Choroidal Blood Flow After Intravitreal Ranibizumab in Vitrectomized and Non-Vitrectomized Eyes with Diabetic Macular Edema

Bernardete Pessoa, João Heitor Marques, João Leite, Nisa Silva, Diana José, Constança Coelho, João Figueira, Angelina Meireles, João Nuno Melo-Beirão, Bernardete Pessoa, João Heitor Marques, João Leite, Nisa Silva, Diana José, Constança Coelho, João Figueira, Angelina Meireles, João Nuno Melo-Beirão

Abstract

Aim: Diabetic retinopathy staging system and progression predictors are soon to be considered insufficient for ophthalmologic practice. Given the growing evidence of the role of choroidal dysfunction, our purpose was to assess choroidal vascular changes with intravitreal ranibizumab (RBZ) treatment in diabetic macular edema (DME).

Methods: This was a prospective longitudinal cohort study. The study included DME eyes, grouped in vitrectomized (group 1) and non-vitrectomized (group 2) eyes, submitted to RBZ in a pro re nata regimen, with 24 weeks of follow-up. Main outcome measures such as central subfield foveal thickness (CFT), choroidal thickness (CT), and choroidal vascular index (CVI) were obtained from structural OCT, and choriocapillaris flow density (CCD) was obtained from OCT angiography and analyzed before and after treatment.

Results: Thirty-one patients were included, 10 eyes in group 1 and 24 eyes in group 2. The mean number of injections was 5.18 (range 2-6). Globally, there was an improvement in BCVA (+4.3 ETDRS letters, p=0.004) and CFT (-84.6 µm, p<0.001) with no changes in CT, CVI, or CCD (p>0.05). When considering only group 2, there was a significant decrease in CT (p=0.033) and a significant increase in CCD (p=0.010) 6 months after treatment, with no differences in CVI (p=0.111). Baseline CVI was correlated with visual acuity at week 24 both globally (r=0.406, p=0.029) and in group 2 (r=0.604, p=0.004).

Conclusion: In non-vitrectomized eyes, choriocapillaris blood flow improves with RBZ. Baseline CVI may correlate with visual function after RBZ. ClinicalTrials.gov NCT04387604.

Keywords: choriocapillaris flow; choroidal vascular index; diabetic macular edema; ranibizumab; vitrectomy.

Conflict of interest statement

The authors declare no competing interests, either financial or non-financial.

© 2021 Pessoa et al.

Figures

Figure 1
Figure 1
Change in BCVA from baseline to 6 months of follow-up.
Figure 2
Figure 2
Change in CFT from baseline to 6 months of follow-up.

References

    1. Yau JW, Rogers SL, Kawasaki R, et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care. 2012;35(3):556–564. doi:10.2337/dc11-1909
    1. Bhagat N, Grigorian RA, Tutela A, Zarbin MA. Diabetic macular edema: pathogenesis and treatment. Surv Ophthalmol. 2009;54(1):1–32. doi:10.1016/j.survophthal.2008.10.001
    1. Hidayat AA, Fine BS. Diabetic choroidopathy. Light and electron microscopic observations of seven cases. Ophthalmology. 1985;92(4):512–522. doi:10.1016/S0161-6420(85)34013-7
    1. Querques G, Lattanzio R, Querques L, et al. Enhanced depth imaging optical coherence tomography in type 2 diabetes. Invest Ophthalmol Vis Sci. 2012;53(10):6017–6024. doi:10.1167/iovs.12-9692
    1. Esmaeelpour M, Považay B, Hermann B, et al. Mapping choroidal and retinal thickness variation in type 2 diabetes using three-dimensional 1060-nm optical coherence tomography. Invest Ophthalmol Vis Sci. 2011;52(8):5311–5316. doi:10.1167/iovs.10-6875
    1. Totan Y, Akyüz TK, Güler E, Güragaç FB. Evaluation of ocular pulse amplitude and choroidal thickness in diabetic macular edema. Eye. 2016;30(3):369–374. doi:10.1038/eye.2015.232
    1. Maharaj AS, D’Amore PA. Roles for VEGF in the adult. Microvasc Res. 2007;74(2–3):100–113. doi:10.1016/j.mvr.2007.03.004
    1. Saint-Geniez M, Maldonado AE, D’Amore PA. VEGF expression and receptor activation in the choroid during development and in the adult. Invest Ophthalmol Vis Sci. 2006;47(7):3135–3142. doi:10.1167/iovs.05-1229
    1. Blaauwgeers HG, Holtkamp GM, Rutten H, et al. Polarized vascular endothelial growth factor secretion by human retinal pigment epithelium and localization of vascular endothelial growth factor receptors on the inner choriocapillaris. Evidence for a trophic paracrine relation. Am J Pathol. 1999;155(2):421–428. doi:10.1016/s0002-9440(10)65138-3
    1. Campochiaro PA, Wykoff CC, Shapiro H, Rubio RG, Ehrlich JS. Neutralization of vascular endothelial growth factor slows progression of retinal nonperfusion in patients with diabetic macular edema. Ophthalmology. 2014;121(9):1783–1789. doi:10.1016/j.ophtha.2014.03.021
    1. Ghasemi Falavarjani K, Iafe NA, Hubschman JP, Tsui I, Sadda SR, Sarraf D. Optical Coherence tomography angiography analysis of the foveal avascular zone and macular vessel density after anti-VEGF therapy in eyes with diabetic macular edema and retinal vein occlusion. Invest Ophthalmol Vis Sci. 2017;58(1):30–34. doi:10.1167/iovs.16-20579
    1. Okamoto M, Yamashita M, Ogata N. Effects of intravitreal injection of ranibizumab on choroidal structure and blood flow in eyes with diabetic macular edema. Graefe’s Arch Clin Exp Ophthalmol. 2018;256(5):885–892. doi:10.1007/s00417-018-3939-3
    1. Sonoda S, Sakamoto T, Yamashita T, et al. Effect of intravitreal triamcinolone acetonide or bevacizumab on choroidal thickness in eyes with diabetic macular edema. Invest Ophthalmol Vis Sci. 2014;55(6):3979–3985. doi:10.1167/iovs.14-14188
    1. Laíns I, Figueira J, Santos AR, et al. Choroidal thickness in diabetic retinopathy: the influence of antiangiogenic therapy. Retina. 2014;34(6):1199–1207. doi:10.1097/iae.0000000000000053
    1. Yiu G, Manjunath V, Chiu SJ, Farsiu S, Mahmoud TH. Effect of anti-vascular endothelial growth factor therapy on choroidal thickness in diabetic macular edema. Am J Ophthalmol. 2014;158(4):745–751 e2. doi:10.1016/j.ajo.2014.06.006
    1. Okamoto M, Matsuura T, Ogata N. Effects of panretinal photocoagulation on choroidal thickness and choroidal blood flow in patients with severe nonproliferative diabetic retinopathy. Retina. 2016;36(4):805–811. doi:10.1097/iae.0000000000000800
    1. Kim JT, Lee DH, Joe SG, Kim JG, Yoon YH. Changes in choroidal thickness in relation to the severity of retinopathy and macular edema in type 2 diabetic patients. Invest Ophthalmol Vis Sci. 2013;54(5):3378–3384. doi:10.1167/iovs.12-11503
    1. Margolis R, Spaide RF. A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes. Am J Ophthalmol. 2009;147(5):811–815. doi:10.1016/j.ajo.2008.12.008
    1. Fujiwara T, Imamura Y, Margolis R, Slakter JS, Spaide RF. Enhanced depth imaging optical coherence tomography of the choroid in highly myopic eyes. Am J Ophthalmol. 2009;148(3):445–450. doi:10.1016/j.ajo.2009.04.029
    1. Usui S, Ikuno Y, Akiba M, et al. Circadian changes in subfoveal choroidal thickness and the relationship with circulatory factors in healthy subjects. Invest Ophthalmol Vis Sci. 2012;53(4):2300–2307. doi:10.1167/iovs.11-8383
    1. Bressler SB, Ayala AR, Bressler NM, et al. Persistent macular thickening after ranibizumab treatment for diabetic macular edema with vision impairment. JAMA Ophthalmol. 2016;134(3):278–285. doi:10.1001/jamaophthalmol.2015.5346
    1. Sebag J. Abnormalities of human vitreous structure in diabetes. Graefe’s Arch Clin Exp Ophthalmol. 1993;231(5):257–260. doi:10.1007/bf00919101
    1. Michalewska Z, Michalewski J, Ornafel-Sagan K, Nawrocki J. Swept-source optical coherence tomography correlations between retina and choroid before and after vitrectomy for epiretinal membranes. Am J Ophthalmol. 2016;165:100–107. doi:10.1016/j.ajo.2016.02.003
    1. Rizzo S, Savastano A, Finocchio L, Savastano MC, Khandelwal N, Agrawal R. Choroidal vascularity index changes after vitreomacular surgery. Acta Ophthalmol. 2018;96(8):e950–e955. doi:10.1111/aos.13776
    1. Schmidt-Erfurth U, Garcia-Arumi J, Bandello F, et al. Guidelines for the management of diabetic macular edema by the European Society of Retina Specialists (EURETINA). Ophthalmologica J Int D’ophtalmologie Int J Ophthalmol Zeitschrift Fur Augenheilkunde. 2017;237(4):185–222. doi:10.1159/000458539
    1. Ahn SJ, Ahn J, Park S, et al. Intraocular pharmacokinetics of ranibizumab in vitrectomized versus nonvitrectomized eyes. Invest Ophthalmol Vis Sci. 2014;55(1):567–573. doi:10.1167/iovs.13-13054
    1. Won JY, Kim M, Park YH. Postoperative changes in the retinal thickness and volume after vitrectomy for epiretinal membrane and internal limiting membrane peeling. Medicine. 2017;96(19):e6709. doi:10.1097/md.0000000000006709
    1. Sivalingam A, Eagle RC Jr, Duker JS, et al. Visual prognosis correlated with the presence of internal-limiting membrane in histopathologic specimens obtained from epiretinal membrane surgery. Ophthalmology. 1990;97(11):1549–1552. doi:10.1016/s0161-6420(90)32378-3
    1. Simó R, Stitt AW, Gardner TW. Neurodegeneration in diabetic retinopathy: does it really matter? Diabetologia. 2018;61(9):1902–1912. doi:10.1007/s00125-018-4692-1
    1. Bressler SB, Melia M, Glassman AR, et al. Ranibizumab plus prompt or deferred laser for diabetic macular edema in eyes with vitrectomy prior to anti-vascular endothelial growth factor therapy. Retina. 2015;35(12):2516–2528. doi:10.1097/iae.0000000000000617
    1. Elnahry AG, Abdel-Kader AA, Habib AE, Elnahry GA, Raafat KA, Elrakhawy K. Review on recent trials evaluating the effect of intravitreal injections of anti-VEGF agents on the macular perfusion of diabetic patients with diabetic macular edema. Rev Recent Clin Trials. 2020;15(3):188–198. doi:10.2174/1574887115666200519073704
    1. Conti FF, Song W, Rodrigues EB, Singh RP. Changes in retinal and choriocapillaris density in diabetic patients receiving anti-vascular endothelial growth factor treatment using optical coherence tomography angiography. Int j retina Vitreous. 2019;5:41. doi:10.1186/s40942-019-0192-9
    1. Sorour OA, Sabrosa AS, Yasin Alibhai A, et al. Optical coherence tomography angiography analysis of macular vessel density before and after anti-VEGF therapy in eyes with diabetic retinopathy. Int Ophthalmol. 2019;39(10):2361–2371. doi:10.1007/s10792-019-01076-x
    1. Couturier A, Rey PA, Erginay A, et al. Widefield OCT-angiography and fluorescein angiography assessments of nonperfusion in diabetic retinopathy and edema treated with anti-vascular endothelial growth factor. Ophthalmology. 2019;126(12):1685–1694. doi:10.1016/j.ophtha.2019.06.022
    1. Pongsachareonnont P, Charoenphol P, Hurst C, Somkijrungroj T. The effect of anti-vascular endothelial growth factor on retinal microvascular changes in diabetic macular edema using swept-source optical coherence tomography angiography. Clin Ophthalmol. 2020;14:3871–3880. doi:10.2147/opth.s270410
    1. Rayess N, Rahimy E, Ying GS, et al. Baseline choroidal thickness as a predictor for response to anti-vascular endothelial growth factor therapy in diabetic macular edema. Am J Ophthalmol. 2015;159(1):85–91e1-3. doi:10.1016/j.ajo.2014.09.033
    1. Pessoa B, Dias DA, Baptista P, Coelho C, Beirão JNM, Meireles A. Vitrectomy outcomes in eyes with tractional diabetic macular edema. Ophthalmic Res. 2019;61(2):94–99. doi:10.1159/000489459
    1. Antoszyk AN, Glassman AR, Beaulieu WT, et al. Effect of intravitreous aflibercept vs vitrectomy with panretinal photocoagulation on visual acuity in patients with vitreous hemorrhage from proliferative diabetic retinopathy: a randomized clinical trial. JAMA. 2020;324(23):2383–2395. doi:10.1001/jama.2020.23027
    1. Agrawal R, Gupta P, Tan KA, Cheung CM, Wong TY, Cheng CY. Choroidal vascularity index as a measure of vascular status of the choroid: measurements in healthy eyes from a population-based study. Sci Rep. 2016;6:21090. doi:10.1038/srep21090
    1. Chu Z, Gregori G, Rosenfeld PJ, Wang RK. Quantification of choriocapillaris with optical coherence tomography angiography: a comparison study. Am J Ophthalmol. 2019;208:111–123. doi:10.1016/j.ajo.2019.07.003

Source: PubMed

3
S'abonner