., Dephoure N., Bayley J.P., Kunst H., Devilee P., Cremers C.W., Schiffman J.D., Bentz B.G., et al. SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma. Science. 2009;325:1139–1142. doi: 10.1126/science.1175689.
    1. Burnichon N., Briere J.J., Libe R., Vescovo L., Riviere J., Tissier F., Jouanno E., Jeunemaitre X., Benit P., Tzagoloff A., et al. SDHA is a tumor suppressor gene causing paraganglioma. Hum. Mol. Genet. 2010;19:3011–3020. doi: 10.1093/hmg/ddq206.
    1. Comino-Mendez I., Gracia-Aznarez F.J., Schiavi F., Landa I., Leandro-Garcia L.J., Leton R., Honrado E., Ramos-Medina R., Caronia D., Pita G., et al. Exome sequencing identifies MAX mutations as a cause of hereditary pheochromocytoma. Nat. Genet. 2011;43:663–667. doi: 10.1038/ng.861.
    1. Astuti D., Latif F., Dallol A., Dahia P.L., Douglas F., George E., Skoldberg F., Husebye E.S., Eng C., Maher E.R. Gene mutations in the succinate dehydrogenase subunit SDHB cause susceptibility to familial pheochromocytoma and to familial paraganglioma. Am. J. Hum. Genet. 2001;69:49–54. doi: 10.1086/321282.
    1. Timmers H.J., Kozupa A., Eisenhofer G., Raygada M., Adams K.T., Solis D., Lenders J.W., Pacak K. Clinical presentations, biochemical phenotypes, and genotype-phenotype correlations in patients with succinate dehydrogenase subunit B-associated pheochromocytomas and paragangliomas. J. Clin. Endocrinol. Metab. 2007;92:779–786. doi: 10.1210/jc.2006-2315.
    1. Kunst H.P., Rutten M.H., de Monnink J.P., Hoefsloot L.H., Timmers H.J., Marres H.A., Jansen J.C., Kremer H., Bayley J.P., Cremers C.W. SDHAF2 (PGL2-SDH5) and hereditary head and neck paraganglioma. Clin. Cancer Res. 2011;17:247–254. doi: 10.1158/1078-0432.Ccr-10-0420.
    1. Korpershoek E., Favier J., Gaal J., Burnichon N., van Gessel B., Oudijk L., Badoual C., Gadessaud N., Venisse A., Bayley J.P., et al. SDHA immunohistochemistry detects germline SDHA gene mutations in apparently sporadic paragangliomas and pheochromocytomas. J. Clin. Endocrinol. Metab. 2011;96:E1472–1476. doi: 10.1210/jc.2011-1043.
    1. Saxena N., Maio N., Crooks D.R., Ricketts C.J., Yang Y., Wei M.H., Fan T.W., Lane A.N., Sourbier C., Singh A., et al. SDHB-Deficient Cancers: The Role of Mutations That Impair Iron Sulfur Cluster Delivery. J. Natl. Cancer Inst. 2016;108 doi: 10.1093/jnci/djv287.
    1. Guzy R.D., Sharma B., Bell E., Chandel N.S., Schumacker P.T. Loss of the SdhB, but Not the SdhA, subunit of complex II triggers reactive oxygen species-dependent hypoxia-inducible factor activation and tumorigenesis. Mol. Cell Biol. 2008;28:718–731. doi: 10.1128/MCB.01338-07.
    1. de Cubas A.A., Korpershoek E., Inglada-Perez L., Letouze E., Curras-Freixes M., Fernandez A.F., Comino-Mendez I., Schiavi F., Mancikova V., Eisenhofer G., et al. DNA Methylation Profiling in Pheochromocytoma and Paraganglioma Reveals Diagnostic and Prognostic Markers. Clin. Cancer Res. 2015;21:3020–3030. doi: 10.1158/1078-0432.CCR-14-2804.
    1. Lonser R.R., Glenn G.M., Walther M., Chew E.Y., Libutti S.K., Linehan W.M., Oldfield E.H. von Hippel-Lindau disease. Lancet. 2003;361:2059–2067. doi: 10.1016/S0140-6736(03)13643-4.
    1. Friedrich C.A. Genotype-phenotype correlation in von Hippel-Lindau syndrome. Hum. Mol. Genet. 2001;10:763–767. doi: 10.1093/hmg/10.7.763.
    1. Semenza G.L. Involvement of oxygen-sensing pathways in physiologic and pathologic erythropoiesis. Blood. 2009;114:2015–2019. doi: 10.1182/blood-2009-05-189985.
    1. Capodimonti S., Teofili L., Martini M., Cenci T., Iachininoto M.G., Nuzzolo E.R., Bianchi M., Murdolo M., Leone G., Larocca L.M. Von hippel-lindau disease and erythrocytosis. J. Clin. Oncol. 2012;30:e137–e139. doi: 10.1200/JCO.2011.38.6797.
    1. Koch C.A., Huang S.C., Zhuang Z., Stolle C., Stolle C., Azumi N., Chrousos G.P., Vortmeyer A.O., Pacak K. Somatic VHL gene deletion and point mutation in MEN 2A-associated pheochromocytoma. Oncogene. 2002;17:479–482. doi: 10.1038/sj.onc.1205133.
    1. Merlo A., de Quiros S.B., de Santa-Maria I.S., Pitiot A.S., Balbin M., Astudillo A., Scola B., Aristegui M., Quer M., Suarez C., et al. Identification of somatic VHL gene mutations in sporadic head and neck paragangliomas in association with activation of the HIF-1alpha/miR-210 signaling pathway. J. Clin. Endocrinol. Metab. 2013;98:E1661–E1666. doi: 10.1210/jc.2013-1636.
    1. Wang H., Shepard M.J., Zhang C., Dong L., Walker D., Guedez L., Park S., Wang Y., Chen S., Pang Y., et al. Deletion of the von Hippel-Lindau Gene in Hemangioblasts Causes Hemangioblastoma-like Lesions in Murine Retina. Cancer Res. 2018;78:1266–1274. doi: 10.1158/0008-5472.CAN-17-1718.
    1. Roe J.S., Kim H., Lee S.M., Kim S.T., Cho E.J., Youn H.D. p53 stabilization and transactivation by a von Hippel-Lindau protein. Mol. Cell. 2006;22:395–405. doi: 10.1016/j.molcel.2006.04.006.
    1. Semenza G.L., Rue E.A., Iyer N.V., Pang M.G., Kearns W.G. Assignment of the hypoxia-inducible factor 1alpha gene to a region of conserved synteny on mouse chromosome 12 and human chromosome 14q. Genomics. 1996;34:437–439. doi: 10.1006/geno.1996.0311.
    1. Semenza G.L. Hypoxia-inducible factor 1 (HIF-1) pathway. Sci. STKE. 2007;2007:cm8. doi: 10.1126/stke.4072007cm8.
    1. Zhong H., De Marzo A.M., Laughner E., Lim M., Hilton D.A., Zagzag D., Buechler P., Isaacs W.B., Semenza G.L., Simons J.W. Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Cancer Res. 1999;59:5830–5835.
    1. Amar L., Baudin E., Burnichon N., Peyrard S., Silvera S., Bertherat J., Bertagna X., Schlumberger M., Jeunemaitre X., Gimenez-Roqueplo A.P., et al. Succinate dehydrogenase B gene mutations predict survival in patients with malignant pheochromocytomas or paragangliomas. J. Clin. Endocrinol. Metab. 2007;92:3822–3828. doi: 10.1210/jc.2007-0709.
    1. Keith B., Johnson R.S., Simon M.C. HIF1alpha and HIF2alpha: Sibling rivalry in hypoxic tumour growth and progression. Nat. Rev. Cancer. 2011;12:9–22. doi: 10.1038/nrc3183.
    1. Percy M.J., Furlow P.W., Lucas G.S., Li X., Lappin T.R., McMullin M.F., Lee F.S. A gain-of-function mutation in the HIF2A gene in familial erythrocytosis. N. Engl. J. Med. 2008;358:162–168. doi: 10.1056/NEJMoa073123.
    1. Zhuang Z., Yang C., Lorenzo F., Merino M., Fojo T., Kebebew E., Popovic V., Stratakis C.A., Prchal J.T., Pacak K. Somatic HIF2A gain-of-function mutations in paraganglioma with polycythemia. N. Engl. J. Med. 2012;367:922–930. doi: 10.1056/NEJMoa1205119.
    1. Yang C., Hong C.S., Prchal J.T., Balint M.T., Pacak K., Zhuang Z. Somatic mosaicism of EPAS1 mutations in the syndrome of paraganglioma and somatostatinoma associated with polycythemia. Hum. Genome. Var. 2015;2:15053. doi: 10.1038/hgv.2015.53.
    1. Ratner N., Miller S.J. A RASopathy gene commonly mutated in cancer: The neurofibromatosis type 1 tumour suppressor. Nat. Rev. Cancer. 2015;15:290–301. doi: 10.1038/nrc3911.
    1. Bausch B., Borozdin W., Mautner V.F., Hoffmann M.M., Boehm D., Robledo M., Cascon A., Harenberg T., Schiavi F., Pawlu C., et al. Germline NF1 mutational spectra and loss-of-heterozygosity analyses in patients with pheochromocytoma and neurofibromatosis type 1. J. Clin. Endocrinol. Metab. 2007;92:2784–2792. doi: 10.1210/jc.2006-2833.
    1. Gutmann D.H., Ferner R.E., Listernick R.H., Korf B.R., Wolters P.L., Johnson K.J. Neurofibromatosis type 1. Nat. Rev. Dis. Primers. 2017;3:17004. doi: 10.1038/nrdp.2017.4.
    1. Welander J., Larsson C., Backdahl M., Hareni N., Sivler T., Sivler T., Brauckhoff M., Soderkvist P., Gimm O. Integrative genomics reveals frequent somatic NF1 mutations in sporadic pheochromocytomas. Hum. Mol. Genet. 2012;21:5406–5416. doi: 10.1093/hmg/dds402.
    1. Correia M.J., Lopes L.O., Bugalho M.J., Cristina L., Santos A.I., Bordalo A.D., Pinho B., da Silva H.L., Goncalves M.D., Ribeiro C., et al. Multiple endocrine neoplasia type 2A. Study of a family. Rev. Port. Cardiol. 2000;19:11–31.
    1. Bergsland E.K. The evolving landscape of neuroendocrine tumors. Semin. Oncol. 2013;40:4–22. doi: 10.1053/j.seminoncol.2012.11.013.
    1. Machens A., Brauckhoff M., Holzhausen H.J., Thanh P.N., Lehnert H., Dralle H. Codon-specific development of pheochromocytoma in multiple endocrine neoplasia type 2. J. Clin. Endocrinol. Metab. 2005;90:3999–4003. doi: 10.1210/jc.2005-0064.
    1. Boedeker C.C., Erlic Z., Richard S., Kontny U., Gimenez-Roqueplo A.P., Cascon A., Robledo M., de Campos J.M., van Nederveen F.H., de Krijger R.R., et al. Head and neck paragangliomas in von Hippel-Lindau disease and multiple endocrine neoplasia type 2. J. Clin. Endocrinol. Metab. 2009;94:1938–1944. doi: 10.1210/jc.2009-0354.
    1. Fishbein L., Nathanson K.L. Pheochromocytoma and paraganglioma: Understanding the complexities of the genetic background. Cancer Genet. 2012;205:1–11. doi: 10.1016/j.cancergen.2012.01.009.
    1. Plaza-Menacho I., Barnouin K., Goodman K., Martinez-Torres R.J., Borg A., Murray-Rust J., Mouilleron S., Knowles P., McDonald N.Q. Oncogenic RET kinase domain mutations perturb the autophosphorylation trajectory by enhancing substrate presentation in trans. Mol. Cell. 2014;53:738–751. doi: 10.1016/j.molcel.2014.01.015.
    1. Burnichon N., Cascon A., Schiavi F., Morales N.P., Comino-Mendez I., Abermil N., Inglada-Perez L., de Cubas A.A., Amar L., Barontini M., et al. MAX mutations cause hereditary and sporadic pheochromocytoma and paraganglioma. Clin. Cancer Res. 2012;18:2828–2837. doi: 10.1158/1078-0432.CCR-12-0160.
    1. Blackwood E.M., Eisenman R.N. Max: A helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with Myc. Science. 1991;251:1211–1217. doi: 10.1126/science.2006410.
    1. Bousset K., Henriksson M., Luscher-Firzlaff J.M., Litchfield D.W., Luscher B. Identification of casein kinase II phosphorylation sites in Max: Effects on DNA-binding kinetics of Max homo- and Myc/Max heterodimers. Oncogene. 1993;8:3211–3220.
    1. Yoshimoto K., Iwahana H., Fukuda A., Sano T., Katsuragi K., Kinoshita M., Saito S., Itakura M. ras mutations in endocrine tumors: Mutation detection by polymerase chain reaction-single strand conformation polymorphism. Jpn. J. Cancer Res. 1992;83:1057–1062. doi: 10.1111/j.1349-7006.1992.tb02722.x.
    1. Safford S.D., Coleman R.E., Gockerman J.P., Moore J., Feldman J.M., Leight G.S., Jr., Tyler D.S., Olson J.A., Jr. Iodine -131 metaiodobenzylguanidine is an effective treatment for malignant pheochromocytoma and paraganglioma. Surgery. 2003;134:956–962. doi: 10.1016/S0039-6060(03)00426-4.
    1. Fitzgerald P.A., Goldsby R.E., Huberty J.P., Price D.C., Hawkins R.A., Veatch J.J., Dela Cruz F., Jahan T.M., Linker C.A., Damon L., et al. Malignant pheochromocytomas and paragangliomas: A phase II study of therapy with high-dose 131I-metaiodobenzylguanidine (131I-MIBG) Ann. NY Acad. Sci. 2006;1073:465–490. doi: 10.1196/annals.1353.050.
    1. van Hulsteijn L.T., Niemeijer N.D., Dekkers O.M., Corssmit E.P. (131)I-MIBG therapy for malignant paraganglioma and phaeochromocytoma: Systematic review and meta-analysis. Clin. Endocrinol. (Oxf) 2014;80:487–501. doi: 10.1111/cen.12341.
    1. Otte A., Jermann E., Behe M., Goetze M., Bucher H.C., Roser H.W., Heppeler A., Mueller-Brand J., Maecke H.R. DOTATOC: A powerful new tool for receptor-mediated radionuclide therapy. Eur. J. Nucl. Med. 1997;24:792–795.
    1. Kwekkeboom D.J., Bakker W.H., Kam B.L., Teunissen J.J., Kooij P.P., de Herder W.W., Feelders R.A., van Eijck C.H., de Jong M., Srinivasan A., et al. Treatment of patients with gastro-entero-pancreatic (GEP) tumours with the novel radiolabelled somatostatin analogue [177Lu-DOTA(0),Tyr3]octreotate. Eur. J. Nucl. Med. Mol. Imaging. 2003;30:417–422. doi: 10.1007/s00259-002-1050-8.
    1. Bodei L., Mueller-Brand J., Baum R.P., Pavel M.E., Horsch D., O–Dorisio M.S., O–Dorisio T.M., Howe J.R., Cremonesi M., Kwekkeboom D.J., et al. The joint IAEA, EANM, and SNMMI practical guidance on peptide receptor radionuclide therapy (PRRNT) in neuroendocrine tumours. Eur. J. Nucl. Med. Mol. Imaging. 2013;40:800–816. doi: 10.1007/s00259-013-2454-3.
    1. Strosberg J., El-Haddad G., Wolin E., Hendifar A., Yao J., Chasen B., Mittra E., Kunz P.L., Kulke M.H., Jacene H., et al. Phase 3 Trial of (177)Lu-Dotatate for Midgut Neuroendocrine Tumors. N. Engl. J. Med. 2017;376:125–135. doi: 10.1056/NEJMoa1607427.
    1. Favier J., Igaz P., Burnichon N., Amar L., Libe R., Badoual C., Tissier F., Bertherat J., Plouin P.F., Jeunemaitre X., et al. Rationale for anti-angiogenic therapy in pheochromocytoma and paraganglioma. Endocr. Pathol. 2012;23:34–42. doi: 10.1007/s12022-011-9189-0.
    1. Janeway K.A., Kim S.Y., Lodish M., Nose V., Rustin P., Gaal J., Dahia P.L., Liegl B., Ball E.R., Raygada M., et al. Defects in succinate dehydrogenase in gastrointestinal stromal tumors lacking KIT and PDGFRA mutations. Proc. Natl. Acad. Sci. USA. 2011;108:314–318. doi: 10.1073/pnas.1009199108.
    1. Ricketts C., Woodward E.R., Killick P., Morris M.R., Astuti D., Latif F., Maher E.R. Germline SDHB mutations and familial renal cell carcinoma. J. Natl. Cancer Inst. 2008;100:1260–1262. doi: 10.1093/jnci/djn254.
    1. Tuthill M., Barod R., Pyle L., Cook T., Chew S., Gore M., Maxwell P., Eisen T. A report of succinate dehydrogenase B deficiency associated with metastatic papillary renal cell carcinoma: Successful treatment with the multi-targeted tyrosine kinase inhibitor sunitinib. BMJ Case Rep. 2009;2009 doi: 10.1136/bcr.08.2008.0732.
    1. Joshua A.M., Ezzat S., Asa S.L., Evans A., Broom R., Freeman M., Knox J.J. Rationale and evidence for sunitinib in the treatment of malignant paraganglioma/pheochromocytoma. J. Clin. Endocrinol. Metab. 2009;94:5–9. doi: 10.1210/jc.2008-1836.
    1. Hahn N.M., Reckova M., Cheng L., Baldridge L.A., Cummings O.W., Sweeney C.J. Patient with malignant paraganglioma responding to the multikinase inhibitor sunitinib malate. J. Clin. Oncol. 2009;27:460–463. doi: 10.1200/JCO.2008.19.9380.
    1. Jimenez C., Cabanillas M.E., Santarpia L., Jonasch E., Kyle K.L., Lano E.A., Matin S.F., Nunez R.F., Perrier N.D., Phan A., et al. Use of the tyrosine kinase inhibitor sunitinib in a patient with von Hippel-Lindau disease: Targeting angiogenic factors in pheochromocytoma and other von Hippel-Lindau disease-related tumors. J. Clin. Endocrinol. Metab. 2009;94:386–391. doi: 10.1210/jc.2008-1972.
    1. Nemoto K., Miura T., Shioji G., Tsuboi N. Sunitinib treatment for refractory malignant pheochromocytoma. Neuro. Endocrinol. Lett. 2012;33:260–264.
    1. Ayala-Ramirez M., Chougnet C.N., Habra M.A., Palmer J.L., Leboulleux S., Cabanillas M.E., Caramella C., Anderson P., Al Ghuzlan A., Waguespack S.G., et al. Treatment with sunitinib for patients with progressive metastatic pheochromocytomas and sympathetic paragangliomas. J. Clin. Endocrinol. Metab. 2012;97:4040–4050. doi: 10.1210/jc.2012-2356.
    1. Welsh S.J., Williams R.R., Birmingham A., Newman D.J., Kirkpatrick D.L., Powis G. The thioredoxin redox inhibitors 1-methylpropyl 2-imidazolyl disulfide and pleurotin inhibit hypoxia-induced factor 1alpha and vascular endothelial growth factor formation. Mol. Cancer Ther. 2003;2:235–243.
    1. Welsh S., Williams R., Kirkpatrick L., Paine-Murrieta G., Powis G. Antitumor activity and pharmacodynamic properties of PX-478, an inhibitor of hypoxia-inducible factor-1alpha. Mol. Cancer Ther. 2004;3:233–244.
    1. Chen W., Hill H., Christie A., Kim M.S., Holloman E., Pavia-Jimenez A., Homayoun F., Ma Y., Patel N., Yell P., et al. Targeting renal cell carcinoma with a HIF-2 antagonist. Nature. 2016;539:112–117. doi: 10.1038/nature19796.
    1. Courtney K.D., Infante J.R., Lam E.T., Figlin R.A., Rini B.I., Brugarolas J., Zojwalla N.J., Lowe A.M., Wang K., Wallace E.M., et al. Phase I Dose-Escalation Trial of PT2385, a First-in-Class Hypoxia-Inducible Factor-2alpha Antagonist in Patients With Previously Treated Advanced Clear Cell Renal Cell Carcinoma. J. Clin. Oncol. 2018;36:867–874. doi: 10.1200/JCO.2017.74.2627.
    1. Pang Y., Yang C., Schovanek J., Wang H., Bullova P., Caisova V., Gupta G., Wolf K.I., Semenza G.L., Zhuang Z., et al. Anthracyclines suppress pheochromocytoma cell characteristics, including metastasis, through inhibition of the hypoxia signaling pathway. Oncotarget. 2017;8:22313–22324. doi: 10.18632/oncotarget.16224.
    1. Burnichon N., Lepoutre-Lussey C., Laffaire J., Gadessaud N., Molinie V., Hernigou A., Plouin P.F., Jeunemaitre X., Favier J., Gimenez-Roqueplo A.P. A novel TMEM127 mutation in a patient with familial bilateral pheochromocytoma. Eur. J. Endocrinol. 2011;164:141–145. doi: 10.1530/EJE-10-0758.
    1. Attie T., Pelet A., Edery P., Eng C., Mulligan L.M., Amiel J., Boutrand L., Beldjord C., Nihoul-Fekete C., Munnich A., et al. Diversity of RET proto-oncogene mutations in familial and sporadic Hirschsprung disease. Hum. Mol. Genet. 1995;4:1381–1386. doi: 10.1093/hmg/4.8.1381.
    1. Ma X.M., Blenis J. Molecular mechanisms of mTOR-mediated translational control. Nat. Rev. Mol. Cell. Biol. 2009;10:307–318. doi: 10.1038/nrm2672.
    1. Druce M.R., Kaltsas G.A., Fraenkel M., Gross D.J., Grossman A.B. Novel and evolving therapies in the treatment of malignant phaeochromocytoma: Experience with the mTOR inhibitor everolimus (RAD001) Horm. Metab. Res. 2009;41:697–702. doi: 10.1055/s-0029-1220687.
    1. Oh D.Y., Kim T.W., Park Y.S., Shin S.J., Shin S.H., Song E.K., Lee H.J., Lee K.W., Bang Y.J. Phase 2 study of everolimus monotherapy in patients with nonfunctioning neuroendocrine tumors or pheochromocytomas/paragangliomas. Cancer. 2012;118:6162–6170. doi: 10.1002/cncr.27675.
    1. Giubellino A., Bullova P., Nolting S., Turkova H., Powers J.F., Liu Q., Guichard S., Tischler A.S., Grossman A.B., Pacak K. Combined inhibition of mTORC1 and mTORC2 signaling pathways is a promising therapeutic option in inhibiting pheochromocytoma tumor growth: In vitro and in vivo studies in female athymic nude mice. Endocrinology. 2013;154:646–655. doi: 10.1210/en.2012-1854.
    1. Matro J., Giubellino A., Pacak K. Current and future therapeutic approaches for metastatic pheochromocytoma and paraganglioma: Focus on SDHB tumors. Horm. Metab. Res. 2013;45:147–153. doi: 10.1055/s-0032-1331211.
    1. Letouze E., Martinelli C., Loriot C., Burnichon N., Abermil N., Ottolenghi C., Janin M., Menara M., Nguyen A.T., Benit P., et al. SDH mutations establish a hypermethylator phenotype in paraganglioma. Cancer Cell. 2013;23:739–752. doi: 10.1016/j.ccr.2013.04.018.
    1. Killian J.K., Kim S.Y., Miettinen M., Smith C., Merino M., Tsokos M., Quezado M., Smith W.I., Jr., Jahromi M.S., Xekouki P., et al. Succinate dehydrogenase mutation underlies global epigenomic divergence in gastrointestinal stromal tumor. Cancer Discov. 2013;3:648–657. doi: 10.1158/-13-0092.
    1. Turcan S., Rohle D., Goenka A., Walsh L.A., Fang F., Yilmaz E., Campos C., Fabius A.W., Lu C., Ward P.S., et al. IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature. 2012;483:479–483. doi: 10.1038/nature10866.
    1. SongTao Q., Lei Y., Si G., YanQing D., HuiXia H., XueLin Z., LanXiao W., Fei Y. IDH mutations predict longer survival and response to temozolomide in secondary glioblastoma. Cancer Sci. 2012;103:269–273. doi: 10.1111/j.1349-7006.2011.02134.x.
    1. Lu Y., Kwintkiewicz J., Liu Y., Tech K., Frady L.N., Su Y.T., Bautista W., Moon S.I., MacDonald J., Ewend M.G., et al. Chemosensitivity of IDH1-Mutated Gliomas Due to an Impairment in PARP1-Mediated DNA Repair. Cancer Res. 2017;77:1709–1718. doi: 10.1158/0008-5472.CAN-16-2773.
    1. Hadoux J., Favier J., Scoazec J.Y., Leboulleux S., Al Ghuzlan A., Caramella C., Deandreis D., Borget I., Loriot C., Chougnet C., et al. SDHB mutations are associated with response to temozolomide in patients with metastatic pheochromocytoma or paraganglioma. Int. J. Cancer. 2014;135:2711–2720. doi: 10.1002/ijc.28913.
    1. Kulke M.H., Stuart K., Enzinger P.C., Ryan D.P., Clark J.W., Muzikansky A., Vincitore M., Michelini A., Fuchs C.S. Phase II study of temozolomide and thalidomide in patients with metastatic neuroendocrine tumors. J. Clin. Oncol. 2006;24:401–406. doi: 10.1200/JCO.2005.03.6046.
    1. Sulkowski P.L., Sundaram R.K., Oeck S., Corso C.D., Liu Y., Noorbakhsh S., Niger M., Boeke M., Ueno D., Kalathil A.N., et al. Krebs-cycle-deficient hereditary cancer syndromes are defined by defects in homologous-recombination DNA repair. Nat. Genet. 2018;50:1086–1092. doi: 10.1038/s41588-018-0170-4.
    1. Pang Y., Lu Y., Caisova V., Liu Y., Bullova P., Huynh T.T., Zhou Y., Yu D., Frysak Z., Hartmann I., et al. Targeting NAD(+)/PARP DNA Repair Pathway as a Novel Therapeutic Approach to SDHB-Mutated Cluster I Pheochromocytoma and Paraganglioma. Clin. Cancer Res. 2018;24:3423–3432. doi: 10.1158/1078-0432.CCR-17-3406.
    1. Zhang Z., Guo Z., Zhan Y., Li H., Wu S. Role of histone acetylation in activation of nuclear factor erythroid 2-related factor 2/heme oxygenase 1 pathway by manganese chloride. Toxicol. Appl. Pharmacol. 2017;336:94–100. doi: 10.1016/j.taap.2017.10.011.
    1. Li Z.Y., Li Q.Z., Chen L., Chen B.D., Zhang C., Wang X., Li W.P. HPOB, an HDAC6 inhibitor, attenuates corticosterone-induced injury in rat adrenal pheochromocytoma PC12 cells by inhibiting mitochondrial GR translocation and the intrinsic apoptosis pathway. Neurochem. Int. 2016;99:239–251. doi: 10.1016/j.neuint.2016.08.004.
    1. Cayo M.A., Cayo A.K., Jarjour S.M., Chen H. Sodium butyrate activates Notch1 signaling, reduces tumor markers, and induces cell cycle arrest and apoptosis in pheochromocytoma. Am. J. Transl. Res. 2009;1:178–183.
    1. Adler J.T., Hottinger D.G., Kunnimalaiyaan M., Chen H. Histone deacetylase inhibitors upregulate Notch-1 and inhibit growth in pheochromocytoma cells. Surgery. 2008;144:956–961. doi: 10.1016/j.surg.2008.08.027.
    1. Yang C., Matro J.C., Huntoon K.M., Ye D.Y., Huynh T.T., Fliedner S.M., Breza J., Zhuang Z., Pacak K. Missense mutations in the human SDHB gene increase protein degradation without altering intrinsic enzymatic function. FASEB J. 2012;26:4506–4516. doi: 10.1096/fj.12-210146.
    1. Hatfield S.M., Sitkovsky M. A2A adenosine receptor antagonists to weaken the hypoxia-HIF-1alpha driven immunosuppression and improve immunotherapies of cancer. Curr. Opin. Pharmacol. 2016;29:90–96. doi: 10.1016/j.coph.2016.06.009.
    1. Labiano S., Palazon A., Bolanos E., Azpilikueta A., Sanchez-Paulete A.R., Morales-Kastresana A., Quetglas J.I., Perez-Gracia J.L., Gurpide A., Rodriguez-Ruiz M., et al. Hypoxia-induced soluble CD137 in malignant cells blocks CD137L-costimulation as an immune escape mechanism. Oncoimmunology. 2016;5:e1062967. doi: 10.1080/2162402X.2015.1062967.
    1. Chouaib S., Noman M.Z., Kosmatopoulos K., Curran M.A. Hypoxic stress: Obstacles and opportunities for innovative immunotherapy of cancer. Oncogene. 2017;36:439–445. doi: 10.1038/onc.2016.225.
    1. Hadoux J., Terroir M., Leboulleux S., Deschamps F., Al Ghuzlan A., Hescot S., Tselikas L., Borget I., Caramella C., Deandreis D., et al. Interferon-alpha Treatment for Disease Control in Metastatic Pheochromocytoma/Paraganglioma Patients. Horm. Cancer. 2017;8:330–337. doi: 10.1007/s12672-017-0303-8.
    1. Liu Y., Lu Y., Celiku O., Li A., Wu Q., Zhou Y., Yang C. Targeting IDH1-Mutated Malignancies with NRF2 Blockade. J. Natl. Cancer Inst. 2019 doi: 10.1093/jnci/djy230.
    1. Chouchani E.T., Pell V.R., Gaude E., Aksentijevic D., Sundier S.Y., Robb E.L., Logan A., Nadtochiy S.M., Ord E.N.J., Smith A.C., et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature. 2014;515:431–435. doi: 10.1038/nature13909.
    1. Ghayee H.K., Bhagwandin V.J., Stastny V., Click A., Ding L.H., Mizrachi D., Zou Y.S., Chari R., Lam W.L., Bachoo R.M., et al. Progenitor cell line (hPheo1) derived from a human pheochromocytoma tumor. PLoS ONE. 2013;8:e65624. doi: 10.1371/journal.pone.0065624.

Source: PubMed

3
S'abonner