The Value of Histological Algorithms to Predict the Malignancy Potential of Pheochromocytomas and Abdominal Paragangliomas-A Meta-Analysis and Systematic Review of the Literature

Adam Stenman, Jan Zedenius, Carl Christofer Juhlin, Adam Stenman, Jan Zedenius, Carl Christofer Juhlin

Abstract

Pheochromocytomas (PCCs) and abdominal paragangliomas (PGLs), collectively abbreviated PPGLs, are neuroendocrine tumors of the adrenal medulla and paraganglia, respectively. These tumors exhibit malignant potential but seldom display evidence of metastatic spread, the latter being the only widely accepted evidence of malignancy. To counter this, pre-defined histological algorithms have been suggested to stratify the risk of malignancy: Pheochromocytoma of the Adrenal Gland Scaled Score (PASS) and the Grading system for Adrenal Pheochromocytoma and Paraganglioma (GAPP). The PASS algorithm was originally intended for PCCs whereas the GAPP model is proposed for stratification of both PCCs and PGLs. In parallel, advances in terms of coupling overtly malignant PPGLs to the underlying molecular genetics have been made, but there is yet no combined risk stratification model based on histology and the overall mutational profile of the tumor. In this review, we systematically meta-analyzed previously reported cohorts using the PASS and GAPP algorithms and acknowledge a "rule-out" way of approaching these stratification models rather than a classical "rule-in" strategy. Moreover, the current genetic panorama regarding possible molecular adjunct markers for PPGL malignancy is reviewed. A combined histological and genetic approach will be needed to fully elucidate the malignant potential of these tumors.

Keywords: GAPP; PASS; histology; meta-analysis; paraganglioma; pheochromocytoma.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Photomicrographs of metastatic (A,B) and non-metastatic (C,D) pheochromocytoma cases with elevated PASS scores previously diagnosed at our institution. Scale bars are 25 micrometers for A,B and D, and 100 micrometers for C. (A) Nuclear pleomorphism in a pheochromocytoma with a total PASS score of 8. This tumor was resected from a 61-year old female who developed metastatic disease 9 years after initial diagnosis. (B) Same case displaying hypercellularity and nuclear hyperchromasia, two additional parameters included in the PASS algorithm. (C) Large and irregular nests in a pheochromocytoma with a PASS score of 7, diagnosed in a 41-year old male. The patient is alive without metastatic disease after 20 years of follow-up. (D) Same case displaying focal tumor cell spindling with elongated nuclei, a phenomenon yielding two PASS points.
Figure 2
Figure 2
Schematic overview of the (A) PASS and (B) GAPP meta-analyses outcome in pheochromocytoma (PCC) and abdominal paraganglioma (PGL). Each tumor sample is represented by a square, in which green color indicates a benign tumor as according to the definition by each study. Orange squares denote cases defined as malignant. The left column of each classification system signifies number of cases with low algorithm scores, whereas the right column contains cases with scores ≥4 (PASS) and ≥3 (GAPP). As demonstrated here, both algorithms exhibit excellent sensitivity but reduced specificity towards malignant cases. These analyses indicate that low PASS and GAPP scores almost always are associated with a benign clinical course.

References

    1. Thompson L.D.R. Pheochromocytoma of the Adrenal gland Scaled Score (PASS) to separate benign from malignant neoplasms: a clinicopathologic and immunophenotypic study of 100 cases. Am. J. Surg. Pathol. 2002;26:551–566. doi: 10.1097/00000478-200205000-00002.
    1. Kimura N., Takayanagi R., Takizawa N., Itagaki E., Katabami T., Kakoi N., Rakugi H., Ikeda Y., Tanabe A., Nigawara T., et al. Pathological grading for predicting metastasis in phaeochromocytoma and paraganglioma. Endocr. Relat. Cancer. 2014;21:405–414. doi: 10.1530/ERC-13-0494.
    1. August C., August K., Schroeder S., Bahn H., Hinze R., Baba H.A., Kersting C., Buerger H. CGH and CD 44/MIB-1 immunohistochemistry are helpful to distinguish metastasized from nonmetastasized sporadic pheochromocytomas. Mod. Pathol. 2004;17:1119–1128. doi: 10.1038/modpathol.3800160.
    1. Kajor M., Ziaja J., Lange D., Król R., Ciupińska-Kajor M., Turska-d’Amico M., Maka B., Cierpka L. Analysis of morphology of adrenal pheochromocytoma as regards their potential malignancy. Endokrynol Pol. 2005;56:911–916.
    1. Gao B., Meng F., Bian W., Chen J., Zhao H., Ma G., Shi B., Zhang J., Liu Y., Xu Z. Development and validation of pheochromocytoma of the adrenal gland scaled score for predicting malignant pheochromocytomas. Urology. 2006;68:282–286. doi: 10.1016/j.urology.2006.02.019.
    1. Bílek R., Safarík L., Ciprová V., Vlcek P., Lisá L. Chromogranin A, a member of neuroendocrine secretory proteins as a selective marker for laboratory diagnosis of pheochromocytoma. Physiol Res. 2008;57(Suppl. 1):S171–S179.
    1. Strong V.E., Kennedy T., Al-Ahmadie H., Tang L., Coleman J., Fong Y., Brennan M., Ghossein R.A. Prognostic indicators of malignancy in adrenal pheochromocytomas: clinical, histopathologic, and cell cycle/apoptosis gene expression analysis. Surgery. 2008;143:759–768. doi: 10.1016/j.surg.2008.02.007.
    1. Wu D., Tischler A.S., Lloyd R.V., DeLellis R.A., de Krijger R., van Nederveen F., Nosé V. Observer variation in the application of the Pheochromocytoma of the Adrenal Gland Scaled Score. Am. J. Surg. Pathol. 2009;33:599–608. doi: 10.1097/PAS.0b013e318190d12e.
    1. Carlsen E., Abdullah Z., Kazmi S.M.B., Kousparos G. Pheochromocytomas, PASS, and immunohistochemistry. Horm. Metab. Res. 2009;41:715–719. doi: 10.1055/s-0029-1238274.
    1. Agarwal A., Mehrotra P.K., Jain M., Gupta S.K., Mishra A., Chand G., Agarwal G., Verma A.K., Mishra S.K., Singh U. Size of the tumor and pheochromocytoma of the adrenal gland scaled score (PASS): can they predict malignancy? World J. Surg. 2010;34:3022–3028. doi: 10.1007/s00268-010-0744-5.
    1. Szalat A., Fraenkel M., Doviner V., Salmon A., Gross D.J. Malignant pheochromocytoma: predictive factors of malignancy and clinical course in 16 patients at a single tertiary medical center. Endocrine. 2011;39:160–166. doi: 10.1007/s12020-010-9422-5.
    1. de Wailly P., Oragano L., Radé F., Beaulieu A., Arnault V., Levillain P., Kraimps J.L. Malignant pheochromocytoma: new malignancy criteria. Langenbecks Arch. Surg. 2012;397:239–246. doi: 10.1007/s00423-011-0850-3.
    1. Białas M., Dyduch G., Szpor J., Demczuk S., Okoń K. Microvascular density and mast cells in benign and malignant pheochromocytomas. Pol. J. Pathol. 2012;63:235–242. doi: 10.5114/pjp.2012.32770.
    1. Jovanovic R., Kostadinova-Kunovska S., Bogoeva B., Spasevska L., Petrusevska G. Histological features, Ki-67 and Bcl-2 immunohistochemical expression and their correlation with the aggressiveness of pheochromocytomas. Prilozi. 2012;33:23–40.
    1. Mlika M., Kourda N., Zorgati M.M., Bahri S., Ben Ammar S., Zermani R. Prognostic value of Pheochromocytoma of the Adrenal Gland Scaled Score (Pass score) tests to separate benign from malignant neoplasms. Tunis Med. 2013;91:209–215.
    1. Białas M., Okoń K., Dyduch G., Ciesielska-Milian K., Buziak M., Hubalewska-Dydejczyk A., Sobrinho-Simoes M. Neuroendocrine markers and sustentacular cell count in benign and malignant pheochromocytomas - a comparative study. Pol. J. Pathol. 2013;64:129–135. doi: 10.5114/pjp.2013.36004.
    1. Ocal I., Avci A., Cakalagaoglu F., Can H. Lack of correlations among histopathological parameters, Ki-67 proliferation index and prognosis in pheochromocytoma patients. Asian Pac. J. Cancer Prev. 2014;15:1751–1755. doi: 10.7314/APJCP.2014.15.4.1751.
    1. Pędziwiatr M., Wierdak M., Natkaniec M., Matłok M., Białas M., Major P., Budzyński P., Hubalewska-Dydejczyk A., Budzyński A. Laparoscopic transperitoneal lateral adrenalectomy for malignant and potentially malignant adrenal tumours. BMC Surg. 2015;15:101. doi: 10.1186/s12893-015-0088-z.
    1. Kulkarni M.M., Khandeparkar S.G.S., Deshmukh S.D., Karekar R.R., Gaopande V.L., Joshi A.R., Kesari M.V., Shelke R.R. Risk Stratification in Paragangliomas with PASS (Pheochromocytoma of the Adrenal Gland Scaled Score) and Immunohistochemical Markers. J. Clin. Diagn. Res. 2016;10:EC01–EC04. doi: 10.7860/JCDR/2016/20565.8419.
    1. Lupşan N., Resiga L., Boşca A.B., Georgiu C., Crişan D., Mirescu C., Constantin A.M., Şimon I., Şovrea A.S. Diagnostic reevaluation of 17 cases of pheochromocytoma—A retrospective study. Rom. J. Morphol. Embryol. 2016;57:651–661.
    1. Suenaga S., Ichiyanagi O., Ito H., Naito S., Kato T., Nagaoka A., Kato T., Yamakawa M., Obara Y., Tsuchiya N. Expression of Extracellular Signal-regulated Kinase 5 and Ankyrin Repeat Domain 1 in Composite Pheochromocytoma and Ganglioneuroblastoma Detected Incidentally in the Adult Adrenal Gland. Int. Med. 2016;55:3611–3621. doi: 10.2169/internalmedicine.55.7293.
    1. Kim K.Y., Kim J.H., Hong A.R., Seong M.-W., Lee K.E., Kim S.-J., Kim S.W., Shin C.S., Kim S.Y. Disentangling of Malignancy from Benign Pheochromocytomas/Paragangliomas. PLoS ONE. 2016;11:e0168413. doi: 10.1371/journal.pone.0168413.
    1. Maignan A., Guerin C., Julliard V., Paladino N.-C., Kim E., Roche P., Castinetti F., Essamet W., Mancini J., Imperiale A., et al. Implications of SDHB genetic testing in patients with sporadic pheochromocytoma. Langenbecks Arch. Surg. 2017;402:787–798. doi: 10.1007/s00423-017-1564-y.
    1. Koh J.-M., Ahn S.H., Kim H., Kim B.-J., Sung T.-Y., Kim Y.H., Hong S.J., Song D.E., Lee S.H. Validation of pathological grading systems for predicting metastatic potential in pheochromocytoma and paraganglioma. PLoS ONE. 2017;12:e0187398. doi: 10.1371/journal.pone.0187398.
    1. Aggeli C., Nixon A.M., Parianos C., Vletsis G., Papanastasiou L., Markou A., Kounadi T., Piaditis G., Zografos G.N. Surgery for pheochromocytoma: A 20-year experience of a single institution. Hormones. 2017;16:388–395.
    1. Stenman A., Zedenius J., Juhlin C.C. Over-diagnosis of potential malignant behavior in MEN 2A-associated pheochromocytomas using the PASS and GAPP algorithms. Langenbecks Arch. Surg. 2018;403:785–790. doi: 10.1007/s00423-018-1679-9.
    1. Muchuweti D., Muguti E.G., Mbuwayesango B.A., Mungazi S.G., Makunike-Mutasa R. Diagnostic and surgical challenges of a giant pheochromocytoma in a resource limited setting-A case report. Int. J. Surg. Case Rep. 2018;50:111–115. doi: 10.1016/j.ijscr.2018.07.032.
    1. Konosu-Fukaya S., Omata K., Tezuka Y., Ono Y., Aoyama Y., Satoh F., Fujishima F., Sasano H., Nakamura Y. Catecholamine-Synthesizing Enzymes in Pheochromocytoma and Extraadrenal Paraganglioma. Endocr. Pathol. 2018;29:302–309. doi: 10.1007/s12022-018-9544-5.
    1. Stenman A., Svahn F., Hojjat-Farsangi M., Zedenius J., Söderkvist P., Gimm O., Larsson C., Juhlin C.C. Molecular Profiling of Pheochromocytoma and Abdominal Paraganglioma Stratified by the PASS Algorithm Reveals Chromogranin B as Associated with Histologic Prediction of Malignant Behavior. Am. J. Surg. Pathol. :2018. doi: 10.1097/PAS.0000000000001190.
    1. Kim S., Han H.-S., Choi Y., Yoon Y.-S., Cho J.Y. Laparoscopic removal of retroperitoneal tumor with maneuver of hanging inferior vena cava. Surg. Endosc. 2018;32:3401. doi: 10.1007/s00464-017-5969-z.
    1. Rasquin L., Prater J., Mayrin J., Minimo C. Simultaneous Pheochromocytoma, Paraganglioma, and Papillary Thyroid Carcinoma without Known Mutation. Case Rep. Endocrinol. 2018;2018:6358485. doi: 10.1155/2018/6358485.
    1. Gupta S., Zhang J., Rivera M., Erickson L.A. Urinary Bladder Paragangliomas: Analysis of Succinate Dehydrogenase and Outcome. Endocr. Pathol. 2016;27:243–252. doi: 10.1007/s12022-016-9439-2.
    1. Dahia P.L.M. Pheochromocytoma and paraganglioma pathogenesis: learning from genetic heterogeneity. Nat. Rev. Cancer. 2014;14:108–119. doi: 10.1038/nrc3648.
    1. Gupta G., Pacak K. AACE Adrenal Scientific Committee Precision Medicine: An Update on Genotype/Biochemical Phenotype Relationships in Pheochromocytoma/Paraganglioma Patients. Endocr Pract. 2017;23:690–704. doi: 10.4158/EP161718.RA.
    1. Burnichon N., Vescovo L., Amar L., Libé R., de Reynies A., Venisse A., Jouanno E., Laurendeau I., Parfait B., Bertherat J., et al. Integrative genomic analysis reveals somatic mutations in pheochromocytoma and paraganglioma. Hum. Mol. Genet. 2011;20:3974–3985. doi: 10.1093/hmg/ddr324.
    1. Crona J., Taïeb D., Pacak K. New Perspectives on Pheochromocytoma and Paraganglioma: Toward a Molecular Classification. Endocr. Rev. 2017;38:489–515. doi: 10.1210/er.2017-00062.
    1. Fishbein L., Leshchiner I., Walter V., Danilova L., Robertson A.G., Johnson A.R., Lichtenberg T.M., Murray B.A., Ghayee H.K., Else T., et al. Comprehensive Molecular Characterization of Pheochromocytoma and Paraganglioma. Cancer Cell. 2017;31:181–193. doi: 10.1016/j.ccell.2017.01.001.
    1. Liu T., Brown T.C., Juhlin C.C., Andreasson A., Wang N., Bäckdahl M., Healy J.M., Prasad M.L., Korah R., Carling T., et al. The activating TERT promoter mutation C228T is recurrent in subsets of adrenal tumors. Endocr. Relat. Cancer. 2014;21:427–434. doi: 10.1530/ERC-14-0016.
    1. Dwight T., Flynn A., Amarasinghe K., Benn D.E., Lupat R., Li J., Cameron D.L., Hogg A., Balachander S., Candiloro I.L.M., et al. TERT structural rearrangements in metastatic pheochromocytomas. Endocr. Relat. Cancer. 2018;25:1–9. doi: 10.1530/ERC-17-0306.
    1. Job S., Draskovic I., Burnichon N., Buffet A., Cros J., Lépine C., Venisse A., Robidel E., Verkarre V., Meatchi T., et al. Telomerase Activation and ATRX Mutations Are Independent Risk Factors for Metastatic Pheochromocytoma and Paraganglioma. Clin. Cancer Res. 2019;25:760–770. doi: 10.1158/1078-0432.CCR-18-0139.
    1. Oudijk L., Papathomas T., de Krijger R., Korpershoek E., Gimenez-Roqueplo A.-P., Favier J., Canu L., Mannelli M., Rapa I., Currás-Freixes M., et al. The mTORC1 Complex Is Significantly Overactivated in SDHX-Mutated Paragangliomas. Neuroendocrinology. 2017;105:384–393. doi: 10.1159/000455864.
    1. Chaux A., Brimo F., Gonzalez-Roibon N., Shah S., Schultz L., Rizk J.-M., Argani P., Hicks J., Netto G.J. Immunohistochemical evidence of dysregulation of the mammalian target of rapamycin pathway in primary and metastatic pheochromocytomas. Urology. 2012;80:736.e7-12. doi: 10.1016/j.urology.2012.04.032.
    1. Murali R., Hughes M.T., Fitzgerald P., Thompson J.F., Scolyer R.A. Interobserver variation in the histopathologic reporting of key prognostic parameters, particularly clark level, affects pathologic staging of primary cutaneous melanoma. Ann. Surg. 2009;249:641–647. doi: 10.1097/SLA.0b013e31819ed973.
    1. Netto G.J., Eisenberger M., Epstein J.I. TAX 3501 Trial Investigators Interobserver variability in histologic evaluation of radical prostatectomy between central and local pathologists: findings of TAX 3501 multinational clinical trial. Urology. 2011;77:1155–1160. doi: 10.1016/j.urology.2010.08.031.
    1. Elston C.W., Sloane J.P., Amendoeira I., Apostolikas N., Bellocq J.P., Bianchi S., Boecker W., Bussolati G., Coleman D., Connolly C.E., et al. Causes of inconsistency in diagnosing and classifying intraductal proliferations of the breast. European Commission Working Group on Breast Screening Pathology. Eur. J. Cancer. 2000;36:1769–1772. doi: 10.1016/S0959-8049(00)00181-7.

Source: PubMed

3
S'abonner