Unicentric study of cell therapy in chronic obstructive pulmonary disease/pulmonary emphysema

João Tadeu Ribeiro-Paes, Aldemir Bilaqui, Oswaldo T Greco, Milton Artur Ruiz, Monica Y Marcelino, Talita Stessuk, Carolina A de Faria, Mario R Lago, João Tadeu Ribeiro-Paes, Aldemir Bilaqui, Oswaldo T Greco, Milton Artur Ruiz, Monica Y Marcelino, Talita Stessuk, Carolina A de Faria, Mario R Lago

Abstract

Within the chronic obstructive pulmonary disease (COPD) spectrum, lung emphysema presents, as a primarily histopathologic feature, the destruction of pulmonary parenchyma and, accordingly, an increase in the airflow obstruction distal to the terminal bronchiole. Notwithstanding the significant advances in prevention and treatment of symptoms, no effective or curative therapy has been accomplished. In this context, cellular therapy with stem cells (SCs) arises as a new therapeutic approach, with a wide application potential. The purpose of this study is to evaluate the safety of SCs infusion procedure in patients with advanced COPD (stage IV dyspnea). After selection, patients underwent clinical examination and received granulocyte colony-stimulating factor, immediately prior to the bone marrow harvest. The bone marrow mononuclear cells (BMMC) were isolated and infused into a peripheral vein. The 12-month follow-up showed a significant improvement in the quality of life, as well as a clinical stable condition, which suggest a change in the natural process of the disease. Therefore, the proposed methodology in this study for BMMC cell therapy in sufferers of advanced COPD was demonstrated to be free of significant adverse effects. Although a larger sample and a greater follow-up period are needed, it is possible to infer that BMMC cell therapy introduces an unprecedented change in the course or in the natural history of emphysema, inhibiting or slowing the progression of disease. This clinical trial was registered with ClinicalTrials.gov (NCT01110252) and was approved by the Brazilian National Committee of Ethics in Research (registration no. 14764, CONEP report 233/2009).

Keywords: BMMC; cell therapy; chronic obstructive pulmonary disease COPD; pulmonary emphysema; stem cells.

Figures

Figure 1
Figure 1
Study design adopted for this unicentric clinical trial of cellular therapy in chronic obstructive pulmonary disease – pulmonary emphysema. Abbreviations: BMMC, bone marrow mononuclear cells; MRC, Modified Medical Research Council [Dyspnea Scale].
Figure 2
Figure 2
A) Forced expiratory volume in 1 sec (FEV1). B) Percentage of predicted FEV1 pre- and postprocedure, for IMC 002, IMC 003, and IMC 004 patients.
Figure 3
Figure 3
A) Forced vital capacity (FVC). B) Percentage of predicted FVC pre- and postprocedure.
Figure 4
Figure 4
Vital capacity (VC) pre- and postprocedure.

References

    1. World Health Organization. Global alliance against chronic respiratory diseases (GARD). General Meeting Report; Istanbul, Turkey. 2008 May; pp. 30–31.
    1. Global Initiative for Chronic Obstructive Lung Disease. Global Strategy for Diagnosis, Management, and Prevention of COPD. 2009. [Accessed Dec 3 2010]. Available from: . Updated 2009 Dec.
    1. Murray CJ, Lopez AD. Mortality by cause for eight regions of the world: Global Burden of Disease Study. Lancet. 1997;349(9061):1269–1276.
    1. Campos HS. O preço da DPOC. Pulmão RJ. 2004;13(1):5–7.
    1. Lopez AD, Shibuya K, Rao C, et al. Chronic obstructive pulmonary disease: current burden and future projections. Eur Respir J. 2006;27(2):397–412.
    1. Barnes PJ, Shapiro SD, Pauwels RA. Chronic obstructive pulmonary disease: molecular and cellular mechanisms. Eur Respir J. 2003;22(4):672–688.
    1. Jardim JR, de Oliveira JA, Nascimento O. II Consenso Brasileiro sobre Doença Pulmonar Obstrutiva Crônica (DPOC) J Bras Pneumol. 2004;30(Suppl 5):S1–42.
    1. Gross P, Pfitzer EA, Tolker E, Babyak MA, Kaschak M. Experimental emphysema: its production with papain in normal and silicotic rats. Arch Environ Health. 1965;11:50–58.
    1. Martorana PA, van Even P, Gardi C, Lungarella G. A 16-month study of the development of genetic emphysema in tight-skin mice. Am Rev Respir Dis. 1989;139(1):226–232.
    1. Hyatt RE, Farkas G, Schroeder M. Pulmonary mechanics of papain emphysema in dogs. Chest. 2000;117(5 Suppl 1):246S–247S.
    1. Fusco LB, Pêgo-Fernandes PM, Xavier AM, et al. Modelo experimental de enfisema pulmonar em ratos induzido por papaína. J Pneumol. 2002;28(1):1–7.
    1. Hele D. First Siena International Conference on animal models of chronic obstructive pulmonary disease, Certosa di Pontignano, Universidade of Siena, Italy, 2001 Sep 30–Oct 2. Respir Res. 2002;3:12.
    1. Mahadeva R, Shapiro SD. Chronic obstructive pulmonary disease *3: experimental animal models of pulmonary emphysema. Thorax. 2002;57(10):908–914.
    1. Nikula KJ, March TH, Seagrave J, et al. A mouse model of cigarette smoke-induced emphysema. Chest. 2000;117(5 Suppl 1):246S–247S.
    1. Cazzola M, Donner CF, Hanania NA. One hundred years of chronic obstructive pulmonary disease (COPD) Respir Med. 2007;101(6):1049–1065.
    1. Weiss DJ, Kolls JK, Ortiz LA, Panoskaltsis-Mortari A, Prockop DJ. Stem cells and cell therapies in lung biology and lung diseases. Proc Am Thorac Soc. 2008;5(5):637–667.
    1. Ribeiro-Paes JT, Bilaqui A, Greco OT, et al. Terapia celular em doenças pulmonares: existem perspectivas? Rev Bras Hematol Hemoter. 2009;31(Suppl 1):140–148.
    1. Sueblinvong V, Weiss DJ. Stem cells and cell therapy approaches in lung biology and diseases. Transl Res. 2010;156(3):188–205.
    1. Bittmann I, Dose T, Baretton GB, et al. Cellular chimerism of the lung after transplantation. An interphase cytogenetic study. Am J Clin Pathol. 2001;115(4):525–533.
    1. Kotton DN, Ma BY, Cardoso WV, et al. Bone marrow-derived cells as progenitors of lung alveolar epithelium. Development. 2001;128(24):5181–5188.
    1. Krause DS, Theise ND, Collector MI, et al. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell. 2001;105(3):369–377.
    1. Suratt BT, Cool CD, Serls AE, et al. Human pulmonary chimerism after hematopoietic stem cell transplantation. Am J Respir Crit Care Med. 2003;168(3):318–322.
    1. Neuringer IP, Randell SH. Stem cells and repair of lung injuries. Respir Res. 2004;5:6.
    1. Yamada M, Kubo H, Kobayashi S, et al. Bone marrow-derived progenitor cells are important for lung repair after lipopolysaccharide-induced lung injury. J Immunol. 2004;172(2):1266–1272.
    1. Lama VN, Smith L, Badri L, et al. Evidence for tissue-resident mesenchymal stem cells in human adult lung from studies of transplanted allografts. J Clin Invest. 2007;117(4):989–996.
    1. Schrepfer S, Deuse T, Reichenspurner H, Fischbein MP, Robbins RC, Pelletier MP. Stem cell transplantation: the lung barrier. Transplant Proc. 2007;39(2):573–576.
    1. Agostini C. Stem cell therapy for chronic lung diseases: hope and reality. Respir Med. 2010;104(Suppl 1):S86–91.
    1. Mahler DA, Wells CK. Evaluation of clinical methods for rating dyspnea. Chest. 1988;93(3):580–586.
    1. Curley FJ. Dyspnea. In: Irwin RS, Curley FJ, Grossman RF, editors. Diagnosis and Treatment of Symptoms of the Respiratory Tract. Armonk, NY: Future Publishing; 1997. pp. 56–115.
    1. Koca E, Champlin RE. Peripheral blood progenitor cell or bone marrow transplantation: controversy remains. Curr Opin Oncol. 2008;20(2):220–226.
    1. Voltarelli JC, Couri CEB, Stracieri ABPL, et al. Autologous nonmyeloablative hematopoietic stem cell transplantation in newly diagnosed type 1 diabetes mellitus. JAMA. 2007;297(14):1568–1576.
    1. Stiff PJ, Veum-Stone J, Lazarus HM, et al. High-dose chemotherapy and autologous stem-cell transplantation for ovarian cancer: an autologous blood and marrow transplant registry report. Ann Intern Med. 2000;133(7):504–515.
    1. Sureda A, Arranz R, Iriondo A, et al. Autologous stem-cell transplantation for Hodgkin’s disease: results and prognostic factors in 494 patients from the Grupo Espanõl de Linfomas/Transplante Autólogo de Médula Osea Spanish Cooperative Group. J Clin Oncol. 2001;19(5):1395–1404.
    1. Voltarelli JC, Stracieri ABPL, de Oliveira MCB, et al. Transplante autólogo de células tronco hematopoéticas para nefrite lúpica: resultados brasileiros iniciais. J Bras Nefrol. 2003;25(2):65–72.
    1. Voltarelli JC. Transplante de células-tronco hematopoéticas no diabete melito do tipo I. Rev Bras Hematol Hemoter. 2004;26(1):43–45.
    1. Burt RK, Cohen B, Rose J, et al. Hematopoietic stem cell transplantation for multiple sclerosis. Arch Neurol. 2005;62(6):860–864.
    1. Voltarelli JC, Stracieri ABPL, Oliveira MCB, et al. Transplante de células-tronco hematopoéticas em doenças reumáticas. Parte 1: experiência internacional. Rev Bras Reumatol. 2005;45(4):229–241.
    1. Burt RK, Traynor A, Statkute L, et al. Nonmyeloablative hematopoietic stem cell transplantation for systemic lupus erythematosus. JAMA. 2006;295(5):527–535.
    1. Chachques JC. Cellular cardiac regenerative therapy in which patients? Expert Rev Cardiovasc Ther. 2009;7(8):911–919.
    1. BRASIL. Resolução RDC no 153, de 14 de junho de 2004. Determina o Regulamento Técnico para os procedimentos hemoterápicos, incluindo a coleta, o processamento, a testagem, o armazenamento, o transporte, o controle de qualidade e o uso humano de sangue, e seus componentes, obtidos do sangue venoso, do cordão umbilical, da placenta e da medulla óssea. D.O.U. – Diário Oficial da União; Poder Executivo, de 24 de junho de 2004

    1. Slowman S, Danielson C, Graves V, Kotylo P, Broun R, McCarthy L. Administration of GM-/G-CSF prior to bone marrow harvest increases collection of CD34+ cells. Prog Clin Biol Res. 1994;389:363–369.
    1. Dicke KA, Hood DL, Arneson M, et al. Effects of short-term in vivo administration of G-CSF on bone marrow prior to harvesting. Exp Hematol. 1997;25(1):34–38.
    1. Isola LM, Scigliano E, Skerrett D, et al. A pilot study of allogeneic bone marrow transplantation using related donors stimulated with G-CSF. Bone Marrow Transplant. 1997;20(12):1033–1037.
    1. Dahl E, Burroughs J, DeFor T, Verfaillie C, Weisdorf D. Progenitor content of autologous grafts: mobilized bone marrow vs mobilized blood. Bone Marrow Transplant. 2003;32(6):575–580.
    1. Levesque JP, Winkler IG. Mobilization of hematopoietic stem cells: state of the art. Curr Opin Organ Transplant. 2008;13(1):53–58.
    1. Frangoul H, Nemecek ER, Billheimer D, et al. A prospective study of G-CSF primed bone marrow as a stem-cell source for allogeneic bone marrow transplantation in children: a Pediatric Blood and Marrow Transplant Consortium (PBMTC) study. Blood. 2007;110(13):4584–4587.
    1. Pusic I, DiPersio JF. The use of growth factors in hematopoietic stem cell transplantation. Curr Pharm Des. 2008;14(20):1950–1961.
    1. Hokari M, Kuroda S, Chiba Y, Maruichi K, Iwasaki Y. Synergistic effects of granulocyte-colony stimulating factor on bone marrow stromal cell transplantation for mice cerebral infarct. Cytokine. 2009;46(2):260–266.
    1. Greinix HT, Worel N. New agents for mobilizing peripheral blood stem cells. Transfus Apher Sci. 2009;41(1):67–71.
    1. Ripa RS, Jørgensen E, Wang Y, et al. Stem cell mobilization induced by subcutaneous granulocyte-colony stimulating factor to improve cardiac regeneration after acute ST-elevation myocardial infarction: result of the double-blind, randomized, placebo-controlled stem cells in myocardial infarction (STEMMI) trial. Circulation. 2006;113(16):1983–1992.
    1. Zubair AC, Malik S, Paulsen A, et al. Evaluation of mobilized peripheral blood CD34(+) cells from patients with severe coronary artery disease as a source of endothelial progenitor cells. Cytotherapy. 2010;12(2):178–189.
    1. Johnsen HE, Jensen L, Gaarsdal E, Hansen PB, Ersbøll J, Hansen NE. Priming with recombinant human hematopoietic cytokines before bone marrow harvest expands in vivo and enhances ex vivo recovery of myeloid progenitors in short-term liquid cultures. Exp Hematol. 1994;22(1):80–86.
    1. Jin H, Aiyer A, Su J, et al. A homing mechanism for bone marrow-derived progenitor cell recruitment to the neovasculature. J Clin Invest. 2006;116(3):652–662.
    1. Mizrak D, Brittan M, Alison MR. CD133: molecule of the moment. J Pathol. 2008;214(1):3–9.
    1. Huertas A, Testa U, Riccioni R, et al. Bone marrow-derived progenitors are greatly reduced in patients with severe COPD and low-BMI. Respir Physiol Neurobiol. 2010;170(1):23–31.

Source: PubMed

3
S'abonner