Online phase detection using wearable sensors for walking with a robotic prosthesis

Maja Goršič, Roman Kamnik, Luka Ambrožič, Nicola Vitiello, Dirk Lefeber, Guido Pasquini, Marko Munih, Maja Goršič, Roman Kamnik, Luka Ambrožič, Nicola Vitiello, Dirk Lefeber, Guido Pasquini, Marko Munih

Abstract

This paper presents a gait phase detection algorithm for providing feedback in walking with a robotic prosthesis. The algorithm utilizes the output signals of a wearable wireless sensory system incorporating sensorized shoe insoles and inertial measurement units attached to body segments. The principle of detecting transitions between gait phases is based on heuristic threshold rules, dividing a steady-state walking stride into four phases. For the evaluation of the algorithm, experiments with three amputees, walking with the robotic prosthesis and wearable sensors, were performed. Results show a high rate of successful detection for all four phases (the average success rate across all subjects >90%). A comparison of the proposed method to an off-line trained algorithm using hidden Markov models reveals a similar performance achieved without the need for learning dataset acquisition and previous model training.

Figures

Figure 1.
Figure 1.
The state diagram of the intention detection algorithm and prosthetic control.
Figure 2.
Figure 2.
The experimental setup: the amputee is walking between parallel bars with a robotic prosthesis and wearing wearable sensors.
Figure 3.
Figure 3.
Steady-state gait phases of an amputee walking. From left to right: (a) single stance prosthetic limb (SSp); (b) double stance prosthetic-sound limb (DSps); (c) single stance sound limb (SSs); and (d) double stance sound prosthetic limb (DSsp).
Figure 4.
Figure 4.
Typical selected input signals and output of the algorithm for a subject during a walking trial. In the top right corner, the pattern sequence for a single stride is illustrated with L for left stance, L-R for left-right double stance, R for right single stance and R-L for right-left double stance. The phase flag values correspond to the values 11, 12, 13 and 14, defined in Table 3.

References

    1. Gallagher P., Desmond D. Measuring quality of life in prosthetic practice: Benefits and challenges. Prosthet. Orthot. Int. 2007;31:167–176.
    1. Sinha R., van den Heuvel W.J., Arokiasamy P. Factors affecting quality of life in lower limb amputees. Prosthet. Orthot. Int. 2011;35:90–96.
    1. Nolan L., Wit A., Dudziñski K., Lees A., Lake M., Wychowañski M. Adjustments in gait symmetry with walking speed in trans-femoral and trans-tibial amputees. Gait Posture. 2003;17:142–151.
    1. Schmalz T., Blumentritt S., Jarasch R. Energy expenditure and biomechanical characteristics of lower limb amputee gait: The influence of prosthetic alignment and different prosthetic components. Gait Posture. 2002;16:255–263.
    1. Lambrecht B.G., Kazerooni H. Design of a Semi-Active Knee Prosthesis. Proceedings of the IEEE International Conference on Robotics and Automation; Kobe, Japan. 12–17 May 2009; pp. 639–645.
    1. Fite K., Mitchell J., Sup F., Goldfarb M. Design and Control of an Electrically Powered Knee Prosthesis. Proceedings of the IEEE 10th International Conference on Rehabilitation Robotics; Noordwijk, The Netherlands. 12–15 June 2007; pp. 902–905.
    1. Martinez-Villalpando E.C., Weber J., Elliott G., Herr H. Design of an agonist-antagonist active knee prosthesis. Proceedings of the 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics; Scottsdale, AZ, USA. 19–22 October 2008; pp. 529–534.
    1. Martinez-Villalpando E.C., Herr H. Agonist-antagonist active knee prosthesis: A preliminary study in level-ground walking. J. Rehabil. Res. Dev. 2009;46:361–373.
    1. Zhu J., Wang Q., Wang L. PANTOE 1: Biomechanical Design of Powered Ankle-Foot Prosthesis with Compliant Joints and Segmented Foot. Proceedings of the 2010 IEEE/ASME International Conference on Advanced Intelligent Mechatronics; Montreal, QC, Canada. 6–9 July 2010; pp. 31–36.
    1. Au S., Berniker M., Herr H. Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits. Neural Netw. 2008;21:654–666.
    1. Au S.K., Weber J., Herr H. Powered ankle-foot prosthesis improves walking metabolic economy. IEEE Trans. Robot. 2009;25:51–66.
    1. Pillai M.V., Kazerooni H., Hurwich A. Design of a Semi-Active Knee-Ankle Prosthesis. Proceedings of the 2011 IEEE International Conference on Robotics and Automation; Shanghai, China. 9-13 May 2011; pp. 5293–5300.
    1. Sup F., Bohara A., Goldfarb M. Design and control of a powered transfemoral prosthesis. Int. J. Robot. Res. 2008;27:263–273.
    1. Sup F., Varol H.A., Mitchell J., Withrow T.J., Goldfarb M. Preliminary evaluations of a self-contained anthropomorphic transfemoral prosthesis. IEEE/ASME Trans. Mech. 2009;14:667–676.
    1. Joshi D., Singh R., Ribeiro R., Srivastava S., Singh U., Anand S. Development of Echo Control Strategy for AK Prosthesis: An Embedded System Approach. Proceedings of the 2010 International Conference on Systems in Medicine and Biology; Kharagpur, India. 16–18 December 2010; pp. 143–147.
    1. González R.C., López A.M., Rodriguez-Uría J., Álvarez D., Alvarez J.C. Real-time gait event detection for normal subjects from lower trunk accelerations. Gait Posture. 2010;31:322–325.
    1. Djuric M. Automatic Recognition of Gait Phases from Accelerations of Leg Segments. Proceedings of the 2008 9th Symposium on Neural Network Applications in Electrical Engineering; Belgrade, Serbia. 25–27 September 2008; pp. 121–124.
    1. Hanlon M., Anderson R. Real-time gait event detection using wearable sensors. Gait Posture. 2009;30:523–527.
    1. He Q., Debrunner C. Individual Recognition from Periodic Activity Using Hidden Markov Models. Proceedings of the 2000 Workshop on Human Motion; Austin, TX, USA. 7–8 December 2000; pp. 47–52.
    1. Meyer D. 3D Image Analysis and Synthesis. Volume 97. Infix; Sankt Augustin, Germany: 1997. Human Gait Classification Based on Hidden Markov Models; pp. 139–146.
    1. De Rossi S., Crea S., Donati M., Reberšek P., Novak D., Vitiello N., Lenzi T., Podobnik J., Munih M., Carrozza M. Gait Segmentation Using Bipedal Foot Pressure Patterns. Proceedings of the 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics; Rome, Italy. 24–27 June 2012; pp. 361–366.
    1. Williamson R., Andrews B.J. Gait event detection for FES using accelerometers and supervised machine learning. IEEE Trans. Rehabil. Eng. 2000;8:312–319.
    1. Crea S., de Rossi S., Donati M., Reberšek P., Novak D., Vitiello N., Lenzi T., Podobnik J., Munih M., Carrozza M. Development of Gait Segmentation Methods for Wearable Foot Pressure Sensors. Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society; San Diego, CA, USA. 28 August–1 September 2012; pp. 5018–5021.
    1. Catalfamo P., Ghoussayni S., Ewins D. Gait event detection on level ground and incline walking using a rate gyroscope. Sensors. 2010;10:5683–5702.
    1. Bamberg S., Benbasat A.Y., Scarborough D.M., Krebs D.E., Paradiso J.A. Gait analysis using a shoe-integrated wireless sensor system. IEEE Trans. Inf. Technol. Biomed. 2008;12:413–423.
    1. Pappas I.P., Popovic M.R., Keller T., Dietz V., Morari M. A reliable gait phase detection system. IEEE Trans. Neural Syst. Rehabil. Eng. 2001;9:113–125.
    1. Pappas I., Keller T., Mangold S. A Reliable, Gyroscope Based Gait Phase Detection Sensor Embedded in a Shoe Insole. Proceedings of the 2002 IEEE Sensors; Orlando, FL, USA. 12–14 June 2002; pp. 1085–1088.
    1. Pappas I., Keller T., Mangold S., Popovic M., Dietz V., Morari M. A reliable gyroscope-based gait-phase detection sensor embedded in a shoe insole. IEEE Sens. J. 2004;4:268–274.
    1. Winter D.A. Biomechanics and Motor Control of Human Movement. Wiley; Berlin, Germany: 2009.
    1. Whittle M.W. Gait Analysis: An Introduction. Butterworth-Heinemann; Edinburgh, NY, USA: 2003.
    1. De Rossi S., Lenzi T., Vitiello N., Donati M., Persichetti A., Giovacchini F., Vecchi F., Carrozza M. Development of an In-Shoe Pressure-Sensitive Device for Gait Analysis. Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society; Boston, MA, USA. 30 August–3 September 2011; pp. 5637–5640.
    1. Donati M., Vitiello N., de Rossi S.M.M., Lenzi T., Crea S., Persichetti A., Giovacchini P., Koopman B., Podobnik J., Munih M., et al. A flexible sensor technology for the distributed measurement of interaction pressure. Sensors. 2013;13:1021–1045.
    1. Crea S., Donati M., de Rossi S.M.M., Oddo C.M., Vitiello N. A wireless flexible sensorized insole for gait analysis. Sensors. 2014;14:1073–1093.
    1. Beravs T., Rebersek P., Novak D., Podobnik J., Munih M. Development and Validation of a Wearable Inertial Measurement System for Use with Lower Limb Exoskeletons. Proceedings of the 2011 11th IEEE -RAS International Conference on Humanoid Robots (Humanoids); Bled, Slovenia. 26–28 October 2011; pp. 212–217.
    1. Beravs T., Podobnik J., Munih M. Three-axial accelerometer calibration using Kalman filter covariance matrix for online estimation of optimal sensor orientation. IEEE Trans. Instrum. Meas. 2012;61:2501–2511.
    1. Julier S.J., Uhlmann J.K. New Extension of the Kalman Filter to Nonlinear Systems. Proceedings of the 1997 International Society for Optics and Photonics; San Diego, CA, USA. 30 July–1 August 1997; pp. 182–193.
    1. Wan E.A., van der Merwe R. The Unscented Kalman Filter for Nonlinear Estimation. Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium; Lake Louise, AB, Canada. 1–4 October 2000; pp. 153–158.
    1. Murphy K. Hidden Markov Model (HMM) Toolbox for Matlab 1998. [(accessed on 20 September 2013)]. Available online: .
    1. Kordower J.H., Freeman T.B., Snow B.J., Vingerhoets F.J., Mufson E.J., Sanberg P.R., Hauser R.A., Smith D.A., Nauert G.M., Perl D.P., et al. Neuropathological evidence of graft survival and striatal reinnervation after the transplantation of fetal mesencephalic tissue in a patient with Parkinson's disease. N. Engl. J. Med. 1995;332:1118–1124.
    1. Geeroms J., Flynn L., Jimenez-Fabian R., Vanderborght B., Lefeber D. Ankle-Knee Prosthesis with Powered Ankle and Energy Transfer for CYBERLEGs α-Prototype. Proceedings of the 2013 IEEE International Conference on Rehabilitation Robotics; Seattle, WA, USA. 24–26 June 2013; pp. 1–6.
    1. Novak D., Reberšek P., de Rossi S.M.M., Donati M., Podobnik J., Beravs T., Lenzi T., Vitiello N., Carrozza M.C., Munih M. Automated detection of gait initiation and termination using wearable sensors. Med. Eng. Phys. 2013;35:1713–1720.

Source: PubMed

3
S'abonner