Assessment of movement quality in robot- assisted upper limb rehabilitation after stroke: a review

Nurdiana Nordin, Sheng Quan Xie, Burkhard Wünsche, Nurdiana Nordin, Sheng Quan Xie, Burkhard Wünsche

Abstract

: Studies of stroke patients undergoing robot-assisted rehabilitation have revealed various kinematic parameters describing movement quality of the upper limb. However, due to the different level of stroke impairment and different assessment criteria and interventions, the evaluation of the effectiveness of rehabilitation program is undermined. This paper presents a systematic review of kinematic assessments of movement quality of the upper limb and identifies the suitable parameters describing impairments in stroke patients. A total of 41 different clinical and pilot studies on different phases of stroke recovery utilizing kinematic parameters are evaluated. Kinematic parameters describing movement accuracy are mostly reported for chronic patients with statistically significant outcomes and correlate strongly with clinical assessments. Meanwhile, parameters describing feed-forward sensorimotor control are the most frequently reported in studies on sub-acute patients with significant outcomes albeit without correlation to any clinical assessments. However, lack of measures in coordinated movement and proximal component of upper limb enunciate the difficulties to distinguish the exploitation of joint redundancies exhibited by stroke patients in completing the movement. A further study on overall measures of coordinated movement is recommended.

Figures

Figure 1
Figure 1
The continuum of stroke recovery stages.
Figure 2
Figure 2
Center-out point-to-point movement adapted from Rohrer et al.[1].
Figure 3
Figure 3
Overview of parameters used for kinematic assessment in robot-assisted upper limb rehabilitation.
Figure 4
Figure 4
Point-to-Point movement following square path and diamond path adapted from Panarese et al. [62]. The segments of diamond path are classified to within (1, 2, 3, 4, 7, 10, 13 and 16) and outside trained workspace (5, 6, 8, 9, 11, 12, 14 and 15), proximal (2, 6, 7, 8, 11, 12, 14 and 15) and distal (4, 5, 9, 10, 13 and 16), dominant (3, 7, 10, 11, 15 and 16) and non-dominant (1, 5, 6, 8, 9, 12, 13 and 14).

References

    1. Rohrer B, Fasoli S, Krebs HI, Hughes R, Volpe B, Frontera WR, Stein J, Hogan N. Movement smoothness changes during stroke recovery. J Neurosci. 2002;22(18):8297–304.
    1. Dobkin BH. Strategies for stroke rehabilitation. Lancet Neurol. 2004;3(9):528–36.
    1. Kwakkel G, Kollen BJ, Krebs HI. Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review. J Neurorehabil Neural Repair. 2008;22(2):111–21.
    1. Kitago T, Liang J, Huang VS, Hayes S, Simon P, Tenteromano L, Lazar RM, Marshall RS, Mazzoni P, Lennihan L, Krakauer JW. Improvement after constraint-induced movement therapy: recovery of normal motor control or task-specific compensation? J Neurorehabil Neural Repair. 2013;27(2):99–109.
    1. Sivan M, O’Connor RJ, Makower S, Bhakta B, Levesley M Systematic review of outcome measures used in the evaluation of robot-assisted upper limb exercise in stroke. J Rehabil Med. 2011;43(3):181–189.
    1. Amirabdollahian F, Loureiro R, Gradwell E, Collin C, Harwin W, Johnson G. Multivariate analysis of the Fugl-Meyer outcome measures assessing the effectiveness of GENTLE/S robot-mediated stroke therapy. J Neuroeng Rehabil. 2007;4(c):4.
    1. Hu XL, Tong KY, Li R, Chen M, Xue JJ, Ho SK, Chen PN. Proc 2010 Annu. Int. Conf. Buenos Aires: IEEE EMBS; 2010. Effectiveness of functional electrical stimulation (FES)-robot assisted wrist training on persons after stroke; pp. 5819–5822.
    1. Mehrholz J, Platz T, Kugler J, Pohl M. Electromechanical and robot-assisted arm training for improving arm function and activities of daily living after stroke. Cochrane Database Syst Rev. 2008;4:CD006876.
    1. Sullivan KJ. On “Modified constraint-induced therapy..” Page and Levine. Phys Ther 2007; 87:872 878. Phys Ther. 2007;87(11):1560.
    1. Zollo L, Rossini L, Bravi M, Magrone G, Sterzi S, Guglielmelli E. Quantitative evaluation of upper-limb motor control in robot-aided rehabilitation. Med Biol Eng Comput. 2011;49(10):1131–1144.
    1. Johnson MJ, Wang S, Bai P, Strachota E, Tchekanov G, Melbye J, McGuire J. Bilateral assessment of functional tasks for robot-assisted therapy applications. Med Biol Eng Comput. 2011;49(10):1157–1171.
    1. Volpe BT, Lynch D, Rykman-Berland A, Ferraro M, Galgano M, Hogan N, Krebs HI. Intensive sensorimotor arm training mediated by therapist or robot improves hemiparesis in patients with chronic stroke. J Neurorehabil Neural Repair. 2008;22(3):305–310.
    1. Colombo R, Pisano F, Micera S, Mazzone A, Delconte C, Carrozza MC, Dario P, Minuco G. Assessing mechanisms of recovery during robot-aided neurorehabilitation of the upper limb. J Neurorehabil Neural Repair. 2008;22(1):50–63.
    1. Kahn LE, Zygman ML, Rymer WZ, Reinkensmeyer DJ. Robot-assisted reaching exercise promotes arm movement recovery in chronic hemiparetic stroke: a randomized controlled pilot study. J Neuroeng Rehabil. 2006;3:12.
    1. Wu C-Y, Yang C-L, Lin K-C, Wu L-L, Chen M-d Unilateral versus bilateral robot-assisted rehabilitation on arm-trunk control and functions post stroke: a randomized controlled trial. J Neuroeng Rehabil. 2013;10(1):35.
    1. Kim H, Miller LM, Fedulow I, Simkins M, Abrams GM, Byl N, Rosen J. Kinematic data analysis for post-stroke patients following bilateral versus unilateral rehabilitation with an upper limb wearable robotic system. IEEE Trans Neural Syst Rehabil Eng. 2013;21(2):153–64.
    1. Schaefer SY, Haaland KY, Sainburg RL. Ipsilesional motor deficits following stroke reflect hemispheric specializations for movement control. Brain J Neurol. 2007;130(Pt 8):2146–2158.
    1. Coderre AM, Zeid AA, Dukelow SP, Demmer MJ, Moore KD, Demers MJ, Bretzke H, Herter TM, Glasgow JI, Norman KE, Bagg SD, Scott SH. Assessment of upper-limb sensorimotor function of subacute stroke patients using visually guided reaching. J Neurorehabil Neural Repair. 2010;24(6):528–541.
    1. Semrau JA, Herter TM, Scott SH, Dukelow SP. Robotic identification of kinesthetic deficits after stroke. Stroke; J Cerebral Circ. 2013;44(12):3414–3421.
    1. Dukelow SP, Herter TM, Bagg SD, Scott SH. The independence of deficits in position sense and visually guided reaching following stroke. J Neuroeng Rehabil. 2012;9:72.
    1. Fasoli SE, Krebs HI, Stein J, Frontera WR, Hogan N. Effects of robotic therapy on motor impairment and recovery in chronic stroke. Arch Phys Med Rehabil. 2003;84(4):477–482.
    1. Kahn LE, Lum PS, Rymer WZ, Reinkensmeyer DJ. Robot-assisted movement training for the stroke-impaired arm: Does it matter what the robot does? J Rehabil Res Dev. 2006;43(5):619.
    1. Lang CE, Bland MD, Bailey RR, Schaefer SY, Birkenmeier RL. Assessment of upper extremity impairment, function, and activity after stroke: foundations for clinical decision making. J Hand Therapy. 2013;26(2):104–115.
    1. Alt Murphy M, Willén C, Sunnerhagen KS. Kinematic variables quantifying upper-extremity performance after stroke during reaching and drinking from a glass. J Neurorehabil Neural Repair. 2011;25(1):71–80.
    1. Johnson MJ, Johnson LM, Ramachandran B, Winters JM, Kosasih JB. The First IEEE/RAS-EMBS Int. Conf. Biomedical Robotics and Biomechatronics, 2006 (BioRob) Pisa: IEEE; 2006. Robotic systems that rehabilitate as well as motivate: three strategies for motivating impaired arm use; pp. 254–259.
    1. Abdullah HA, Tarry C, Datta R, Mittal GS, Abderrahim M. Dynamic biomechanical model for assessing and monitoring robot-assisted upper-limb therapy. J Rehabil Res Dev. 2007;44(1):43.
    1. Colombo R, Pisano F, Mazzone A, Delconte C, Minuco G, Micera S, Carrozza MC, Dario P. The First IEEE/RAS-EMBS Int. Conf. on Biomedical Robotics and Biomechatronics, 2006 (BioRob) Pisa: IEEE; 2006. Motor performance evaluation to improve patient’s compliance during robot-aided rehabilitation; pp. 1090–1094.
    1. Kung P-C, Lin C-CK, Ju M-S. Neuro-rehabilitation robot-assisted assessments of synergy patterns of forearm, elbow and shoulder joints in chronic stroke patients. Clin Biomech (Bristol, Avon) 2010;25(7):647–554.
    1. Lewis GN, Perreault EJ. An assessment of robot-assisted bimanual movements on upper limb motor coordination following stroke. IEEE Trans Neural Syst Rehabil Eng. 2009;17(6):595–604.
    1. Lacquaniti F, Ferrigno G, Pedotti A, Soechting JF, Terzuolo C. Changes in spatial scale in drawing and handwriting: kinematic contributions by proximal and distal joints. J Neuroscience. 1987;7(3):819–828.
    1. Soechting J, Lacquaniti F, Terzuolo C. Coordination of arm movements in three-dimensional space Sensorimotor mapping during drawing movement. J Neuroscience. 1986;17(2):295–311.
    1. Rabadi MH, Rabadi FM. Comparison of the action research arm test and the Fugl-Meyer assessment as measures of upper-extremity motor weakness after stroke. Arch Phys Med Rehabil. 2006;87(7):962–966.
    1. Wolf SL, Catlin PA, Ellis M, Archer AL, Morgan B, Piacentino A. Assessing wolf motor function test as outcome measure for research in patients after stroke. Stroke. 2001;32(7):1635–1639.
    1. Connell LA, Tyson SF. Clinical reality of measuring upper-limb ability in neurologic conditions: a systematic review. Arch Phys Med Rehabil. 2012;93(2):221–228.
    1. Bosecker C, Dipietro L, Krebs HI, Volpe B Kinematic robot-based evaluation scales and clinical counterparts to measure upper limb motor performance in patients with chronic stroke. J Neurorehabil Neural Repair. 2010;24(1):62–69.
    1. Winward CE, Halligan P, Wade DT. Current practice and clinical relevance of somatosensory assessment after stroke. Clin Rehabil. 1999;13(1):48–55.
    1. Lang CE, Beebe JA. Relating movement control at 9 upper extremity segments to loss of hand function in people with chronic hemiparesis. J Neurorehabil Neural Repair. 2007;21(3):279–291.
    1. Twitchell TE. The restoration of motor function following hemiplegia in man. Brain J Neurol. 1951;74(4):443–480.
    1. Dipietro L, Krebs HI, Fasoli SE, Volpe BT, Stein J, Bever C, Hogan N. Changing motor synergies in chronic stroke. J Neurophysiol. 2007;98(2):757–768.
    1. Lo HS, Xie SQ. Exoskeleton robots for upper-limb rehabilitation: state of the art and future prospects. Med Eng Phys. 2012;34(3):261–268.
    1. van Delden aLEQ, Peper CLE, Kwakkel G, Beek PJ. A systematic review of bilateral upper limb training devices for poststroke rehabilitation. Stroke Res Treat. 2012;2012:17.
    1. Zhou H, Hu H. Human motion tracking for rehabilitation: A survey. Biomed Signal Process Control. 2008;3(1):1–18.
    1. Wagner JM, Lang CE, Sahrmann SA, Edwards DF, Dromerick AW. Sensorimotor impairments and reaching performance in subjects with poststroke hemiparesis during the first few months of recovery. Phys Ther. 2007;87(6):751–765.
    1. Daly JJ, Hogan N, Perepezko EM, Krebs HI, Rogers JM, Goyal KS, Dohring ME, Fredrickson E, Nethery J, Ruff RL. Response to upper-limb robotics and functional neuromuscular. J Rehabil Res Dev. 2005;42(6):723.
    1. Conroy S, Dipietro L, Jones-Lush LM, Zhan M, Finley MA, Wittenberg GF, Krebs HI, Bever CT, Whitall J l Effect of gravity on robot-assisted motor training after chronic stroke: a randomized trial. Arch Phys Med Rehabil. 2011;92(11):1754–1761.
    1. Mazzoleni S, Posteraro F, Filippi M, Forte F, Micera S, Dario P, Carrozza MC. Biomechanical assessment of reaching movements in post-stroke patients during a robot-aided rehabilitation. Appl Bionics Biomech. 2011;8(1):39–54.
    1. Mazzoleni S, Crecchi R, Posteraro F, Carroza MC. The Fourth IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics. Rome: Rome; 2012. Effects of robot-assisted wrist therapy in chronic stroke patients: a kinematic approach; pp. 1978–1982.
    1. Mazzoleni S, Sale P, Tiboni M, Franceschini M, Carrozza MC, Posteraro F. Upper limb robot-assisted therapy in chronic and subacute stroke patients: a kinematic analysis. Am J Phys Med Rehabil Assoc Acad Physiatrists. 2013;92(10 Suppl 1):26–37.
    1. Squeri V, Zenzeri J, Morasso P, Basteris A. Integrating proprioceptive assessment with proprioceptive training of stroke patients. Proc. IEEE Int Conf Rehabil Robotics. 2011;2011:5975500.
    1. Frisoli A, Sotgiu E, Procopio C, Bergamasco M, Chisari C, Lamola G, Rossi B. 2012 4th IEEE RAS & EMBS Int. Conf. on Biomedical Robotics and Biomechatronics (BioRob) Rome: IEEE; 2012. Training and assessment of upper limb motor function with a robotic exoskeleton after stroke; pp. 1782–1787.
    1. Frisoli A, Chisari C, Sotgiu E. Rehabilitation training and evaluation with the L-EXOS in chronic stroke. In: Donnelly M, Paggetti C, Nugent C, Mokhtari M, editors. Impact Analysis of Solutions for Chronic Disease Prevention and Management. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer; 2012. pp. 242–245.
    1. Reinkensmeyer DJ, Kahn LE, Averbuch M, McKenna-Cole A, Schmit BD, Rymer WZ. Understanding and treating arm movement impairment after chronic brain injury: progress with the ARM guide. J Rehabil Res Dev. 2000;37(6):653–62.
    1. Burgar CG, Lum PS, Shor PC, Machiel HF, Machiel Van der Loos HF. Development of robots for rehabilitation therapy: the Palo Alto VA/Stanford experience. J Rehabil Res Dev. 2000;37(6):663–673.
    1. Kahn L, Zygman M, Rymer WZ, Reinkensmeyer DJ. 2001 Conf. Proc. 23rd Annu. Int. Conf. IEEE Engineering in Medicine and Biology Society. Istanbul: IEEE; 2001. Effect of robot-assisted and unassisted exercise on functional reaching in chronic hemiparesis; pp. 1344–1347.
    1. Lum PS, Burgar CG, Shor PC. Evidence for improved muscle activation patterns after retraining of reaching movements with the MIME robotic system in subjects with post-stroke hemiparesis. IEEE Trans Neural Syst Rehabil Eng. 2004;12(2):186–194.
    1. Sanchez R, Liu J, Rao S. Automating arm movement training following severe stroke: functional exercises with quantitative feedback in a gravity-reduced environment. IEEE Trans Neural Syst Rehabil Eng. 2006;14(3):378–389.
    1. Beer RF, Naujokas C, Bachrach B, Mayhew D. 2008 2nd IEEE RAS & EMBS Int. Conf. on Biomedical Robotics and Biomechatronics (BioRob) Scottsdale, AZ: IEEE; 2008. Development and evaluation of a gravity compensated training environment for robotic rehabilitation of post-stroke reaching; pp. 205–210.
    1. Iwamuro BT, Cruz EG, Connelly LL, Fischer HC, Kamper DG. Effect of a gravity-compensating orthosis on reaching after stroke evaluation of the Therapy Assistant WREX. Arch Phys Med Rehabil. 2008;89(11):2121–2128.
    1. Sanguineti V, Casadio M, Vergaro E, Squeri V, Giannoni P, Morasso PG. Robot therapy for stroke survivors: proprioceptive training and regulation of assistance. Stud Health Technol Inform. 2009;145:126–142.
    1. Chang J-J, Tung W-L, Wu W-L, Huang M-H, Su F-C. Effects of robot-aided bilateral force-induced isokinetic arm training combined with conventional rehabilitation on arm motor function in patients with chronic-stroke. Arch Phys Med Rehabil. 2007;88(10):1332–1338.
    1. Colombo R, Pisano F, Micera S, Mazzone A, Delconte C, Carrozza M, Dario P, Minuco G. Robotic techniques for upper limb evaluation and rehabilitation of stroke patients. IEEE Trans Neural Syst Rehabil Eng. 2005;13(3):311–324.
    1. Panarese A, Colombo R, Sterpi I, Pisano F, Micera S. Tracking motor improvement at the subtask level during robot-aided neurorehabilitation of stroke patients. Neurorehabil Neural Repair. 2012;26(7):822–833.
    1. Vergaro E, Casadio M, Squeri V, Giannoni P, Morasso P, Sanguineti V. Self-adaptive robot training of stroke survivors for continuous tracking movements. J Neuroeng Rehabil. 2010;7:13.
    1. Dukelow SP, Herter TM, Moore KD, Demers MJ, Glasgow JI, Bagg SD, Norman KE, Scott SH. Quantitative assessment of limb position sense following stroke. Neurorehabil Neural Repair. 2010;24(2):178–187.
    1. Squeri V, Casadio M, Vergaro E, Giannoni P, Morasso P, Sanguineti V. Bilateral robot therapy based on haptics and reinforcement learning Feasibility study of a new concept for treatment of patients after stroke. J Rehabil Med. 2009;41(12):961–965.
    1. Toth A, Fazekas G, Arz G. 2005 IEEE 9th International Conference on Rehabilitation Robotics. IL: Chicago; 2005. Passive robotic movement therapy of the spastic hemiparetic arm with REHAROB: report of the first clinical test and the follow-up system improvement; pp. 127–130.
    1. Nef T, Quinter G, Müller R, Riener R. Effects of arm training with the robotic device ARMin I in chronic stroke: three single cases. Neuro-degenerative Diseases. 2009;6(5-6):240–251.
    1. Fazekas G, Horvath M, Troznai T, Toth A. Robot-mediated upper limb physiotherapy for patients with spastic hemiparesis: a preliminary study. J Rehabil Med. 2007;39(7):580–582.
    1. Mihelj M, Nef T, Riener R. Proc 2007 IEEE Int. Conf. Robotics and, Automation. Rome: IEEE; 2007. Armin II-7 DoF rehabilitation robot: mechanics and kinematics; pp. 4120–4125.
    1. Vitiello N, Lenzi T, Roccella S, De Rossi SMM, Cattin E, Giovacchini F, Vecchi F, Carrozza MC. NEUROExos: A powered elbow exoskeleton for physical rehabilitation. IEEE Trans Robot. 2013;29(1):220–235.
    1. Nguyen HB, Lum PS. Compensation for the intrinsic dynamics of the Inmotion2 robot. J Neurosci Methods. 2013;214(1):15–20.
    1. Lum PS, Burgar CG, Kenney DE, Van der Loos HFM. Quantification of force abnormalities during passive and active-assisted upper-limb reaching movements in post-stroke hemiparesis. IEEE Trans Biomed Eng. 1999;46(6):652–662.
    1. Jakobson LS, Goodale MA. Factors affecting higher-order movement planning: a kinematic analysis of human prehension. Exp Brain Res. 1991;86(1):199–208.
    1. Smith MA, Brandt J, Shadmehr R. Motor disorder in Huntington’s disease begins as a dysfunction in error feedback control. Nature. 2000;403(6769):544–549.
    1. Smith M, Shadmehr R. Intact ability to learn internal models of arm dynamics in Huntington’s disease but not cerebellar degeneration. J Neurophysiol. 2005;93(5):2809–2821.
    1. Ferraro M, Demaio JH, Krol J, Trudell C, Rannekleiv K, Edelstein L, Christos P, Aisen M, England J, Fasoli S, Krebs H, Hogan N, Volpe BT. Assessing the motor status score: a scale for the evaluation of upper limb motor outcomes in patients after stroke. Neurorehabil Neural Repair. 2002;16(3):283–289.
    1. Cirstea MC, Levin MF. Compensatory strategies for reaching in stroke. Brain J Neurol. 2000;123(Pt 5):940–953.
    1. Abdullah HA, Tarry C, Lambert C, Barreca S, Allen BO. Results of clinicians using a therapeutic robotic system in an inpatient stroke rehabilitation unit. J Neuroeng Rehabil. 2011;8(1):50.
    1. Hu XL, Tong KY, Song R, Zheng XJ, Lui KH, Leung WWF, Ng S, Au-Yeung SSY. Quantitative evaluation of motor functional recovery process in chronic stroke patients during robot-assisted wrist training. J Electromyograph Kinesiol. 2009;19(4):639–650.
    1. Georgopoulos A. On reaching. Annu Rev Neurosci. 1986;9(1):147–170.
    1. Robertson EM, Miall RC. Multi-joint limbs permit a flexible response to unpredictable events. Exp Brain Res. 1997;117(1):148–152.
    1. Levin MF, Kleim JA, Wolf SL. What do motor “recovery” and “compensation” mean in patients following stroke? Neurorehabil Neural Repair. 2008;23(4):313–319.
    1. Levin MF, Michaelsen SM, Cirstea CM, Roby-Brami A. Use of the trunk for reaching targets placed within and beyond the reach in adult hemiparesis. Exp Brain Res Experimentelle Hirnforschung Expérimentation cérébrale. 2002;143(2):171–180.
    1. Hayashibe M, Shimoda S. Proc 2013 35th Annu. Int. Conf. IEEE EMBC. Osaka: IEEE; 2013. Emergence of motor synergy in vertical reaching task via tacit learning; pp. 4985–4988.
    1. Michaelsen SM, Luta A, Roby-Brami A, Levin MF. Effect of trunk restraint on the recovery of reaching movements in Hemiparetic patients. Stroke. 2001;32(8):1875–1883.
    1. Brunnström S. Movement therapy in hemiplegia- a neurophysiological approach. New York: Medical Dept., Harper & Row; 1970.
    1. Crocher V, Sahbani A, Robertson J, Roby-Brami A, Morel G. Constraining upper limb synergies of hemiparetic patients using a robotic exoskeleton in the perspective of neuro-rehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2012;20(3):247–257.
    1. Lum PS, Burgar CG, Shor PC, Majmundar M, Van der Loos M. Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Arch Phys Med Rehabil. 2002;83(7):952–959.
    1. Lum PS, Burgar CG, Loos MVD, Shor PC, Majmundar M, Yap R. MIME robotic device for upper-limb neurorehabilitation in subacute stroke subjects: a follow-up study. J Rehabil Res Dev. 2006;43(5):631.
    1. Ellis MD, Sukal T, DeMott T Augmenting clinical evaluation of hemiparetic arm movement with a laboratory-based quantitative measurement of kinematics as a function of limb loading. Neurorehabil Neural Repair. 2008;22(4):321–329.
    1. Simkins M, Kim H, Abrams G, Byl N, Rosen J. Robotic unilateral and bilateral upper-limb movement training for stroke survivors afflicted by chronic hemiparesis. IEEE Int Conf Rehabil Robot [proceedings] 2013;2013:1–6.
    1. Hogan N, Sternad D. Sensitivity of smoothness measures to movement duration, amplitude, and arrests. J Motor Behav. 2009;41(6):529–534.
    1. S Balasubramanian EB, Melendez-Calderon A, Burdet E. A robust and sensitive metric for quantifying movement smoothness. IEEE Trans Biomed Eng. 2012;59(8):2126–2136.
    1. Woodworth RS. The Accuracy of voluntary movement. New York: Macmillan; 1901.
    1. Krebs HI, Hogan N, Aisen ML, Volpe BT. Robot-aided neurorehabilitation. IEEE Trans Rehabil Eng. 1998;6(1):75–87.
    1. Balasubramanian S, Wei R, Herman R, He J. 2009 ICME International Conference on Complex Medical Engineering. Tempe, AZ: IEEE; 2009. Robot-measured performance metrics in stroke rehabilitation; pp. 1–6.
    1. Kitsos G, Harris D, Pollack M, Hubbard IJ. Assessments in Australian stroke rehabilitation units: a systematic review of the post-stroke validity of the most frequently used. Disabil Rehabil. 2011;33(25-26):2620–2632.
    1. Cameirao MS, Zimmerli L, Oller ED, Verschure PFMJ, Badia S B i . Proc. Virtual Rehabilitation. Venice: IEEE; 2007. The rehabilitation gaming system: a virtual reality based system for the evaluation and rehabilitation of motor deficits; pp. 29–33.
    1. Evett L, Burton A, Battersby S, Brown D, Sherkat N, Ford G, Liu H, Standen P. 2011 IEEE 1st Int. Conf. Serious Games and Applications for Health (SeGAH) Braga: IEEE; 2011. Dual camera motion capture for serious games in stroke rehabilitation; pp. 1–4.
    1. Khasawneh N, Malkawi A, Al-Jarrah M, Alsa’di R, Al-Momani S, Fraiwan M a . 2013 9th Int. Conf. Innovations in Information Technology (IIT) Al-Ain: IEEE; 2013. Therapy central: On the development of computer games for physiotherapy; pp. 24–29.
    1. Dobkin BH, Dorsch A. New evidence for therapies in stroke rehabilitation. Curr Atherosclerosis Rep. 2013;15(6):331.
    1. Namdari S, Yagnik G, Ebaugh DD, Nagda S, Ramsey ML, Williams GR, Mehta S. Defining functional shoulder range of motion for activities of daily living. J Shoulder Elbow Surg. 2012;21(9):1177–1183.
    1. Sanguineti V, Casadio M, Masia L, Squeri V, Morasso PG. Introduction to Neural Engineering for Motor Rehabilitation. Hoboken, NJ: John Wiley and Sons Inc; 2013. Robot-assisted neurorehabilitation; pp. 505–528.
    1. Colombo R, Sterpi I, Mazzone A, Delconte C, Pisano F. Taking a lesson from patients’ recovery strategies to optimize training during robot-aided rehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2012;20(3):276–285.
    1. Kung P-c Reducing abnormal synergies of forearm, elbow, and shoulder joints in stroke patients with neuro-rehabilitation robot treatment and assessment. J Med Biol Eng. 2009;32(2):139–146.
    1. Wu G, van der Helm FCT, (DirkJan) Veeger HEJ, Makhsous M, Van Roy P, Anglin C, Nagels J, Karduna AR, McQuade K, Wang X, Werner FW, Buchholz B. ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion Part II: shoulder, elbow, wrist and hand. J Biomech. 2005;38(5):981–992.
    1. Cortes C, Ardanza A, Molina-Rueda F, Cuesta-Gomez A, Unzueta L, Epelde G, Ruiz OE, De Mauro A, Florez J. Upper limb posture estimation in robotic and virtual reality-based rehabilitation. 2014.
    1. Hingtgen B, McGuire JR, Wang M, Harris GF. An upper extremity kinematic model for evaluation of hemiparetic stroke. J Biomech. 2006;39(4):681–688.
    1. Hervey N, Khan B, Shagman L, Tian F, Delgado MR, Tulchin-Francis K, Shierk A, Smith L, Reid D, Clegg NJ, Liu H, MacFarlane D, Alexandrakis G. Proc. SPIE, Photonic Therapeutics and Diagnostics IX. San Francisco, CA: SPIE; 2013. Motion tracking and electromyography assist the removal of mirror hand contributions to fNIRS images acquired during a finger tapping task performed by children with cerebral palsy; pp. 856563–856563–11.
    1. Bragge T, Hakkarainen M. World Congress on Medical Physics and Biomedical Engineering; Munich. Volume 25/4. Heidelberg: Springer Berlin; 2010. A transportable camera based motion analysis system with application to monitoring of rehabilitation of hand; pp. 914–917.
    1. Supuk T, Bajd T, Kurillo G. Assessment of reach-to-grasp trajectories toward stationary objects. Clin Biomech (Bristol, Avon) 2011;26(8):811–818.
    1. Haumont T, Rahman T, Sample W, M King M, Church C, Henley J, Jayakumar S. Wilmington robotic exoskeleton: a novel device to maintain arm improvement in muscular disease. J Pediat Orthoped. 2011;31(5):44–49.
    1. Wood KC, Lathan CE, Kaufman KR. Feasibility of gestural feedback treatment for upper extremity movement in children with cerebral palsy. IEEE Trans Neural Syst Rehabil Eng. 2013;21(2):300–305.
    1. Raghavan P, Santello M, Gordon AM, Krakauer JW. Compensatory motor control after stroke: an alternative joint strategy for object-dependent shaping of hand posture. J Neurophysiol. 2010;103(6):3034–3043.
    1. Godfrey A, Conway R, Meagher D, OLaighin G. Direct measurement of human movement by accelerometry. Med Eng & Phys. 2008;30(10):1364–1386.
    1. Otto C. Master thesis. The University of Manitoba. 2007. Magnetic motion tracking system.
    1. Totilo S: Natal Recognizes 31 Body Parts, Uses Tenth of XBox 360. [] []
    1. Han D, Kuschner D, Wang Y. 2nd Int. IEEE EMBS Conf. Neural Engineering. Arlington, VA: IEEE; 2005. Upper limb position sensing: a machine vision approach; pp. 490–493.
    1. Allin S, Baker N, Eckel E, Ramanan D. Robust tracking of the upper limb for functional stroke assessment. IEEE Trans Neural Syst Rehabil Eng. 2010;18(5):542–550.
    1. Zariffa J, Steeves JD. Computer vision-based classification of hand grip variations in neurorehabilitation. IEEE Int Conf Rehabil Robotics, Zurich. 2011;2011:5975421.
    1. Metcalf C, Robinson R, Malpass A, Bogle T, Dell T, Harris C, Demain S. Markerless motion capture and measurement of hand kinematics: validation and application to home-based upper limb rehabilitation. IEEE Trans Bio-med Eng. 2013;60(8):2184–2192.
    1. Fern A, Salle L, Ramon U, Sus A, Lligadas X, Fern’ndez-Baena A, Susin A. 2012 Fourth Int. Conf. on Intelligent Networking and Collaborative Systems. Bucharest: IEEE; 2012. Biomechanical Validation of Upper-Body and Lower-Body Joint Movements of Kinect Motion Capture Data for Rehabilitation Treatments; pp. 656–661.
    1. Kitsunezaki N, Adachi E, Masuda T, Mizusawa J-I. 2013 IEEE Int. Symp. on Medical Measurements and Applications (MeMeA) Quebec: IEEE; 2013. KINECT applications for the physical rehabilitation; pp. 294–299.
    1. Taati B, Wang R, Huq R, Jasper S, Mihailidis A. 2012 4th IEEE RAS and EMBS Int. Conf. on Biomedical Robotics and Biomechatronics (BioRob) Rome: IEEE; 2012. Vision-based posture assessment to detect and categorize compensation during robotic rehabilitation therapy; pp. 1607–1613.
    1. Chen L, Wei H, Ferryman J. A survey of human motion analysis using depth imagery. Pattern Recognit Lett. 2013;34(15):1995–2006.
    1. Wang W-W, Fu L-C. 2011 IEEE International Symposium on Medical Measurements and Applications. Bari: IEEE; 2011. Mirror therapy with an exoskeleton upper-limb robot based on IMU measurement system; pp. 370–375.
    1. Metrot J, Mottet D, Hauret I, van Dokkum L, Bonnin-Koang H-Y, Torre K, Laffont I. Changes in bimanual coordination during the first 6 weeks after moderate hemiparetic stroke. J Neurorehabil Neural Repair. 2013;27(3):251–259.
    1. Desrosiers J, Bourbonnais D, Bravo G, Roy PM, Guay M. Performance of the ’unaffected’ upper extremity of elderly stroke patients. Stroke; J Cerebral Circ. 1996;27(9):1564–1570.
    1. R Sainburg CG, Poizner H. Loss of proprioception produces deficits in interjoint coordination. J Neurophysiol. 1993;70(5):2316–47.
    1. Liu W, McCombe Waller S, Kepple TM, Whitall J. Compensatory arm reaching strategies after stroke: induced position analysis. J Rehabil Res Dev. 2013;50(1):71–84.
    1. Bobath B. Adult hemiplegia: evaluation and treatment. London: Heinemann Medical Books; 1978.

Source: PubMed

3
S'abonner