Neurobehaviour between birth and 40 weeks' gestation in infants born Alicia J Spittle  1 , Deanne K Thompson, Nisha C Brown, Karli Treyvaud, Jeanie L Y Cheong, Katherine J Lee, Carmen C Pace, Joy Olsen, Leesa G Allinson, Angela T Morgan, Marc Seal, Abbey Eeles, Fiona Judd, Lex W Doyle, Peter J Anderson Affiliations Expand Affiliation 1 Victorian Infant Brain Studies, Murdoch Childrens Research Institute, 4th Floor, Flemington Road, Parkville, Victoria 3052, Australia. alicia.spittle@mcri.edu.au. PMID: 24758605 PMCID: PMC4016657 DOI: 10.1186/1471-2431-14-111 Free PMC article Item in Clipboard

Alicia J Spittle, Deanne K Thompson, Nisha C Brown, Karli Treyvaud, Jeanie L Y Cheong, Katherine J Lee, Carmen C Pace, Joy Olsen, Leesa G Allinson, Angela T Morgan, Marc Seal, Abbey Eeles, Fiona Judd, Lex W Doyle, Peter J Anderson, Alicia J Spittle, Deanne K Thompson, Nisha C Brown, Karli Treyvaud, Jeanie L Y Cheong, Katherine J Lee, Carmen C Pace, Joy Olsen, Leesa G Allinson, Angela T Morgan, Marc Seal, Abbey Eeles, Fiona Judd, Lex W Doyle, Peter J Anderson

Abstract

Background: Infants born <30 weeks' gestation are at increased risk of long term neurodevelopmental problems compared with term born peers. The predictive value of neurobehavioural examinations at term equivalent age in very preterm infants has been reported for subsequent impairment. Yet there is little knowledge surrounding earlier neurobehavioural development in preterm infants prior to term equivalent age, and how it relates to perinatal factors, cerebral structure, and later developmental outcomes. In addition, maternal psychological wellbeing has been associated with child development. Given the high rate of psychological distress reported by parents of preterm children, it is vital we understand maternal and paternal wellbeing in the early weeks and months after preterm birth and how this influences the parent-child relationship and children's outcomes. Therefore this study aims to examine how 1) early neurobehaviour and 2) parental mental health relate to developmental outcomes for infants born preterm compared with infants born at term.

Methods/design: This prospective cohort study will describe the neurobehaviour of 150 infants born at <30 weeks' gestational age from birth to term equivalent age, and explore how early neurobehavioural deficits relate to brain growth or injury determined by magnetic resonance imaging, perinatal factors, parental mental health and later developmental outcomes measured using standardised assessment tools at term, one and two years' corrected age. A control group of 150 healthy term-born infants will also be recruited for comparison of outcomes. To examine the effects of parental mental health on developmental outcomes, both parents of preterm and term-born infants will complete standardised questionnaires related to symptoms of anxiety, depression and post-traumatic stress at regular intervals from the first week of their child's birth until their child's second birthday. The parent-child relationship will be assessed at one and two years' corrected age.

Discussion: Detailing the trajectory of infant neurobehaviour and parental psychological distress following very preterm birth is important not only to identify infants most at risk, further understand the parental experience and highlight potential times for intervention for the infant and/or parent, but also to gain insight into the effect this has on parent-child interaction and child development.

References

    1. Saigal S, Doyle LW. An overview of mortality and sequelae of preterm birth from infancy to adulthood. Lancet. 2008;371(9608):261–269. doi: 10.1016/S0140-6736(08)60136-1.
    1. Brown NC, Spittle AJ. Neurobehavioral evaluation in the preterm and term infant. Curr Pediatr Rev. 2014. inpress.
    1. Lester BM, Tronick EZ. History and description of the neonatal intensive care unit network neurobehavioral scale. Pediatrics. 2004;113(3 Pt 2):634–640.
    1. Amiel-Tison C. In: Fetal and Neonatal Neurology and Neurosurgery. 3. Levene MI, Chervenak FA, Whittle MJ, editor. London: Harcourt Publishers Limited; 2001. Clinical assessment of the infant nervous system; pp. 99–120.
    1. Tronick E, Lester BM. Grandchild of the NBAS: the NICU network neurobehavioral scale (NNNS): a review of the research using the NNNS. J Child Adolesc Psychiatr Nurs. 2013;26(3):193–203. doi: 10.1111/jcap.12042.
    1. Duffy FH, Als H, McAnulty GB. Behavioral and electrophysiological evidence for gestational age effects in healthy preterm and fullterm infants studied two weeks after expected due date. Child Dev. 1990;61(4):271–286.
    1. Jeng SF, Yau KI, Teng RJ. Neurobehavioral development at term in very low-birthweight infants and normal term infants in Taiwan. Early Hum Dev. 1998;51(3):235–245. doi: 10.1016/S0378-3782(98)00035-8.
    1. Brown NC, Doyle LW, Bear MJ, Inder TE. Alterations in neurobehavior at term reflect differing perinatal exposures in very preterm infants. Pediatrics. 2006;118(6):2461–2471. doi: 10.1542/peds.2006-0880.
    1. Wallace IF, Rose SA, McCarton CM, Kurtzberg D, Vaughan HG Jr. Relations between infant neurobehavioral performance and cognitive outcome in very low birth weight preterm infants. J Dev Behav Pediatr. 1995;16(5):309–317.
    1. Brown NC, Inder TE, Bear MJ, Hunt RW, Anderson PJ, Doyle LW. Neurobehavior at term and white and gray matter abnormalities in very preterm infants. J Pediatr. 2009;155(1):32–38. doi: 10.1016/j.jpeds.2009.01.038.
    1. Spittle AJ, Boyd RN, Inder TE, Doyle LW. Predicting motor development in very preterm infants at 12 months’ corrected age: the role of qualitative magnetic resonance imaging and general movements assessments. Pediatrics. 2009;123(2):512–517. doi: 10.1542/peds.2008-0590.
    1. Huppi PS, Schuknecht B, Boesch C, Bossi E, Felblinger J, Fusch C, Herschokowitz N. Structural and neurobehavioral delay in postnatal brain development of preterm infants. Pediatr Res. 1996;39(5):895–901. doi: 10.1203/00006450-199605000-00026.
    1. Volpe JJ. Neurology of the Newborn. 5. Philadelphia: Saunders Elsevier; 2008.
    1. Woodward LJ, Anderson PJ, Austin NC, Howard K, Inder TE. Neonatal MRI to predict neurodevelopmental outcomes in preterm infants. N Engl J Med. 2006;355(7):685–694. doi: 10.1056/NEJMoa053792.
    1. Cheong JL, Thompson DK, Wang HX, Hunt RW, Anderson PJ, Inder TE, Doyle LW. Abnormal white matter signal on MR imaging is related to abnormal tissue microstructure. AJNR Am J Neuroradiol. 2009;30(3):623–628. doi: 10.3174/ajnr.A1399.
    1. Thompson DK, Inder TE, Faggian N, Johnson L, Warfield SK, Anderson PJ, Doyle LW Egan GF. Characterization of the corpus callosum in very preterm and full-term infants utilizing MRI. Neuroimage. 2011;55(2):479–490. doi: 10.1016/j.neuroimage.2010.12.025.
    1. Thompson DK, Wood SJ, Doyle LW, Warfield SK, Lodygensky GA, Anderson PJ, Egan GF, Inder TE. Neonate hippocampal volumes: Prematurity, perinatal predictors, and 2-year outcome. Ann Neurol. 2008;63(5):642–651. doi: 10.1002/ana.21367.
    1. Shah DK, Anderson PJ, Carlin JB, Pavlovic M, Howard K, Thompson DK, Warfield S, Inder TE. Reduction in cerebellar volumes in preterm infants: relationship to white matter injury and neurodevelopment at two years of age. Pediatr Res. 2006;60(1):97–102. doi: 10.1203/01.pdr.0000220324.27597.f0.
    1. Thompson DK, Warfield SK, Carlin JB, Pavlovic M, Wang HX, Bear M, Kean MJ, Doyle LW, Egan GF, Inder TE. Perinatal risk factors altering regional brain structure in the preterm infant. Brain. 2007;130(Pt 3):667–677.
    1. Als H, Duffy FH, McAnulty GB, McAnulty GB, Rivkin MJ, Vajapeyam S, Mulkem RV, Warfield SK, Huppi PS, Butler SC, Conneman N, Fischer C, Eichenwald EC. Early experience alters brain function and structure. Pediatrics. 2004;113(4):846–857. doi: 10.1542/peds.113.4.846.
    1. Milgrom J, Newnham C, Anderson PJ, Doyle LW, Gemmill AW, Lee K, Hunt RW, Bear M, Inder TE. Early sensitivity training for parents of preterm infants: impact on the developing brain. Pediatr Res. 2010;67:330–335. doi: 10.1203/PDR.0b013e3181cb8e2f.
    1. Bigsby R, Coster W, Lester BM, Peucker MR. Motor behavioural cues of term and preterm infants at 3 months. Infant Behav Dev. 1996;19:295–307.
    1. Forcada-Guex M, Pierrehumbert B, Borghini A, Moessinger A, Muller-Nix C. Early dyadic patterns of mother-infant interactions and outcomes of prematurity at 18 months. Pediatrics. 2006;118(1):107–114. doi: 10.1542/peds.2005-1145.
    1. Hilferty F, Redmond G, Katz I. The Implications of Poverty on Children's Readiness to Learn. Australian Research Alliance for Children and Youth: Melbourne; 2009.
    1. Pinelli J, Saigal S, Yow-Wu BW, Cunningham C, DiCenso A, Steele S, Austin P, Turner S. Patterns of change in family functioning, resources, coping and parental depression in mothers and fathers of sick newborns over the first year of life. J Neonatal Nurs. 2008;14:156–165. doi: 10.1016/j.jnn.2008.03.015.
    1. Lambrenos K, Weindling AM, Calam R, Cox AD. The effect of a child's disability on mother's mental health. Arch Dis Child. 1996;74(2):115–120. doi: 10.1136/adc.74.2.115.
    1. Miles MS, Holditch-Davis D, Schwartz TA, Scher M. Depressive symptoms in mothers of prematurely born infants. J Dev Behav Pediatr. 2007;28(1):36–44. doi: 10.1097/01.DBP.0000257517.52459.7a.
    1. Davis L, Edwards H, Mohay H, Wollin J. Mother-infant interaction in premature infants at three months after nursery discharge. Int J Nurs Pract. 2003;9:374–381. doi: 10.1046/j.1440-172X.2003.00447.x.
    1. Vigod SN, Villegas L, Dennis CL, Ross LE. Prevalence and risk factors for postpartum depression among women with preterm and low-birth-weight infants: a systematic review. BJOG. 2010;117(5):540–550. doi: 10.1111/j.1471-0528.2009.02493.x.
    1. Pinelli J. Effects of family coping and resources on family adjustment and parental stress in the acute phase of the NICU experience. Neonatal Netw. 2000;19(6):27–37. doi: 10.1891/0730-0832.19.6.27.
    1. Shields-Poe D, Pinelli J. Variables associated with parental stress in neonatal intensive care units. Neonatal Netw. 1997;16(2):29–37.
    1. Zelkowitz P, Bardin C, Papageorgiou A. Anxiety affects the relationship between parents and their very low birthweight infants. Infant Ment Health J. 2007;28:296–313. doi: 10.1002/imhj.20137.
    1. Holditch-Davis D, Bartlett TR, Blickman AL, Miles MS. Posttraumatic stress symptoms in mothers of premature infants. J Obstet Gynecol Neonatal Nurs. 2003;32(2):161–171. doi: 10.1177/0884217503252035.
    1. O'Hara MW, McCabe JE. Postpartum depression: current status and future directions. Annu Rev Clin Psychol. 2013;9:379–407. doi: 10.1146/annurev-clinpsy-050212-185612.
    1. Gray RF, Indurkhya A, McCormick MC. Prevalence, stability, and predictors of clinically significant behavior problems in low birth weight children at 3, 5, and 8 years of age. Pediatrics. 2004;114(3):736–742. doi: 10.1542/peds.2003-1150-L.
    1. Nomura Y, Wickramaratne PJ, Warner V, Mufson L, Weissman MM. Family discord, parental depression, and psychopathology in offspring: ten-year follow-up. J Am Acad Child Adolesc Psychiatry. 2002;41(4):402–409. doi: 10.1097/00004583-200204000-00012.
    1. Roberts G, Howard K, Spittle AJ, Brown NC, Anderson PJ, Doyle LW. Rates of early intervention services in very preterm children with developmental disabilities at age 2 years. J Paediatr Child Health. 2008;44(5):276–280. doi: 10.1111/j.1440-1754.2007.01251.x.
    1. Lester BM, Tronick EZ, Brazelton TB. The Neonatal Intensive Care Unit Network Neurobehavioral Scale procedures. Pediatrics. 2004;113(3 Pt 2):641–667.
    1. Dubowitz L, Mercuri E, Dubowitz V. An optimality score for the neurologic examination of the term newborn. J Pediatr. 1998;133(3):406–416. doi: 10.1016/S0022-3476(98)70279-3.
    1. Einspieler C, Prechtl HF, Bos AF, Ferrari F, Cioni G. Prechtl's method on the qualitative assessment of general Movements in preterm, term and young infants, Volume 167. London: Mac Keith Press; 2004.
    1. Daily D, Ellison PH. The Premie-Neuro: a clinical neurologic examination of premature infants. Neonatal Netw. 2005;24:15–22.
    1. Kidokoro H, Neil JJ, Inder TE. New MR imaging assessment tool to define brain abnormalities in very preterm infants at term. AJNR Am J Neuroradiol. 2013;34(11):2208–2214. doi: 10.3174/ajnr.A3521.
    1. Kuklisova-Murgasova M, Aljabar P, Srinivasan L, Counsell SJ, Doria V, Serag A, Gousias IS, Boardman JP, Rutherford MA, Edwards AD, Hajnal JV, Rueckert D. A dynamic 4D probabilistic atlas of the developing brain. Neuroimage. 2011;54(4):2750–2763. doi: 10.1016/j.neuroimage.2010.10.019.
    1. Gui L, Lisowski R, Faundez T, Huppi PS, Lazeyras F, Kocher M. Morphology-driven automatic segmentation of MR images of the neonatal brain. Med Image Anal. 2012;16(8):1565–1579. doi: 10.1016/j.media.2012.07.006.
    1. Le Bihan D. Looking into the functional architecture of the brain with diffusion MRI. Nat Rev Neurosci. 2003;4(6):469–480. doi: 10.1038/nrn1119.
    1. Neil J, Miller J, Mukherjee P, Huppi PS. Diffusion tensor imaging of normal and injured developing human brain - a technical review. NMR Biomed. 2002;15(7–8):543–552.
    1. Hagmann P, Sporns O, Madan N, Cammoun L, Pienaar R, Wedeen VJ, Meuli R, Thiran JP, Grant PE. White matter maturation reshapes structural connectivity in the late developing human brain. Proc Natl Acad Sci U S A. 2010;107(44):19067–19072. doi: 10.1073/pnas.1009073107.
    1. Smyser CD, Inder TE, Shimony JS, Hill JE, Degnan AJ, Snyder AZ, Neil JJ. Longitudinal analysis of neural network development in preterm infants. Cereb Cortex. 2010;20(12):2852–2862. doi: 10.1093/cercor/bhq035.
    1. Piper MC, Darrah J. Motor Assessment of the Developing Infant. Philadelphia: W.B. Saunders; 1994.
    1. Burns YR. The Neuro-sensory motor developmental assessment Part 1: development and administration of the test. Aust J Physiother. 1989;35:141–149. doi: 10.1016/S0004-9514(14)60503-1.
    1. Hadders-Algra M, Heineman KR, Bos AF, Middelburg KJ. The assessment of minor neurological dysfunction in infancy using the Touwen Infant Neurological Examination: strengths and limitations. Dev Med Child Neurol. 2010;52(1):87–92. doi: 10.1111/j.1469-8749.2009.03305.x.
    1. Skuse D, Stevenson J, Reilly S, Mathisen B. Schedule for Oral-Motor Assessment (SOMA): Methods of Validation. Dysphagia. 1995;10:192–202. doi: 10.1007/BF00260976.
    1. Spittle AJ, Doyle LW, Boyd RN. A systematic review of the clinimetric properties of neuromotor assessments for preterm infants during the first year of life. Dev Med Child Neurol. 2008;50(4):254–266. doi: 10.1111/j.1469-8749.2008.02025.x.
    1. Danks M, Maideen MF, Burns YR, O'Callaghan MJ, Gray PH, Poulsen L, Watter P, Gibbons K. The long-term predictive validity of early motor development in “apparently normal” ELBW survivors. Early Hum Dev. 2012;88(8):637–641. doi: 10.1016/j.earlhumdev.2012.01.010.
    1. Ferrari F, Gallo C, Pugliese M, Guidotti I, Gavioli S, Coccolini E, Zagni P, Della Casa E, Rossi C, Lugli L, Todeschini A, Ori L, Bertoncelli N. Preterm birth and developmental problems in the preschool age. Part I: minor motor problems. J Matern Fetal Neonatal Med. 2012;25(11):2154–2159. doi: 10.3109/14767058.2012.696164.
    1. Bayley N. Bayley Scales of Infant and Toddler Development. San Antonio, TX: The Psychological Corporation; 2005.
    1. Spittle AJ, Spencer-Smith MM, Eeles AL, Lee KJ, Lorefice LE, Anderson PJ, Doyle LW. Does the Bayley-III Motor Scale at 2 years predict motor outcome at 4 years in very preterm children? Dev Med Child Neurol. 2013;55(5):448–452. doi: 10.1111/dmcn.12049.
    1. Biringen Z. The Emotional Availability (EA) Scales. 4. Boulder; 2008. .
    1. Easterbrooks AM, Biringen Z. Guest editors’ introduction to the special issue: Mapping the terrain of emotional availability and attachment. Attach Hum Dev. 2000;2(2):123–129. doi: 10.1080/14616730050085518.
    1. Biringen Z. Emotional availability: Conceptualization and research findings. Am J Orthopsychiatry. 2000;70(1):104–114.
    1. Bornstein MH, Gini M, Putnick DL, Haynes OM, Painter KM, Suwalsky JTD. Short-term reliability and continuity of emotional availability in mother–child dyads across contexts of observation. Infancy. 2006;10(1):1–16. doi: 10.1207/s15327078in1001_1.
    1. Radloff LS. The CES-D Scale: A self report depression scale for research in the general population. Applied Psychological Measurement. 1977;1:385–401. doi: 10.1177/014662167700100306.
    1. Mulrow CD, Williams JW, Gerety MB, Ramirez G, Montiel OM, Kerber C. Case-finding instruments for depression in primary care settings. Ann Intern Med. 1995;122(12):913–921. doi: 10.7326/0003-4819-122-12-199506150-00004.
    1. Pridham K, Brown R, Clark R, Limbo RK, Schroeder M, Henriques J, Bohne E. Effect of guided participation on feeding competencies of mothers and their premature infants. Res Nurs Health. 2005;28(3):252–267. doi: 10.1002/nur.20073.
    1. Saigal S, Stoskopf BL, Burrows E, Streiner DL, Rosenbaum PL. Stability of maternal preferences for pediatric health states in the perinatal period and 1 year later. Arch Pediatr Adolesc Med. 2003;157(3):261–269. doi: 10.1001/archpedi.157.3.261.
    1. Zigmond AS, Snaith RP. The hospital anxiety and depression scale. Acta Psychiatr Scand. 1983;67(6):361–370. doi: 10.1111/j.1600-0447.1983.tb09716.x.
    1. Bjelland I, Dahl AA, Haug TT, Neckelmann D. The validity of the Hospital Anxiety and Depression Scale: an updated literature review. J Psychosom Res. 2002;52(2):69–77. doi: 10.1016/S0022-3999(01)00296-3.
    1. Carter JD, Mulder RT, Bartram AF, Darlow BA. Infants in a neonatal intensive care unit: parental response. Arch Dis Child Fetal Neonatal Ed. 2005;90(2):F109–F113. doi: 10.1136/adc.2003.031641.
    1. Weathers F, Ford J. In: Measurement of Stress, Trauma, and Adaptation. Stamm BH, editor. Lutherville, MD: Sidran Press; 1996. Psychometric properties of the PTSD Checklist (PCL-C, PCL-S, PCL-M, PCL-PR)
    1. Ruggiero KJ, Del Ben K, Scotti JR, Rabalais AE. Psychometric properties of the PTSD Checklist—Civilian version. J Trauma Stress. 2003;16(5):495–502. doi: 10.1023/A:1025714729117.
    1. Goldberg L. In: Personality Psychology in Europe, Volume 7. Mervielde I, Deary I, De Fruyt F, Ostendorf F, editor. Tilburg: Tilburg University Press; 1999. A broad-bandwidth, public-domain personality inventory measuring the lower-level facets of several five-factor models; pp. 7–28.
    1. Costa PT, MacCrae RR. Revised NEO Personality Inventory (NEO PI-R) and NEO Five-Factor Inventory (NEO FFI): Professional Manual. Odessa, Florida: Psychological Assessment Resources; 1992.
    1. Johnston C, Mash EJ. A measure of parenting satisfaction and efficacy. J Clin Child Psychol. 1989;18(2):167–175. doi: 10.1207/s15374424jccp1802_8.
    1. Endler NS, Parker JD. Coping Inventory for Stressful Situations (CISS): Manual. Toronto: Multi Health Systems; 1999.
    1. Abidin R. Parenting Stress Index (PSI) Odessa, Florida: Psychological Assessment Resources; 1995.
    1. Carter AS, Briggs-Gowan MJ. The Infant Toddler Social and Emotional Assessment (ITSEA). Unpublished manual. Boston: University of Massachusetts; 2000.
    1. Fenson L, Dale PS, Reznick JS, Thal D, Bates E, Hartung JP, Pethick S, Reilly JS. The MacArthur-Bates Communicative Development Inventories: User's Guide and Technical Manual. 2. San Diego: CA Singular Publishing Group; 1993.
    1. Epstein NB, Baldwin LM, Bishop DS. The McMaster family assessment device. J Marital Fam Ther. 1983;9:171–180.
    1. Dunn W. Infant Toddler Sensory Profile. User's Manual. San Antonio, USA: The Psychological Corporation; 2002.
    1. Eeles AL, Spittle AJ, Anderson PJ, Brown NC, Lee K, Boyd RN, Doyle LW. Systematic Review of Infant Sensory Processing Assessments. Dev Med Child Neurol. 2013;55(4):314–326. doi: 10.1111/j.1469-8749.2012.04434.x.
    1. Eadie PA, Ukoumunne O, Skeat J, Prior MR, Bavin E, Bretherton L, Reilly S. Assessing early communication behaviours: structure and validity of the Communication and Symbolic Behaviour Scales—Developmental Profile (CSBS-DP) in 12-month-old infants. Int J Lang Commun Disord. 2010;45(5):572–585. doi: 10.3109/13682820903277944.

Source: PubMed

3
S'abonner