Eltrombopag Improves Erythroid Differentiation in a Human Induced Pluripotent Stem Cell Model of Diamond Blackfan Anemia

Husam Qanash, Yongqin Li, Richard H Smith, Kaari Linask, Sara Young-Baird, Waleed Hakami, Keyvan Keyvanfar, John S Choy, Jizhong Zou, Andre Larochelle, Husam Qanash, Yongqin Li, Richard H Smith, Kaari Linask, Sara Young-Baird, Waleed Hakami, Keyvan Keyvanfar, John S Choy, Jizhong Zou, Andre Larochelle

Abstract

Diamond Blackfan Anemia (DBA) is a congenital macrocytic anemia associated with ribosomal protein haploinsufficiency. Ribosomal dysfunction delays globin synthesis, resulting in excess toxic free heme in erythroid progenitors, early differentiation arrest, and pure red cell aplasia. In this study, DBA induced pluripotent stem cell (iPSC) lines were generated from blood mononuclear cells of DBA patients with inactivating mutations in RPS19 and subjected to hematopoietic differentiation to model disease phenotypes. In vitro differentiated hematopoietic cells were used to investigate whether eltrombopag, an FDA-approved mimetic of thrombopoietin with robust intracellular iron chelating properties, could rescue erythropoiesis in DBA by restricting the labile iron pool (LIP) derived from excessive free heme. DBA iPSCs exhibited RPS19 haploinsufficiency, reduction in the 40S/60S ribosomal subunit ratio and early erythroid differentiation arrest in the absence of eltrombopag, compared to control isogenic iPSCs established by CRISPR/Cas9-mediated correction of the RPS19 point mutation. Notably, differentiation of DBA iPSCs in the presence of eltrombopag markedly improved erythroid maturation. Consistent with a molecular mechanism based on intracellular iron chelation, we observed that deferasirox, a clinically licensed iron chelator able to permeate into cells, also enhanced erythropoiesis in our DBA iPSC model. In contrast, erythroid maturation did not improve substantially in DBA iPSC differentiation cultures supplemented with deferoxamine, a clinically available iron chelator that poorly accesses LIP within cellular compartments. These findings identify eltrombopag as a promising new therapeutic to improve anemia in DBA.

Trial registration: ClinicalTrials.gov NCT00027274.

Keywords: diamond blackfan anemia; disease modeling; drug testing; eltrombopag; genome editing; induced pluripotent stem cells.

Conflict of interest statement

STEMdiff™ Hematopoietic Kit used in this study is registered under patent WO2015050963 A1. AL receives royalty income. Novartis, the manufacturer of eltrombopag, provided research grade drug. The other authors declare no competing interests.

Figures

Figure 1
Figure 1
Generation and characterization of isogenic and DBA iPSCs. (A) Genomic RPS19 sequence trace chromatograms for isogenic (top panel) and DBA863 (bottom panel) iPSCs to confirm CRISPR/Cas9-mediated correction (grey highlight) of heterozygous c.185G>A (pR62Q) nonsense mutation (green highlight). In isogenic iPSCs, the overlapping G/C bases represent a silent mutation introduced in the template DNA during genome editing to complete an AscI restriction site (GGCGCGCC) for rapid RFLP screening of RPS19 gene corrected iPSC clones. (B) Western blot for RPS19 and β-tubulin loading control for wild-type (WT), DBA and isogenic iPSCs. (C) Sucrose gradient (10–50%) polysome profiling analyses for isogenic and DBA iPSCs. Peaks represent ribosomal subunits (40S and 60S), 80S monosomes, and ribosome clusters (polysomes). (D) Calculated 40S/60S ratios for isogenic and DBA iPSCs. Data are presented as mean ± standard error of the mean (SEM). Unpaired t-test, * p ≤ 0.05 (n = 3).
Figure 2
Figure 2
Hematopoietic differentiation of DBA iPSCs phenocopies in vitro the erythroid maturation defect found in DBA. (A) Stages of erythroid maturation defined by cell populations expressing variable levels of CD71 (transferrin receptor), CD235a (glycophorin A) and CD45. (B) Representative flow cytometry contour plots depicting percentages of late-stage CD45− erythroblasts co-expressing CD71 and CD235a at culture day 21 of isogenic and DBA iPSC differentiation. (C) Percentages of CD71+CD235a+ late-stage CD45− erythroblasts at culture day 19 or 21 of isogenic and DBA iPSC differentiation (n = 9). (D) Representative Giemsa stains of hematopoietic cells at culture day 21 of isogenic and DBA iPSC differentiation. (E) Number of colony forming units (CFUs) per 3000 hematopoietic cells harvested at culture day 19 or 21 of isogenic and DBA iPSC differentiation (n = 16). (F) Representative CFU plates for hematopoietic cells harvested at culture day 21 of isogenic and DBA iPSC differentiation. White arrows point to erythroid colonies. In panels C and E, data are presented as mean ± SEM. In panel E, statistical analysis is presented for each colony type relative to the “DBA iPSCs” group. Unpaired t-test, **** p ≤ 0.0001, ns: not significant.
Figure 3
Figure 3
Defective erythropoiesis in DBA iPSCs is partially rescued by eltrombopag (EPAG). (A,B) Quantification of intracellular iron chelating properties of EPAG in erythroid cells differentiated from isogenic iPSCs. Representative flow cytometry histograms of intracellular calcein-AM fluorescence (A) and summary of the mean fluorescence intensity of calcein-AM (B) in isogenic iPSC-derived erythroid cells loaded with calcein-AM and then treated or not with EPAG. Peak height of histogram was normalized to mode (C) Representative flow cytometry contour plots depicting percentages of late-stage CD45− erythroblasts co-expressing CD71 and CD235a at culture day 21 of isogenic iPSC differentiation in the presence or absence of EPAG. (D) Percentages of CD71+CD235a+ late-stage CD45− erythroblasts at culture day 19 or 21 of isogenic iPSC differentiation in the presence or absence of EPAG (n = 7). (E) Representative Giemsa stains of hematopoietic cells at culture day 21 of isogenic iPSC differentiation in the presence of EPAG. (F) Number of colony forming units (CFUs) per 3000 hematopoietic cells harvested at culture day 19 or 21 of DBA iPSC differentiation in the absence or presence of EPAG (n = 8). (G) Representative CFU plates for hematopoietic cells harvested at culture day 21 of DBA iPSC differentiation in the presence or absence of EPAG. White arrows point to erythroid colonies. In panels B, D and F, data are presented as mean ± SEM. In panel F, statistical analysis is presented for each colony type relative to the “No EPAG” group. Unpaired t-test, **** p ≤ 0.0001, ns: not significant.
Figure 4
Figure 4
Intracellular iron restriction improves erythropoiesis in DBA iPSCs. (AD) Quantification of intracellular iron chelating properties of DFX and DFO in erythroid cells differentiated from isogenic iPSCs. Representative flow cytometry histograms of intracellular calcein-AM fluorescence (A,C) and summary of the mean fluorescence intensity of calcein-AM (B,D) in isogenic iPSC-derived erythroid cells loaded with calcein-AM and then treated or not with DFX (A,B) or DFO (C,D). Peak height of each histogram was normalized to mode. (E) Representative flow cytometry contour plots depicting percentages of late-stage CD45- erythroblasts co-expressing CD71 and CD235a at culture day 21 of DBA iPSC differentiation in in the absence of an iron chelator (no treatment) or in the presence of deferasirox (DFX) or deferoxamine (DFO). (F) Percentages of CD71 + CD235a+ late-stage CD45− erythroblasts at culture day 19 or 21 of DBA iPSC differentiation in the absence of an iron chelator (No Tx, no treatment) or in the presence of DFX or DFO (n = 3). (G) Number of CFUs per 3000 hematopoietic cells harvested at day 19 or 21 of DBA iPSC differentiation in the absence of an iron chelator (No Tx) or in the presence of DFX or DFO (n = 4). Insets at the bottom are representative CFU plates; white arrows point to erythroid colonies. In panels B, D, F and G, data are presented as mean ± SEM. In panel G, statistical analysis is presented for each colony type relative to the “No Tx” group. Unpaired t-test, * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001, ns: not significant.
Figure 5
Figure 5
Summary. iPSC lines were generated from blood cells of DBA patients, and isogenic iPSC clones were produced by CRISPR-mediated correction of RPS19 mutations. Hematopoietic differentiation of DBA iPSCs phenocopied the erythroid maturation defect found in DBA. Defective erythropoiesis was partially rescued by eltrombopag and deferasirox, but did not improve substantially with deferoxamine, consistent with a mechanism based on intracellular iron chelation.

References

    1. Lipton J.M., Ellis S.R. Diamond-blackfan anemia: Diagnosis, treatment, and molecular pathogenesis. Hematol. Clin. N. Am. 2009;23:261–282. doi: 10.1016/j.hoc.2009.01.004.
    1. Horos R., Von Lindern M. Molecular mechanisms of pathology and treatment in Diamond Blackfan Anaemia. Br. J. Haematol. 2012;159:514–527. doi: 10.1111/bjh.12058.
    1. Pospisilova D., Cmejlova J., Hak J., Adam T., Cmejla R. Successful treatment of a diamond-blackfan anemia patient with amino acid leucine. Haematologica. 2007;92:e66–e67. doi: 10.3324/haematol.11498.
    1. Payne E.M., Virgilio M., Narla A., Sun H., Levine M., Paw B.H., Berliner N., Look A.T., Ebert B.L., Khanna-Gupta A. L-leucine improves the anemia and developmental defects associated with Diamond-Blackfan anemia and del(5q) MDS by activating the mTOR pathway. Blood. 2012;120:2214–2224. doi: 10.1182/blood-2011-10-382986.
    1. Jaako P., Debnath S., Olsson K., Bryder D., Flygare J., Karlsson S. Dietary L-leucine improves the anemia in a mouse model for Diamond-Blackfan anemia. Blood. 2012;120:2225–2228. doi: 10.1182/blood-2012-05-431437.
    1. Macari E.R., Taylor A.M., Raiser D., Siva K., McGrath K., Humphries J.M., Flygare M.J., Ebert M.B.L., Zon L.I. Calmodulin inhibition rescues DBA models with ribosomal protein deficiency through reduction of rsk signaling. Blood. 2016;128:332. doi: 10.1182/blood.V128.22.332.332.
    1. Ruckle J., Jacobs M., Kramer W., Pearsall A.E., Kumar R., Underwood K.W., Seehra J., Yang Y., Condon C.H., Sherman M.L. Single-dose, randomized, double-blind, placebo-controlled study of ACE-011 (ActRIIA-IgG1) in postmenopausal women. J. Bone Miner. Res. 2009;24:744–752. doi: 10.1359/jbmr.081208.
    1. Dussiot M., Maciel T.T., Fricot A., Chartier C., Negre O., Veiga J., Grapton D., Paubelle E., Payen E., Beuzard Y., et al. An activin receptor IIA ligand trap corrects ineffective erythropoiesis in β-thalassemia. Nat. Med. 2014;20:398–407. doi: 10.1038/nm.3468.
    1. Rapoport B., Klastersky J., Raftopoulos H., Freifeld A., Aoun M., Zinner S.H., Rolston K.V. The emerging problem of bacterial resistance in cancer patients; proceedings of a workshop held by MASCC “Neutropenia, Infection and Myelosuppression” Study Group during the MASCC annual meeting held in Berlin on 27–29 June 2013. Support. Care Cancer. 2016;24:2819–2826. doi: 10.1007/s00520-016-3183-5.
    1. Doty R.T., Yan X., Lausted C., Munday A.D., Yang Z., Yi D., Jabbari N., Liu L., Keel S.B., Tian Q., et al. Single-cell analyses demonstrate that a heme–GATA1 feedback loop regulates red cell differentiation. Blood. 2019;133:457–469. doi: 10.1182/blood-2018-05-850412.
    1. Rio S., Gastou M., Karboul N., Derman R., Suriyun T., Manceau H., Leblanc T., El Benna J., Schmitt C., Azouzi S., et al. Regulation of globin-heme balance in Diamond-Blackfan anemia by HSP70/GATA1. Blood. 2019;133:1358–1370. doi: 10.1182/blood-2018-09-875674.
    1. Yang Z., Keel S.B., Shimamura A., Liu L., Gerds A.T., Li H.Y., Wood B.L., Scott B.L., Abkowitz J.L. Delayed globin synthesis leads to excess heme and the macrocytic anemia of Diamond Blackfan anemia and del(5q) myelodysplastic syndrome. Sci. Transl. Med. 2016;8:338ra67. doi: 10.1126/scitranslmed.aaf3006.
    1. Vlachos A., Muir E. How I treat Diamond-Blackfan anemia. Blood. 2010;116:3715–3723. doi: 10.1182/blood-2010-02-251090.
    1. Hoffbrand A.V., Taher A., Cappellini M.D. How I treat transfusional iron overload. Blood. 2012;120:3657–3669. doi: 10.1182/blood-2012-05-370098.
    1. Olnes M.J., Scheinberg P., Calvo K.R., Desmond R., Tang Y., Dumitriu B., Parikh A.R., Soto S., Biancotto A., Feng X., et al. Eltrombopag and improved hematopoiesis in refractory aplastic anemia. N. Engl. J. Med. 2012;367:11–19. doi: 10.1056/NEJMoa1200931.
    1. Townsley D.M., Scheinberg P., Winkler T., Desmond R., Dumitriu B., Rios O., Weinstein B., Valdez J., Lotter J., Feng X., et al. Eltrombopag added to standard immunosuppression for aplastic anemia. N. Engl. J. Med. 2017;376:1540–1550. doi: 10.1056/NEJMoa1613878.
    1. Bussel J.B., Cheng G., Saleh M.N., Psaila B., Kovaleva L., Meddeb B., Kloczko J., Hassani H., Mayer B., Stone N.L., et al. Eltrombopag for the treatment of chronic idiopathic thrombocytopenic purpura. N. Engl. J. Med. 2007;357:2237–2247. doi: 10.1056/NEJMoa073275.
    1. McHutchison J.G., Dusheiko G., Shiffman M.L., Rodriguez-Torres M., Sigal S., Bourliere M., Berg T., Gordon S.C., Campbell F.M., Theodore D., et al. Eltrombopag for thrombocytopenia in patients with cirrhosis associated with hepatitis C. N. Engl. J. Med. 2007;357:2227–2236. doi: 10.1056/NEJMoa073255.
    1. Alvarado L.J., Huntsman H.D., Cheng H., Townsley D.M., Winkler T., Feng X., Dunbar C.E., Young N.S., LaRochelle A. Eltrombopag maintains human hematopoietic stem and progenitor cells under inflammatory conditions mediated by IFN-γ. Blood. 2019;133:2043–2055. doi: 10.1182/blood-2018-11-884486.
    1. Bussel J., Kulasekararaj A., Cooper N., Verma A., Steidl U., Semple J.W., Will B. Mechanisms and therapeutic prospects of thrombopoietin receptor agonists. Semin. Hematol. 2019;56:262–278. doi: 10.1053/j.seminhematol.2019.09.001.
    1. Guenther K.L., Cheruku P.S., Cash A., Smith R.H., Alvarado L.J., Burkett S., Townsley D.M., Winkler T., LaRochelle A. Eltrombopag promotes DNA repair in human hematopoietic stem and progenitor cells. Exp. Hematol. 2019;73:1–6.e6. doi: 10.1016/j.exphem.2019.03.002.
    1. Kalota A., Selak M.A., Garcia-Cid L.A., Carroll M. Eltrombopag modulates reactive oxygen species and decreases acute myeloid leukemia cell survival. PLoS ONE. 2015;10:e0126691. doi: 10.1371/journal.pone.0126691.
    1. Kurokawa T., Murata S., Zheng Y.-W., Iwasaki K., Kohno K., Fukunaga K., Ohkohchi N. The Eltrombopag antitumor effect on hepatocellular carcinoma. Int. J. Oncol. 2015;47:1696–1702. doi: 10.3892/ijo.2015.3180.
    1. Roth M., Will B., Simkin G., Narayanagari S., Barreyro L., Bartholdy B., Tamari R., Mitsiades C.S., Verma A., Steidl U. Eltrombopag inhibits the proliferation of leukemia cells via reduction of intracellular iron and induction of differentiation. Blood. 2012;120:386–394. doi: 10.1182/blood-2011-12-399667.
    1. Will B., Kawahara M., Luciano J.P., Bruns I., Parekh S., Erickson-Miller C.L., Aivado M.A., Verma A., Steidl U. Effect of the nonpeptide thrombopoietin receptor agonist Eltrombopag on bone marrow cells from patients with acute myeloid leukemia and myelodysplastic syndrome. Blood. 2009;114:3899–3908. doi: 10.1182/blood-2009-04-219493.
    1. Vlachodimitropoulou E., Chen Y.-L., Garbowski M., Koonyosying P., Psaila B., Sola-Visner M., Cooper N., Hider R., Porter J. Eltrombopag: A powerful chelator of cellular or extracellular iron (III) alone or combined with a second chelator. Blood. 2017;130:1923–1933. doi: 10.1182/blood-2016-10-740241.
    1. Ge J., Apicella M.A., Mills J.A., Garçon L., French D.L., Weiss M.J., Bessler M., Mason P.J. Dysregulation of the transforming growth factor β pathway in induced pluripotent stem cells generated from patients with diamond blackfan anemia. PLoS ONE. 2015;10:e0134878. doi: 10.1371/journal.pone.0134878.
    1. Garçon L., Ge J., Manjunath S.H., Mills J.A., Apicella M., Parikh S., Sullivan L.M., Podsakoff G.M., Gadue P., French D.L., et al. Ribosomal and hematopoietic defects in induced pluripotent stem cells derived from Diamond Blackfan anemia patients. Blood. 2013;122:912–921. doi: 10.1182/blood-2013-01-478321.
    1. Doulatov S., Vo L.T., Macari E.R., Wahlster L., Kinney M.A., Taylor A.M., Barragan J., Gupta M., McGrath K., Lee H.-Y., et al. Drug discovery for Diamond-Blackfan anemia using reprogrammed hematopoietic progenitors. Sci. Transl. Med. 2017;9:eaah5645. doi: 10.1126/scitranslmed.aah5645.
    1. Doulatov S., Vo L.T., Chou S.S., Kim P.G., Arora N., Li H., Hadland B.K., Bernstein I.D., Collins J.J., Zon L.I., et al. Induction of multipotential hematopoietic progenitors from human pluripotent stem cells via respecification of lineage-restricted precursors. Cell Stem Cell. 2013;13:459–470. doi: 10.1016/j.stem.2013.09.002.
    1. Ruiz J.P., Chen G., Mora J.J.H., Keyvanfar K., Liu C., Zou J., Beers J., Bloomer H., Qanash H., Uchida N., et al. Robust generation of erythroid and multilineage hematopoietic progenitors from human iPSCs using a scalable monolayer culture system. Stem Cell Res. 2019;41:101600. doi: 10.1016/j.scr.2019.101600.
    1. Chen G., Gulbranson D.R., Hou Z., Bolin J.M., Ruotti V., Probasco M.D., Smuga-Otto K., Howden S.E., Diol N.R., Propson N.E., et al. Chemically defined conditions for human iPSC derivation and culture. Nat. Methods. 2011;8:424–429. doi: 10.1038/nmeth.1593.
    1. Beers J., Linask K.L., Chen J.A., Siniscalchi L.I., Lin Y., Zheng W., Rao M., Chen G. A cost-effective and efficient reprogramming platform for large-scale production of integration-free human induced pluripotent stem cells in chemically defined culture. Sci. Rep. 2015;5:11319. doi: 10.1038/srep11319.
    1. Li H.-O., Zhu Y.-F., Asakawa M., Kuma H., Hirata T., Ueda Y., Lee Y.S., Fukumura M., Iida A., Kato A., et al. A cytoplasmic RNA vector derived from nontransmissible sendai virus with efficient gene transfer and expression. J. Virol. 2000;74:6564–6569. doi: 10.1128/JVI.74.14.6564-6569.2000.
    1. Hofman F. Immunohistochemistry. Curr. Protoc. Immunol. 2002;49:21.4.1–21.4.23. doi: 10.1002/0471142735.im2104s49.
    1. Fusaki N., Ban H., Nishiyama A., Saeki K., Hasegawa M. Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc. Jpn. Acad. Ser. B. 2009;85:348–362. doi: 10.2183/pjab.85.348.
    1. Yang Z., Schmitt J.F., Lee E.H. Immunohistochemical analysis of human mesenchymal stem cells differentiating into chondrogenic, osteogenic, and adipogenic lineages. In: Vemuri M., Chase L.G., Rao M.S., editors. Mesenchymal Stem Cell Assays and Applications. Humana Press; Totowa, NJ, USA: 2011. pp. 353–366.
    1. Penna A., Cahalan M. Western blotting using the invitrogen NuPage Novex Bis Tris Minigels. J. Vis. Exp. 2007;10:e264. doi: 10.3791/264.
    1. Teske B.F., Baird T.D., Wek R.C. Chapter nineteen-methods for analyzing eif2 kinases and translational control in the unfolded protein response. In: Conn P.M., editor. Methods in Enzymology. Volume 490. Academic Press; Cambridge, MA, USA: 2011. pp. 333–356.
    1. Ran F.A., Hsu P.D., Wright J., Agarwala V., Scott D.A., Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 2013;8:2281–2308. doi: 10.1038/nprot.2013.143.
    1. Kao Y.-R., Chen J., Narayanagari S.-R., Todorova T.I., Aivalioti M.M., Ferreira M., Ramos P.M., Pallaud C., Mantzaris I., Shastri A., et al. Thrombopoietin receptor–independent stimulation of hematopoietic stem cells by eltrombopag. Sci. Transl. Med. 2018;10:eaas9563. doi: 10.1126/scitranslmed.aas9563.
    1. Fan X., Desmond R., Winkler T., Young D.J., Dumitriu B., Townsley D.M., Gutierrez-Rodrigues F., Lotter J., Valdez J., Sellers S.E., et al. Eltrombopag for patients with moderate aplastic anemia or uni-lineage cytopenias. Blood Adv. 2020;4:1700–1710. doi: 10.1182/bloodadvances.2020001657.
    1. Zhao Z., Sun Q., Sokoll L.J., Streiff M., Cheng Z., Grasmeder S., Townsley D.M., Young N.S., Dunbar C.E., Winkler T. Eltrombopag mobilizes iron in patients with aplastic anemia. Blood. 2018;131:2399–2402. doi: 10.1182/blood-2018-01-826784.
    1. Taher A.T., Musallam K.M., Koussa S., Inati A. Transfusion independence in Diamond-Blackfan anemia after deferasirox therapy. Ann. Hematol. 2009;88:1263–1264. doi: 10.1007/s00277-009-0750-6.
    1. Cheong J.-W., Kim H.-J., Lee K.-H., Yoon S.-S., Lee J.H., Park H.-S., Kim H.Y., Shim H., Seong C.-M., Kim C.S., et al. Deferasirox improves hematologic and hepatic function with effective reduction of serum ferritin and liver iron concentration in transfusional iron overload patients with myelodysplastic syndrome or aplastic anemia. Transfusion. 2013;54:1542–1551. doi: 10.1111/trf.12507.
    1. Messa E., Cilloni D., Messa F., Arruga F., Roetto A., Saglio G. Deferasirox treatment improved the hemoglobin level and decreased transfusion requirements in four patients with the myelodysplastic syndrome and primary myelofibrosis. Acta Haematol. 2008;120:70–74. doi: 10.1159/000158631.
    1. Glickstein H., Ben El R., Link G., Breuer W., Konijn A.M., Hershko C., Nick H., Cabantchik Z.I. Action of chelators in iron-loaded cardiac cells: Accessibility to intracellular labile iron and functional consequences. Blood. 2006;108:3195–3203. doi: 10.1182/blood-2006-05-020867.
    1. Vlachos A., Ball S., Dahl N., Alter B.P., Sheth S., Ramenghi U., Meerpohl J., Karlsson S., Liu J.M., Leblanc T., et al. Diagnosing and treating Diamond Blackfan anaemia: Results of an international clinical consensus conference. Br. J. Haematol. 2008;142:859–876. doi: 10.1111/j.1365-2141.2008.07269.x.
    1. Ghoti H., Fibach E., Merkel D., Perez-Avraham G., Grisariu S., Rachmilewitz E.A. Changes in parameters of oxidative stress and free iron biomarkers during treatment with deferasirox in iron-overloaded patients with myelodysplastic syndromes. Haematologica. 2010;95:1433–1434. doi: 10.3324/haematol.2010.024992.
    1. Leitch H.A., Gattermann N. Hematologic improvement with iron chelation therapy in myelodysplastic syndromes: Clinical data, potential mechanisms, and outstanding questions. Crit. Rev. Oncol. 2019;141:54–72. doi: 10.1016/j.critrevonc.2019.06.002.
    1. Taoka K., Kumano K., Nakamura F., Hosoi M., Goyama S., Imai Y., Hangaishi A., Kurokawa M. The effect of iron overload and chelation on erythroid differentiation. Int. J. Hematol. 2011;95:149–159. doi: 10.1007/s12185-011-0988-3.
    1. Siegert I., Schödel J., Nairz M., Schatz V., Dettmer K., Dick C., Kalucka J., Franke K., Ehrenschwender M., Schley G., et al. Ferritin-mediated iron sequestration stabilizes hypoxia-inducible factor-1α upon lps activation in the presence of ample oxygen. Cell Rep. 2015;13:2048–2055. doi: 10.1016/j.celrep.2015.11.005.
    1. Zheng Q.-Q., Zhao Y.-S., Guo J., Zhao S.-D., Song L.-X., Fei C.-M., Zhang Z., Li X., Chang C.-K. Iron overload promotes erythroid apoptosis through regulating HIF-1a/ROS signaling pathway in patients with myelodysplastic syndrome. Leuk. Res. 2017;58:55–62. doi: 10.1016/j.leukres.2017.04.005.
    1. Giri N., Kang E., Tisdale J.F., Follman D., Rivera M., Schwartz G.N., Kim S., Young N.S., Rick M.E., Dunbar C.E. Clinical and laboratory evidence for a trilineage haematopoietic defect in patients with refractory Diamond-Blackfan anaemia. Br. J. Haematol. 2000;108:167–175. doi: 10.1046/j.1365-2141.2000.01796.x.
    1. Winkler T., Fan X., Cooper J., Desmond R., Young D.J., Townsley D.M., Scheinberg P., Grasmeder S., LaRochelle A., Desierto M., et al. Treatment optimization and genomic outcomes in refractory severe aplastic anemia treated with eltrombopag. Blood. 2019;133:2575–2585. doi: 10.1182/blood.2019000478.
    1. Lengline E., Drenou B., Peterlin P., Tournilhac O., Abraham J., Berceanu A., Dupriez B., Guillerm G., Raffoux E., de Fontbrune F.S., et al. Nationwide survey on the use of eltrombopag in patients with severe aplastic anemia: A report on behalf of the French Reference Center for Aplastic Anemia. Haematologica. 2017;103:212–220. doi: 10.3324/haematol.2017.176339.
    1. Matsui K., Giri N., Alter B.P., Pinto L.A. Cytokine production by bone marrow mononuclear cells in inherited bone marrow failure syndromes. Br. J. Haematol. 2013;163:81–92. doi: 10.1111/bjh.12475.
    1. Bibikova E., Youn M.-Y., Danilova N., Ono-Uruga Y., Konto-Ghiorghi Y., Ochoa R., Narla A., Glader B., Lin S., Sakamoto K.M. TNF-mediated inflammation represses GATA1 and activates p38 MAP kinase in RPS19-deficient hematopoietic progenitors. Blood. 2014;124:3791–3798. doi: 10.1182/blood-2014-06-584656.
    1. Pesciotta E.N., Lam H.-S., Kossenkov A., Ge J., Showe L.C., Mason P.J., Bessler M., Speicher D.W. In-depth, label-free analysis of the erythrocyte cytoplasmic proteome in diamond blackfan anemia identifies a unique inflammatory signature. PLoS ONE. 2015;10:e0140036. doi: 10.1371/journal.pone.0140036.
    1. Danilova N., Bibikova E., Covey T.M., Nathanson D., Dimitrova E., Konto Y., Lindgren A., Glader B., Radu C.G., Sakamoto K.M., et al. The role of the DNA damage response in zebrafish and cellular models of Diamond Blackfan anemia. Dis. Model. Mech. 2014;7:895–905. doi: 10.1242/dmm.015495.
    1. Scheinberg P. Activity of eltrombopag in severe aplastic anemia. Blood Adv. 2018;2:3054–3062. doi: 10.1182/bloodadvances.2018020248.

Source: PubMed

3
S'abonner