Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021

Laura Evans, Andrew Rhodes, Waleed Alhazzani, Massimo Antonelli, Craig M Coopersmith, Craig French, Flávia R Machado, Lauralyn Mcintyre, Marlies Ostermann, Hallie C Prescott, Christa Schorr, Steven Simpson, W Joost Wiersinga, Fayez Alshamsi, Derek C Angus, Yaseen Arabi, Luciano Azevedo, Richard Beale, Gregory Beilman, Emilie Belley-Cote, Lisa Burry, Maurizio Cecconi, John Centofanti, Angel Coz Yataco, Jan De Waele, R Phillip Dellinger, Kent Doi, Bin Du, Elisa Estenssoro, Ricard Ferrer, Charles Gomersall, Carol Hodgson, Morten Hylander Møller, Theodore Iwashyna, Shevin Jacob, Ruth Kleinpell, Michael Klompas, Younsuck Koh, Anand Kumar, Arthur Kwizera, Suzana Lobo, Henry Masur, Steven McGloughlin, Sangeeta Mehta, Yatin Mehta, Mervyn Mer, Mark Nunnally, Simon Oczkowski, Tiffany Osborn, Elizabeth Papathanassoglou, Anders Perner, Michael Puskarich, Jason Roberts, William Schweickert, Maureen Seckel, Jonathan Sevransky, Charles L Sprung, Tobias Welte, Janice Zimmerman, Mitchell Levy, Laura Evans, Andrew Rhodes, Waleed Alhazzani, Massimo Antonelli, Craig M Coopersmith, Craig French, Flávia R Machado, Lauralyn Mcintyre, Marlies Ostermann, Hallie C Prescott, Christa Schorr, Steven Simpson, W Joost Wiersinga, Fayez Alshamsi, Derek C Angus, Yaseen Arabi, Luciano Azevedo, Richard Beale, Gregory Beilman, Emilie Belley-Cote, Lisa Burry, Maurizio Cecconi, John Centofanti, Angel Coz Yataco, Jan De Waele, R Phillip Dellinger, Kent Doi, Bin Du, Elisa Estenssoro, Ricard Ferrer, Charles Gomersall, Carol Hodgson, Morten Hylander Møller, Theodore Iwashyna, Shevin Jacob, Ruth Kleinpell, Michael Klompas, Younsuck Koh, Anand Kumar, Arthur Kwizera, Suzana Lobo, Henry Masur, Steven McGloughlin, Sangeeta Mehta, Yatin Mehta, Mervyn Mer, Mark Nunnally, Simon Oczkowski, Tiffany Osborn, Elizabeth Papathanassoglou, Anders Perner, Michael Puskarich, Jason Roberts, William Schweickert, Maureen Seckel, Jonathan Sevransky, Charles L Sprung, Tobias Welte, Janice Zimmerman, Mitchell Levy

No abstract available

Keywords: Adults; Evidence based medicine; Guidelines; Sepsis; Septic shock.

Conflict of interest statement

Dr. Alhazzani is the Chair of the Guidelines Chapter for the Saudi Critical Care Society and is the chair of the guidelines in intensive care, development and evaluation (GUIDE) Group, McMaster University Canada. Dr. Antonelli received funding from GE, Toray-Estor, Baxter, Pfizer, Orion, Maquet, and Fisher and Paykel; he was on the board of Baxter and Pfizer, and is a member of the executive committee and past president of Società Italiana di Anestesia Rianimazione e Terapia Intensiva (SIAARTI). Dr. French contributed to the ANZICS Guidelines and the National COVID-19 Guidelines. Dr. Machado is a member of the Executive Committee for the Basics Study (for which Baxter provided the drugs and logistics) and AMIB. Dr. McIntyre is a member of the Canadian Critical Care Society and serves on the Surviving Sepsis Campaign Steering Committee. Dr. Ostermann is a council member of the Intensive Care Society UK and member of the Renal Association UK and World Sepsis Alliance. Dr. Prescott is a member of the ATS Critical Care Program Committee. Dr. Simpson is the president-elect and Chair of CHEST, is a member of the board of directors and medical director of Sepsis Alliance, and Chair of the Sepsis Institute Advisory Board. Dr. Wiersinga is a member of ISF, ESCMID, and SWAB. Dr. Angus received funding from Ferring Pharmaceuticals, Inc and ALung Technologies, Inc. Dr. Beale provides consultancy services for Philips Healthcare with his time billed by his institution. Dr. Beilman is the president of the Surgical Infection Society. Dr. Belley-Cote received grants from Roche and Bayer and is a panel member on the Saudi Critical Care Society COVID-19 Thrombosis Guidelines. Dr. Cecconi is a consultant for Edwards Lifesciences, Cheetah Medical, and Directed Systems and is President of the European Society of Intensive Care Medicine. Dr. Coz is a board member of the American College of Chest Physicians. Dr. De Waele consulted for Accelerate, Bayer, Grifols, Pfizer, and MSD with all honoraria paid to Ghent University; he is a Senior Clinical Investigator with the Research Foundation Flanders. Dr. Dellinger serves as an expert witness on occasional medical legal case reviews. Dr. Doi is a member of the Japanese Society of Intensive Care Medicine. Dr. Du is a member of the Chinese Society of Critical Care Medicine and the Chinese College of Intensive Care Medicine. Dr. Ferrer received funding from Grifols, MSD, Pfizer, Shionogi, Toray, Jafron, and Cytosorbents; he is a member of SEMICYUC. Dr. Gomersall is a member of an educational subgroup of the International Forum of Acute Care Trialists. Dr. Hodgson is a member of the Australian National Health and Medical Research Council guidelines (COVID-19) and leading funded trials in early rehabilitation and ECMO. Dr. Møller contributed to guideline work for DASAIM, SSAI, GUIDE, and ESA. Dr. Iwashyna is a member of the ATS, the NIH, and an informal (unincorporated) organization called the Critical and Acute Illness Recovery Organization. Dr. Jacob co-directs the African Research Collaboration on Sepsis (ARCS, funded by UK National Institute for Health Research, sponsored by Liverpool School of Tropical Medicine), he is Secretary General for the African Sepsis Alliance, and is a technical expert for the World Health Organization panels. Dr. Kleinpell is a board member of the World Federation of Intensive and Critical Care, American Nurses Credentialing Center, and the Tennessee Nurses Association Political Action Committee. Dr. Klompas received funding from Up-to-Date; he is a member of the guidelines committees of the Infectious Disease Society of America (IDSA) and Society of Healthcare Epidemiologists of America (SHEA). Dr. Koh is a member of The Korean Society of Critical Care Medicine, The Korean Academy of Tuberculosis and Respiratory Diseases, The Korean Society of Medical Ethics, and the Asia Ventilation Forum. Dr. Kumar served as an expert witness regarding a lethal dose of narcotics. Dr. Kwizera is president of the Intensive Care Society of Uganda and PRO for the Association of Anesthesiologists of Uganda. Dr. Lobo received funding from Pfizer, MSD, Edwards, and Nestle; she is the principal investigator in new antibiotics research led by CROs/industry; she is a member of the AMIB Executive Board and was elected president for 2020-2021. Dr. McGloughlin is a member of ANZICS (Australian New Zealand Intensive Care Society). Dr. Mehta participated in two non-interventional studies by ISCCM-Hermes and Indicaps. Dr. Mer has been an invited speaker for educational talks in industry-sponsored symposia for which honoraria was received; he is the current Vice President of the Southern African Society of Thrombosis and Haemostasis (SASTH), and is involved in annual congress organization; he is an invited author of the Global guidelines for the diagnosis and management of mucormycosis: an initiative of the European Confederation of Medical Mycology in cooperation with the Mycoses Study Group Education and Research Consortium. Dr. Nunnally is the treas- urer of SOCCA, committee member of ASA, NYSSA, IARS, AUA, and SAAAPM and serves on the American College of Critical Care Medicine Board of Regents. Dr. Oczkowski is a member of the European Respiratory Society, and contributed to the High Flow Nasal Cannula Guidelines, the Non-Invasive Ventilation in COPD Guidelines. Dr. Osborn received funding from Viven Inc, Inflammatrix, Beckman, and the Foundation for Barnes Jewish Hospital; she is on the advisory board for Beckman, Inflammatix, and Viven; she is a member of the American College of Emergency Physicians, American College of Chest Physicians, American Medical Association, Society of Academic Emergency Medicine, and American Academy of Emergency Physicians; she served as an expert witness in a case related to viral as compared to bacterial sepsis. Dr. Papathanassoglou is a member of the World Federation of Critical Care Nurses (Editor of Journal) and the Canadian Association of Critical Care Nurses. Dr. Perner received a re- search grant from Pfizer Denmark. Dr. Puskarich is the co-inven- tor of a patent to assess L0carnitine drug responsiveness in sepsis (USPO 10330685); he is a member of the Society for Academic Emergency Medicine, American College of Emergency Physicians (ACEP); he was invited to a recently gathered ACEP early sepsis treatment policy task force asked to develop spe- cialty recommendations for early sepsis treatment. Dr. Roberts received funding from MSD, The Medicines Company, Cardeas Pharma, Biomerieux, QPEX, Cipla, and Pfizer; he consulted for MSD, QPEX, Discuva Ltd, Accelerate Diagnostics, Bayer, Biomerieux, UptoDate, and Australian Therapeutic Guidelines; he is a member of the Society of Hospital Pharmacists of Australia Leadership Committees for Critical Care and Infectious Diseases and the Lead of Sepsis Working group for the International Society of Anti-infective Chemotherapy. Dr. Schweickert is a paid consultant to the American College of Physicians (last performed in Spring, 2019). Dr. Seckel volunteers for AACN and is a paid consultant to revise online Critical Care Orientation. Dr. Sevransky received funding from the Marcus Foundation- PI VICTAS Trial and serves on the American College of Critical Care Medicine Board of Regents. Dr. Welte received funding from Astellas, AstraZeneca, Boehringer, Basilea, Bayer, Berlin-Chemie, Grifols, Infectopharm, Mundipharma, MSD, Novartis, Pfizer, DFG, EU, BMBF, and Insmed; he is on the advisory board for AstraZeneca, Boehringer, Bayer, Gilead, GSK, Insmed, Novartis, Pfizer, Roche; he is a member of the European Respiratory Society, German Society of Pneumology, and Paul Ehrlich Gesellschaft. Dr. Zimmerman is a member of the ACP, AACP, and WFPICCS. Dr. Levy is a legal consultant for a few cases involving sepsis and serves as co-chair of the Surviving Sepsis Campaign Steering Committee. The remaining authors have disclosed that they do not have any potential conflicts of interest.

Figures

Fig. 1
Fig. 1
Recommendations on timing of antibiotic administration
Fig. 2
Fig. 2
Summary of vasoactive agents recommendations

References

    1. Singer M, Deutschman CS, Seymour CW, et al. The Third International Consensus definitions for sepsis and septic shock (Sepsis-3) JAMA. 2016;315(8):801–810. doi: 10.1001/jama.2016.0287.
    1. Fleischmann C, Scherag A, Adhikari NK, et al. Assessment of global incidence and mortality of hospital-treated sepsis. Current estimates and limitations. Am J Respir Crit Care Med. 2016;193(3):259–272. doi: 10.1164/rccm.201504-0781OC.
    1. Fleischmann-Struzek C, Mellhammar L, Rose N, et al. Incidence and mortality of hospital- and ICU-treated sepsis: results from an updated and expanded systematic review and meta-analysis. Intensive Care Med. 2020;46(8):1552–1562. doi: 10.1007/s00134-020-06151-x.
    1. Rhee C, Dantes R, Epstein L, et al. Incidence and trends of sepsis in US hospitals using clinical vs claims data, 2009–2014. JAMA. 2017;318(13):1241–1249. doi: 10.1001/jama.2017.13836.
    1. Seymour CW, Liu VX, Iwashyna TJ, et al. Assessment of clinical criteria for sepsis: for the third international consensus definitions for sepsis and septic shock (Sepsis-3) JAMA. 2016;315(8):762–774. doi: 10.1001/jama.2016.0288.
    1. Levy MM, Fink MP, Marshall JC, et al. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit Care Med. 2003;31(4):1250–1256. doi: 10.1097/01.CCM.0000050454.01978.3B.
    1. Dellinger RP, Levy MM, Rhodes A, et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med. 2013;39(2):165–228. doi: 10.1007/s00134-012-2769-8.
    1. Dellinger RP, Levy MM, Rhodes A, et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med. 2013;41(2):580–637. doi: 10.1097/CCM.0b013e31827e83af.
    1. Dellinger RP, Carlet JM, Masur H, et al. Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock. Crit Care Med. 2004;32(3):858–873. doi: 10.1097/01.CCM.0000117317.18092.E4.
    1. Dellinger RP, Levy MM, Carlet JM. Surviving Sepsis Campaign: International guidelines for management of severe sepsis and septic shock: 2008 (vol 36, pg 296, 2008) Crit Care Med. 2008;36(4):1394–1396.
    1. Dellinger RP, Levy MM, Carlet JM, et al. surviving sepsis campaign: International guidelines for management of severe sepsis and septic shock: 2008. Crit Care Med. 2008;36(1):296–327. doi: 10.1097/01.CCM.0000298158.12101.41.
    1. Rhodes A, Evans LE, Alhazzani W, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Crit Care Med. 2017;45(3):486–552. doi: 10.1097/CCM.0000000000002255.
    1. Rhodes A, Evans LE, Alhazzani W, et al. surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med. 2017;43(3):304–377. doi: 10.1007/s00134-017-4683-6.
    1. Weiss SL, Peters MJ, Alhazzani W, et al. Surviving sepsis campaign international guidelines for the management of septic shock and sepsis-associated organ dysfunction in children. Intensive Care Med. 2020;46(Suppl 1):10–67. doi: 10.1007/s00134-019-05878-6.
    1. Weiss SL, Peters MJ, Alhazzani W, et al. Surviving sepsis campaign international guidelines for the management of septic shock and sepsis-associated organ dysfunction in children. Pediatr Crit Care Med. 2020;21(2):e52–e106. doi: 10.1097/PCC.0000000000002198.
    1. Guyatt GH, Oxman AD, Kunz R, et al. GRADE guidelines: 2. Framing the question and deciding on important outcomes. J Clin Epidemiol. 2011;64(4):395–400. doi: 10.1016/j.jclinepi.2010.09.012.
    1. Akl EA, Johnston BC, Alonso-Coello P, et al. Addressing dichotomous data for participants excluded from trial analysis: a guide for systematic reviewers. PLoS One. 2013;8(2):e57132. doi: 10.1371/journal.pone.0057132.
    1. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7(3):177–188. doi: 10.1016/0197-2456(86)90046-2.
    1. Guyatt GH, Oxman AD, Vist GE, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ. 2008;336(7650):924–926. doi: 10.1136/.
    1. Balshem H, Helfand M, Schunemann HJ, et al. GRADE guidelines: 3. Rating the quality of evidence. J Clin Epidemiol. 2011;64(4):401–406. doi: 10.1016/j.jclinepi.2010.07.015.
    1. Andrews J, Guyatt G, Oxman AD, et al. GRADE guidelines: 14. Going from evidence to recommendations: the significance and presentation of recommendations. J Clin Epidemiol. 2013;66(7):719–725. doi: 10.1016/j.jclinepi.2012.03.013.
    1. Guyatt GH, Oxman AD, Santesso N, et al. GRADE guidelines: 12. Preparing summary of findings tables-binary outcomes. J Clin Epidemiol. 2013;66(2):158–172. doi: 10.1016/j.jclinepi.2012.01.012.
    1. Schunemann HJ, Wiercioch W, Brozek J, et al. GRADE Evidence to Decision (EtD) frameworks for adoption, adaptation, and de novo development of trustworthy recommendations: GRADE-ADOLOPMENT. J Clin Epidemiol. 2017;81:101–110. doi: 10.1016/j.jclinepi.2016.09.009.
    1. Guyatt GH, Schunemann HJ, Djulbegovic B, et al. Guideline panels should not GRADE good practice statements. J Clin Epidemiol. 2015;68(5):597–600. doi: 10.1016/j.jclinepi.2014.12.011.
    1. Dellinger RP (2015) The future of sepsis performance improvement. Crit Care Med 43(9):1787–1789
    1. Schorr C, Odden A, Evans L, et al. Implementation of a multicenter performance improvement program for early detection and treatment of severe sepsis in general medical–surgical wards. J Hosp Med. 2016;11(S1):S32–S39. doi: 10.1002/jhm.2656.
    1. Damiani E, Donati A, Serafini G, et al. Effect of performance improvement programs on compliance with sepsis bundles and mortality: a systematic review and meta-analysis of observational studies. PLoS One. 2015;10(5):e0125827. doi: 10.1371/journal.pone.0125827.
    1. Alberto L, Marshall AP, Walker R, et al. Screening for sepsis in general hospitalized patients: a systematic review. J Hosp Infect. 2017;96(4):305–315. doi: 10.1016/j.jhin.2017.05.005.
    1. Bhattacharjee P, Edelson DP, Churpek MM. Identifying patients with sepsis on the hospital wards. Chest. 2017;151(4):898–907. doi: 10.1016/j.chest.2016.06.020.
    1. Makam AN, Nguyen OK, Auerbach AD. Diagnostic accuracy and effectiveness of automated electronic sepsis alert systems: a systematic review. J Hosp Med. 2015;10(6):396–402. doi: 10.1002/jhm.2347.
    1. Warttig S, Alderson P, Evans DJ, et al. Automated monitoring compared to standard care for the early detection of sepsis in critically ill patients. Cochrane Database oSyste Rev. 2018;6(6):CD012404-CD.
    1. Islam MM, Nasrin T, Walther BA, et al. Prediction of sepsis patients using machine learning approach: a meta-analysis. Comput Methods Programs Biomed. 2019;170:1–9. doi: 10.1016/j.cmpb.2018.12.027.
    1. Downing NL, Rolnick J, Poole SF, et al. Electronic health record-based clinical decision support alert for severe sepsis: a randomised evaluation. BMJ Qual Saf. 2019;28(9):762–768. doi: 10.1136/bmjqs-2018-008765.
    1. Hooper MH, Weavind L, Wheeler AP, et al. Randomized trial of automated, electronic monitoring to facilitate early detection of sepsis in the intensive care unit. Crit Care Med. 2012;40(7):2096–2101. doi: 10.1097/CCM.0b013e318250a887.
    1. Shimabukuro DW, Barton CW, Feldman MD, et al. Effect of a machine learning-based severe sepsis prediction algorithm on patient survival and hospital length of stay: a randomised clinical trial. BMJ Open Respir Res. 2017;4(1):e000234. doi: 10.1136/bmjresp-2017-000234.
    1. Rao TSS, Radhakrishnan R, Andrade C. Standard operating procedures for clinical practice. Indian J Psychiatry. 2011;53(1):1–3. doi: 10.4103/0019-5545.75542.
    1. Osborn TM. Severe sepsis and septic shock trials (ProCESS, ARISE, ProMISe): what is optimal resuscitation? Crit Care Clin. 2017;33(2):323–344. doi: 10.1016/j.ccc.2016.12.004.
    1. Kahn JM, Davis BS, Yabes JG, et al. Association between state-mandated protocolized sepsis care and in-hospital mortality among adults with sepsis. JAMA. 2019;322(3):240–250. doi: 10.1001/jama.2019.9021.
    1. Morton B, Stolbrink M, Kagima W, et al. The early recognition and management of sepsis in Sub-Saharan African adults: a systematic review and meta-analysis. Int J Environ Res Public Health. 2018;15(9):2017. doi: 10.3390/ijerph15092017.
    1. Fernando SM, Tran A, Taljaard M, et al. Prognostic accuracy of the quick sequential organ failure assessment for mortality in patients with suspected infection: a systematic review and meta-analysis. Ann Intern Med. 2018;168(4):266–275. doi: 10.7326/M17-2820.
    1. Herwanto V, Shetty A, Nalos M, et al. Accuracy of quick sequential organ failure assessment score to predict sepsis mortality in 121 studies including 1,716,017 individuals: a systematic review and meta-analysis. Crit Care Explor. 2019;1(9):e0043. doi: 10.1097/CCE.0000000000000043.
    1. Serafim R, Gomes JA, Salluh J, et al. A comparison of the Quick-SOFA and systemic inflammatory response syndrome criteria for the diagnosis of sepsis and prediction of mortality: a systematic review and meta-analysis. Chest. 2018;153(3):646–655. doi: 10.1016/j.chest.2017.12.015.
    1. Cinel I, Kasapoglu US, Gul F, et al. The initial resuscitation of septic shock. J Crit Care. 2020;57:108–117. doi: 10.1016/j.jcrc.2020.02.004.
    1. Liu VX, Lu Y, Carey KA, et al. Comparison of early warning scoring systems for hospitalized patients with and without infection at risk for in-hospital mortality and transfer to the intensive care unit. JAMA Netw Open. 2020;3(5):e205191. doi: 10.1001/jamanetworkopen.2020.5191.
    1. Borthwick HA, Brunt LK, Mitchem KL, et al. Does lactate measurement performed on admission predict clinical outcome on the intensive care unit? A concise systematic review. Ann Clin Biochem. 2012;49(Pt 4):391–394. doi: 10.1258/acb.2011.011227.
    1. Liu G, An Y, Yi X, et al. Early lactate levels for prediction of mortality in patients with sepsis or septic shock: a meta-analysis. Int J Exp Med. 2017;10:37–47.
    1. Levy MM, Evans LE, Rhodes A. The surviving sepsis campaign bundle: 2018 update. Crit Care Med. 2018;46(6):997–1000. doi: 10.1097/CCM.0000000000003119.
    1. Levy MM, Evans LE, Rhodes A. The surviving sepsis campaign bundle: 2018 update. Intensive Care Med. 2018;44(6):925–928. doi: 10.1007/s00134-018-5085-0.
    1. Shankar-Hari M, Phillips GS, Levy ML, et al. Developing a new definition and assessing new clinical criteria for septic shock: for the third international consensus definitions for sepsis and septic shock (Sepsis-3) JAMA. 2016;315(8):775–787. doi: 10.1001/jama.2016.0289.
    1. Contenti J, Corraze H, Lemoel F, et al. Effectiveness of arterial, venous, and capillary blood lactate as a sepsis triage tool in ED patients. Am J Emerg Med. 2015;33(2):167–172. doi: 10.1016/j.ajem.2014.11.003.
    1. Karon BS, Tolan NV, Wockenfus AM, et al. Evaluation of lactate, white blood cell count, neutrophil count, procalcitonin and immature granulocyte count as biomarkers for sepsis in emergency department patients. Clin Biochem. 2017;50(16–17):956–958. doi: 10.1016/j.clinbiochem.2017.05.014.
    1. Ljungstrom L, Pernestig AK, Jacobsson G, et al. Diagnostic accuracy of procalcitonin, neutrophil-lymphocyte count ratio, C-reactive protein, and lactate in patients with suspected bacterial sepsis. PLoS One. 2017;12(7):e0181704. doi: 10.1371/journal.pone.0181704.
    1. Morris E, McCartney D, Lasserson D, et al. Point-of-care lactate testing for sepsis at presentation to health care: a systematic review of patient outcomes. Br J Gen Pract. 2017;67(665):e859–e870. doi: 10.3399/bjgp17X693665.
    1. Abdu M, Wilson A, Mhango C, et al. Resource availability for the management of maternal sepsis in Malawi, other low-income countries, and lower-middle-income countries. Int J Gynaecol Obstet. 2018;140(2):175–183. doi: 10.1002/ijgo.12350.
    1. Baelani I, Jochberger S, Laimer T, et al. Availability of critical care resources to treat patients with severe sepsis or septic shock in Africa: a self-reported, continent-wide survey of anaesthesia providers. Crit Care. 2011;15(1):R10. doi: 10.1186/cc9410.
    1. Baelani I, Jochberger S, Laimer T, et al. Identifying resource needs for sepsis care and guideline implementation in the Democratic Republic of the Congo: a cluster survey of 66 hospitals in four eastern provinces. Middle East J Anaesthesiol. 2012;21(4):559–575.
    1. Bataar O, Lundeg G, Tsenddorj G, et al. Nationwide survey on resource availability for implementing current sepsis guidelines in Mongolia. Bull World Health Organ. 2010;88(11):839–846. doi: 10.2471/BLT.10.077073.
    1. Hernandez G, Ospina-Tascon GA, Damiani LP, et al. Effect of a resuscitation strategy targeting peripheral perfusion status vs serum lactate levels on 28-day mortality among patients with septic shock: the ANDROMEDA-SHOCK Randomized Clinical Trial. JAMA. 2019;321(7):654–664. doi: 10.1001/jama.2019.0071.
    1. Machado FR, Cavalcanti AB, Bozza FA, et al. The epidemiology of sepsis in Brazilian intensive care units (the Sepsis PREvalence Assessment Database, SPREAD): an observational study. Lancet Infect Dis. 2017;17(11):1180–1189. doi: 10.1016/S1473-3099(17)30322-5.
    1. Shrestha GS, Kwizera A, Lundeg G, et al. International Surviving Sepsis Campaign guidelines 2016: the perspective from low-income and middle-income countries. Lancet Infect Dis. 2017;17(9):893–895. doi: 10.1016/S1473-3099(17)30453-X.
    1. Taniguchi LU, Azevedo LCP, Bozza FA, et al. Availability of resources to treat sepsis in Brazil: a random sample of Brazilian institutions. Rev Bras Ter Intensiva. 2019;31(2):193–201. doi: 10.5935/0103-507X.20190033.
    1. Levy MM, Dellinger RP, Townsend SR, et al. The Surviving Sepsis Campaign: results of an international guideline-based performance improvement program targeting severe sepsis. Intensive Care Med. 2010;36(2):222–231. doi: 10.1007/s00134-009-1738-3.
    1. Kuttab HI, Lykins JD, Hughes MD, et al. Evaluation and predictors of fluid resuscitation in patients with severe sepsis and septic shock. Crit Care Med. 2019;47(11):1582–1590. doi: 10.1097/CCM.0000000000003960.
    1. Investigators P, Yealy DM, Kellum JA, et al. A randomized trial of protocol-based care for early septic shock. N Engl J Med. 2014;370(18):1683–1693. doi: 10.1056/NEJMoa1401602.
    1. Peake SL, Delaney A, Bellomo R, et al. Goal-directed resuscitation in septic shock. N Engl J Med. 2015;372(2):190–191.
    1. Mouncey PR, Osborn TM, Power GS, et al. Trial of early, goal-directed resuscitation for septic shock. N Engl J Med. 2015;372(14):1301–1311. doi: 10.1056/NEJMoa1500896.
    1. Rowan KM, Angus DC, Bailey M, et al. Early, goal-directed therapy for septic shock—a patient-level meta-analysis. N Engl J Med. 2017;376(23):2223–2234. doi: 10.1056/NEJMoa1701380.
    1. Ehrman RR, Gallien JZ, Smith RK, et al. Resuscitation guided by volume responsiveness does not reduce mortality in sepsis: a meta-analysis. Crit Care Explor. 2019;1(5):e0015. doi: 10.1097/CCE.0000000000000015.
    1. Andrews B, Semler MW, Muchemwa L, et al. Effect of an early resuscitation protocol on in-hospital mortality among adults with sepsis and hypotension: a randomized clinical trial. JAMA. 2017;318(13):1233–1240. doi: 10.1001/jama.2017.10913.
    1. Aya HD, Rhodes A, Chis Ster I, et al. Hemodynamic effect of different doses of fluids for a fluid challenge: a quasi-randomized controlled study. Crit Care Med. 2017;45(2):e161–e168. doi: 10.1097/CCM.0000000000002067.
    1. Cherpanath TG, Hirsch A, Geerts BF, et al. Predicting fluid responsiveness by passive leg raising: a systematic review and meta-analysis of 23 clinical trials. Crit Care Med. 2016;44(5):981–991. doi: 10.1097/CCM.0000000000001556.
    1. Misango D, Pattnaik R, Baker T, et al. Haemodynamic assessment and support in sepsis and septic shock in resource-limited settings. Trans R Soc Trop Med Hyg. 2017;111(11):483–489. doi: 10.1093/trstmh/try007.
    1. Levy B. Lactate and shock state: the metabolic view. Curr Opin Crit Care. 2006;12(4):315–321. doi: 10.1097/01.ccx.0000235208.77450.15.
    1. Gu WJ, Zhang Z, Bakker J. Early lactate clearance-guided therapy in patients with sepsis: a meta-analysis with trial sequential analysis of randomized controlled trials. Intensive Care Med. 2015;41(10):1862–1863. doi: 10.1007/s00134-015-3955-2.
    1. Simpson SQ, Gaines M, Hussein Y, et al. Early goal-directed therapy for severe sepsis and septic shock: a living systematic review. J Crit Care. 2016;36:43–48. doi: 10.1016/j.jcrc.2016.06.017.
    1. Cecconi M, Hernandez G, Dunser M, et al. Fluid administration for acute circulatory dysfunction using basic monitoring: narrative review and expert panel recommendations from an ESICM task force. Intensive Care Med. 2019;45(1):21–32. doi: 10.1007/s00134-018-5415-2.
    1. Lara B, Enberg L, Ortega M, et al. Capillary refill time during fluid resuscitation in patients with sepsis-related hyperlactatemia at the emergency department is related to mortality. PLoS One. 2017;12(11):e0188548. doi: 10.1371/journal.pone.0188548.
    1. Shrestha GS, Dunser M, Mer M. The forgotten value of the clinical examination to individualize and guide fluid resuscitation in patients with sepsis. Crit Care. 2017;21(1):306. doi: 10.1186/s13054-017-1898-4.
    1. LeDoux D, Astiz ME, Carpati CM, et al. Effects of perfusion pressure on tissue perfusion in septic shock. Crit Care Med. 2000;28(8):2729–2732. doi: 10.1097/00003246-200008000-00007.
    1. Asfar P, Meziani F, Hamel JF, et al. High versus low blood-pressure target in patients with septic shock. N Engl J Med. 2014;370(17):1583–1593. doi: 10.1056/NEJMoa1312173.
    1. Hylands M, Moller MH, Asfar P, et al. A systematic review of vasopressor blood pressure targets in critically ill adults with hypotension. Can J Anaesth. 2017;64(7):703–715. doi: 10.1007/s12630-017-0877-1.
    1. Lamontagne F, Meade MO, Hebert PC, et al. Higher versus lower blood pressure targets for vasopressor therapy in shock: a multicentre pilot randomized controlled trial. Intensive Care Med. 2016;42(4):542–550. doi: 10.1007/s00134-016-4237-3.
    1. Lamontagne F, Richards-Belle A, Thomas K, et al. Effect of reduced exposure to vasopressors on 90-day mortality in older critically ill patients with vasodilatory hypotension: a randomized clinical trial. JAMA. 2020;323(10):938–949. doi: 10.1001/jama.2020.0930.
    1. Mohr NM, Wessman BT, Bassin B, et al. Boarding of critically ill patients in the emergency department. Crit Care Med. 2020;48(8):1180–1187. doi: 10.1097/CCM.0000000000004385.
    1. Cardoso LT, Grion CM, Matsuo T, et al. Impact of delayed admission to intensive care units on mortality of critically ill patients: a cohort study. Crit Care. 2011;15(1):R28. doi: 10.1186/cc9975.
    1. Groenland CNL, Termorshuizen F, Rietdijk WJR, et al. emergency department to icu time is associated with hospital mortality: a registry analysis of 14,788 patients from six University Hospitals in The Netherlands. Crit Care Med. 2019;47(11):1564–1571. doi: 10.1097/CCM.0000000000003957.
    1. Chalfin DB, Trzeciak S, Likourezos A, et al. Impact of delayed transfer of critically ill patients from the emergency department to the intensive care unit. Crit Care Med. 2007;35(6):1477–1483. doi: 10.1097/01.CCM.0000266585.74905.5A.
    1. Harris S, Singer M, Sanderson C, et al. Impact on mortality of prompt admission to critical care for deteriorating ward patients: an instrumental variable analysis using critical care bed strain. Intensive Care Med. 2018;44(5):606–615. doi: 10.1007/s00134-018-5148-2.
    1. Montgomery A, Panagopoulou E, Kehoe I, et al. Connecting organisational culture and quality of care in the hospital: is job burnout the missing link? J Health Organ Manag. 2011;25(1):108–123. doi: 10.1108/14777261111116851.
    1. Klein Klouwenberg PM, Cremer OL, van Vught LA, et al. Likelihood of infection in patients with presumed sepsis at the time of intensive care unit admission: a cohort study. Crit Care. 2015;19:319. doi: 10.1186/s13054-015-1035-1.
    1. Levin PD, Idrees S, Sprung CL, et al. Antimicrobial use in the ICU: indications and accuracy—an observational trial. J Hosp Med. 2012;7(9):672–678. doi: 10.1002/jhm.1964.
    1. Minderhoud TC, Spruyt C, Huisman S, et al. Microbiological outcomes and antibiotic overuse in Emergency Department patients with suspected sepsis. Neth J Med. 2017;75(5):196–203.
    1. Heffner AC, Horton JM, Marchick MR, et al. Etiology of illness in patients with severe sepsis admitted to the hospital from the emergency department. Clin Infect Dis. 2010;50(6):814–820. doi: 10.1086/650580.
    1. Tidswell R, Parker T, Brealey D, et al (2020) Sepsis–the broken code how accurately is sepsis being diagnosed? J Infect 81(6):e31–e32.
    1. Deuster S, Roten I, Muehlebach S. Implementation of treatment guidelines to support judicious use of antibiotic therapy. J Clin Pharm Ther. 2010;35(1):71–78. doi: 10.1111/j.1365-2710.2009.01045.x.
    1. Ferrer R, Artigas A, Suarez D, et al. Effectiveness of treatments for severe sepsis: a prospective, multicenter, observational study. Am J Respir Crit Care Med. 2009;180(9):861–866. doi: 10.1164/rccm.200812-1912OC.
    1. Kalil AC, Johnson DW, Lisco SJ, et al. Early goal-directed therapy for sepsis: a novel solution for discordant survival outcomes in clinical trials. Crit Care Med. 2017;45(4):607–614. doi: 10.1097/CCM.0000000000002235.
    1. Seymour CW, Gesten F, Prescott HC, et al. Time to treatment and mortality during mandated emergency care for sepsis. N Engl J Med. 2017;376(23):2235–2244. doi: 10.1056/NEJMoa1703058.
    1. Klompas M, Calandra T, Singer M. Antibiotics for sepsis-finding the equilibrium. JAMA. 2018;320(14):1433–1434. doi: 10.1001/jama.2018.12179.
    1. Prescott HC, Iwashyna TJ. Improving sepsis treatment by embracing diagnostic uncertainty. Ann Am Thorac Soc. 2019;16(4):426–429. doi: 10.1513/AnnalsATS.201809-646PS.
    1. Baggs J, Jernigan JA, Halpin AL, et al. Risk of subsequent sepsis within 90 days after a hospital stay by type of antibiotic exposure. Clin Infect Dis. 2018;66(7):1004–1012. doi: 10.1093/cid/cix947.
    1. Branch-Elliman W, O'Brien W, Strymish J, et al. Association of duration and type of surgical prophylaxis with antimicrobial-associated adverse events. JAMA Surg. 2019;154(7):590–598. doi: 10.1001/jamasurg.2019.0569.
    1. Hranjec T, Rosenberger LH, Swenson B, et al. Aggressive versus conservative initiation of antimicrobial treatment in critically ill surgical patients with suspected intensive-care-unit-acquired infection: a quasi-experimental, before and after observational cohort study. Lancet Infect Dis. 2012;12(10):774–780. doi: 10.1016/S1473-3099(12)70151-2.
    1. Ong DSY, Frencken JF, Klein Klouwenberg PMC, et al. Short-course adjunctive gentamicin as empirical therapy in patients with severe sepsis and septic shock: a prospective observational cohort study. Clin Infect Dis. 2017;64(12):1731–1736. doi: 10.1093/cid/cix186.
    1. Tamma PD, Avdic E, Li DX, et al. Association of adverse events with antibiotic use in hospitalized patients. JAMA Intern Med. 2017;177(9):1308–1315. doi: 10.1001/jamainternmed.2017.1938.
    1. Teshome BF, Vouri SM, Hampton N, et al. Duration of exposure to antipseudomonal beta-lactam antibiotics in the critically ill and development of new resistance. Pharmacotherapy. 2019;39(3):261–270. doi: 10.1002/phar.2201.
    1. Contou D, Roux D, Jochmans S, et al. Septic shock with no diagnosis at 24 hours: a pragmatic multicenter prospective cohort study. Crit Care. 2016;20(1):360. doi: 10.1186/s13054-016-1537-5.
    1. Rhee C, Kadri SS, Danner RL, et al. Diagnosing sepsis is subjective and highly variable: a survey of intensivists using case vignettes. Crit Care. 2016;20:89. doi: 10.1186/s13054-016-1266-9.
    1. Kumar A, Roberts D, Wood KE, et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med. 2006;34(6):1589–1596. doi: 10.1097/01.CCM.0000217961.75225.E9.
    1. Liu VX, Fielding-Singh V, Greene JD, et al. The timing of early antibiotics and hospital mortality in sepsis. Am J Respir Crit Care Med. 2017;196(7):856–863. doi: 10.1164/rccm.201609-1848OC.
    1. Peltan ID, Brown SM, Bledsoe JR, et al. ED door-to-antibiotic time and long-term mortality in sepsis. Chest. 2019;155(5):938–946. doi: 10.1016/j.chest.2019.02.008.
    1. Abe T, Kushimoto S, Tokuda Y, et al. Implementation of earlier antibiotic administration in patients with severe sepsis and septic shock in Japan: a descriptive analysis of a prospective observational study. Crit Care. 2019;23(1):360. doi: 10.1186/s13054-019-2644-x.
    1. Gaieski DF, Mikkelsen ME, Band RA, et al. Impact of time to antibiotics on survival in patients with severe sepsis or septic shock in whom early goal-directed therapy was initiated in the emergency department. Crit Care Med. 2010;38(4):1045–1053. doi: 10.1097/CCM.0b013e3181cc4824.
    1. Ko BS, Choi SH, Kang GH, et al. Time to antibiotics and the outcome of patients with septic shock: a propensity score analysis. Am J Med. 2020;133(4):485–91e4. doi: 10.1016/j.amjmed.2019.09.012.
    1. Puskarich MA, Trzeciak S, Shapiro NI, et al. Association between timing of antibiotic administration and mortality from septic shock in patients treated with a quantitative resuscitation protocol. Crit Care Med. 2011;39(9):2066–2071. doi: 10.1097/CCM.0b013e31821e87ab.
    1. Rothrock SG, Cassidy DD, Barneck M, et al (2020) Outcome of immediate versus early antibiotics in severe sepsis and septic shock: a systematic review and meta-analysis. Ann Emerg Med 76(4):427–441
    1. Ryoo SM, Kim WY, Sohn CH, et al. Prognostic value of timing of antibiotic administration in patients with septic shock treated with early quantitative resuscitation. Am J Med Sci. 2015;349(4):328–333. doi: 10.1097/MAJ.0000000000000423.
    1. Weinberger J, Rhee C, Klompas M. A critical analysis of the literature on time-to-antibiotics in suspected sepsis. J Infect Dis. 2020;222(Supplement_2):S110–S118. doi: 10.1093/infdis/jiaa146.
    1. Alam N, Oskam E, Stassen PM, et al. Prehospital antibiotics in the ambulance for sepsis: a multicentre, open label, randomised trial. Lancet Respir Med. 2018;6(1):40–50. doi: 10.1016/S2213-2600(17)30469-1.
    1. Bloos F, Ruddel H, Thomas-Ruddel D, et al. Effect of a multifaceted educational intervention for anti-infectious measures on sepsis mortality: a cluster randomized trial. Intensive Care Med. 2017;43(11):1602–1612. doi: 10.1007/s00134-017-4782-4.
    1. Chalya PL, Mabula JB, Koy M, et al. Typhoid intestinal perforations at a University teaching hospital in Northwestern Tanzania: a surgical experience of 104 cases in a resource-limited setting. World J Emerg Surg. 2012;7:4. doi: 10.1186/1749-7922-7-4.
    1. Phua J, Koh Y, Du B, et al. Management of severe sepsis in patients admitted to Asian intensive care units: prospective cohort study. BMJ. 2011;342:d3245. doi: 10.1136/bmj.d3245.
    1. Thwaites CL, Lundeg G, Dondorp AM, et al. Recommendations for infection management in patients with sepsis and septic shock in resource-limited settings. Intensive Care Med. 2016;42(12):2040–2042. doi: 10.1007/s00134-016-4415-3.
    1. Urayeneza O, Mujyarugamba P, Rukemba Z, et al. Increasing evidence-based interventions in patients with acute infections in a resource-limited setting: a before-and-after feasibility trial in Gitwe, Rwanda. Crit Care Med. 2018;46(8):1357–1366. doi: 10.1097/CCM.0000000000003227.
    1. Urayeneza O, Mujyarugamba P, Rukemba Z, et al. Increasing evidence-based interventions in patients with acute infections in a resource-limited setting: a before-and-after feasibility trial in Gitwe, Rwanda. Intensive Care Med. 2018;44(9):1436–1446. doi: 10.1007/s00134-018-5266-x.
    1. Yokota PK, Marra AR, Martino MD, et al. Impact of appropriate antimicrobial therapy for patients with severe sepsis and septic shock—a quality improvement study. PLoS One. 2014;9(11):e104475. doi: 10.1371/journal.pone.0104475.
    1. Peng F, Chang W, Xie JF, et al. Ineffectiveness of procalcitonin-guided antibiotic therapy in severely critically ill patients: a meta-analysis. Int J Infect Dis. 2019;85:158–166. doi: 10.1016/j.ijid.2019.05.034.
    1. Wacker C, Prkno A, Brunkhorst FM, et al. Procalcitonin as a diagnostic marker for sepsis: a systematic review and meta-analysis. Lancet Infect Dis. 2013;13(5):426–435. doi: 10.1016/S1473-3099(12)70323-7.
    1. Jensen JU, Hein L, Lundgren B, et al. Procalcitonin-guided interventions against infections to increase early appropriate antibiotics and improve survival in the intensive care unit: a randomized trial. Crit Care Med. 2011;39(9):2048–2058. doi: 10.1097/CCM.0b013e31821e8791.
    1. Layios N, Lambermont B, Canivet JL, et al. Procalcitonin usefulness for the initiation of antibiotic treatment in intensive care unit patients. Crit Care Med. 2012;40(8):2304–2309. doi: 10.1097/CCM.0b013e318251517a.
    1. Najafi A, Khodadadian A, Sanatkar M, et al. The comparison of procalcitonin guidance administer antibiotics with empiric antibiotic therapy in critically ill patients admitted in intensive care unit. Acta Med Iran. 2015;53(9):562–567.
    1. Metlay JP, Waterer GW, Long AC, et al. Diagnosis and treatment of adults with community-acquired pneumonia. An Official Clinical Practice Guideline of the American Thoracic Society and Infectious Diseases Society of America. Am J Respir Crit Care Med. 2019;200(7):e45–e67. doi: 10.1164/rccm.201908-1581ST.
    1. Vincent JL, Sakr Y, Singer M, et al (2020) Prevalence and outcomes of infection among patients in intensive care units in 2017. JAMA 323(15):1478–1487
    1. Jernigan JA, Hatfield KM, Wolford H, et al. Multidrug-resistant bacterial infections in U.S. hospitalized patients, 2012–2017. N Engl J Med. 2020;382(14):1309–1319. doi: 10.1056/NEJMoa1914433.
    1. Jones M, Jernigan JA, Evans ME, et al. Vital Signs: trends in Staphylococcus aureus infections in veterans affairs medical centers—United States, 2005–2017. MMWR Morb Mortal Wkly Rep. 2019;68(9):220–224. doi: 10.15585/mmwr.mm6809e2.
    1. Aliberti S, Reyes LF, Faverio P, et al. Global initiative for meticillin-resistant Staphylococcus aureus pneumonia (GLIMP): an international, observational cohort study. Lancet Infect Dis. 2016;16(12):1364–1376. doi: 10.1016/S1473-3099(16)30267-5.
    1. Rhee C, Kadri SS, Dekker JP, et al. Prevalence of antibiotic-resistant pathogens in culture-proven sepsis and outcomes associated with inadequate and broad-spectrum empiric antibiotic use. JAMA Netw Open. 2020;3(4):e202899. doi: 10.1001/jamanetworkopen.2020.2899.
    1. Callejo-Torre F, Eiros Bouza JM, Olaechea Astigarraga P, et al. Risk factors for methicillin-resistant Staphylococcus aureus colonisation or infection in intensive care units and their reliability for predicting MRSA on ICU admission. Infez Med. 2016;24(3):201–209.
    1. Epstein L, Mu Y, Belflower R, et al. Risk factors for invasive methicillin-resistant Staphylococcus aureus infection after recent discharge from an acute-care hospitalization, 2011–2013. Clin Infect Dis. 2016;62(1):45–52. doi: 10.1093/cid/civ777.
    1. Shorr AF, Myers DE, Huang DB, et al. A risk score for identifying methicillin-resistant Staphylococcus aureus in patients presenting to the hospital with pneumonia. BMC Infect Dis. 2013;13:268. doi: 10.1186/1471-2334-13-268.
    1. Torre-Cisneros J, Natera C, Mesa F, et al. Clinical predictors of methicillin-resistant Staphylococcus aureus in nosocomial and healthcare-associated pneumonia: a multicenter, matched case-control study. Eur J Clin Microbiol Infect Dis. 2018;37(1):51–56. doi: 10.1007/s10096-017-3100-y.
    1. Wooten DA, Winston LG. Risk factors for methicillin-resistant Staphylococcus aureus in patients with community-onset and hospital-onset pneumonia. Respir Med. 2013;107(8):1266–1270. doi: 10.1016/j.rmed.2013.05.006.
    1. Gasch O, Camoez M, Dominguez MA, et al. Predictive factors for early mortality among patients with methicillin-resistant Staphylococcus aureus bacteraemia. J Antimicrob Chemother. 2013;68(6):1423–1430. doi: 10.1093/jac/dkt016.
    1. Gasch O, Camoez M, Dominguez MA, et al. Predictive factors for mortality in patients with methicillin-resistant Staphylococcus aureus bloodstream infection: impact on outcome of host, microorganism and therapy. Clin Microbiol Infect. 2013;19(11):1049–1057. doi: 10.1111/1469-0691.12108.
    1. Lodise TP, McKinnon PS, Swiderski L, et al. Outcomes analysis of delayed antibiotic treatment for hospital-acquired Staphylococcus aureus bacteremia. Clin Infect Dis. 2003;36(11):1418–1423. doi: 10.1086/375057.
    1. Paul M, Kariv G, Goldberg E, et al. Importance of appropriate empirical antibiotic therapy for methicillin-resistant Staphylococcus aureus bacteraemia. J Antimicrob Chemother. 2010;65(12):2658–2665. doi: 10.1093/jac/dkq373.
    1. Schramm GE, Johnson JA, Doherty JA, et al. Methicillin-resistant Staphylococcus aureus sterile-site infection: the importance of appropriate initial antimicrobial treatment. Crit Care Med. 2006;34(8):2069–2074. doi: 10.1097/01.CCM.0000227655.41566.3E.
    1. Fang CT, Shau WY, Hsueh PR, et al. Early empirical glycopeptide therapy for patients with methicillin-resistant Staphylococcus aureus bacteraemia: impact on the outcome. J Antimicrob Chemother. 2006;57(3):511–519. doi: 10.1093/jac/dkl006.
    1. Gomez J, Garcia-Vazquez E, Banos R, et al. Predictors of mortality in patients with methicillin-resistant Staphylococcus aureus (MRSA) bacteraemia: the role of empiric antibiotic therapy. Eur J Clin Microbiol Infect Dis. 2007;26(4):239–245. doi: 10.1007/s10096-007-0272-x.
    1. Griffin AT, Peyrani P, Wiemken TL, et al. Empiric therapy directed against MRSA in patients admitted to the intensive care unit does not improve outcomes in community-acquired pneumonia. Infection. 2013;41(2):517–523. doi: 10.1007/s15010-012-0363-1.
    1. Kett DH, Cano E, Quartin AA, et al. Implementation of guidelines for management of possible multidrug-resistant pneumonia in intensive care: an observational, multicentre cohort study. Lancet Infect Dis. 2011;11(3):181–189. doi: 10.1016/S1473-3099(10)70314-5.
    1. Khatib R, Saeed S, Sharma M, et al. Impact of initial antibiotic choice and delayed appropriate treatment on the outcome of Staphylococcus aureus bacteremia. Eur J Clin Microbiol Infect Dis. 2006;25(3):181–185. doi: 10.1007/s10096-006-0096-0.
    1. Kim SH, Park WB, Lee KD, et al. Outcome of inappropriate initial antimicrobial treatment in patients with methicillin-resistant Staphylococcus aureus bacteraemia. J Antimicrob Chemother. 2004;54(2):489–497. doi: 10.1093/jac/dkh366.
    1. Yoon YK, Park DW, Sohn JW, et al. Effects of inappropriate empirical antibiotic therapy on mortality in patients with healthcare-associated methicillin-resistant Staphylococcus aureus bacteremia: a propensity-matched analysis. BMC Infect Dis. 2016;16:331. doi: 10.1186/s12879-016-1650-8.
    1. Jones BE, Ying J, Stevens V, et al (2020) Empirical anti-MRSA vs standard antibiotic therapy and risk of 30-day mortality in patients hospitalized for pneumonia. JAMA Intern Med 180(4):552–560
    1. Webb BJ, Sorensen J, Jephson A, et al (2019) Broad-spectrum antibiotic use and poor outcomes in community-onset pneumonia: a cohort study. Eur Respir J 54(1):1900057
    1. Baby N, Faust AC, Smith T, et al (2017) Nasal methicillin-resistant Staphylococcus aureus (MRSA) PCR testing reduces the duration of MRSA-targeted therapy in patients with suspected MRSA pneumonia. Antimicrob Agents Chemother 61(4):e02432-16
    1. Cowley MC, Ritchie DJ, Hampton N, et al. Outcomes associated with de-escalating therapy for methicillin-resistant Staphylococcus aureus in culture-negative nosocomial pneumonia. Chest. 2019;155(1):53–59. doi: 10.1016/j.chest.2018.10.014.
    1. Paonessa JR, Shah RD, Pickens CI, et al. Rapid detection of methicillin-resistant Staphylococcus aureus in BAL: a pilot randomized controlled trial. Chest. 2019;155(5):999–1007. doi: 10.1016/j.chest.2019.02.007.
    1. Sjovall F, Perner A, Hylander MM. Empirical mono- versus combination antibiotic therapy in adult intensive care patients with severe sepsis—a systematic review with meta-analysis and trial sequential analysis. J Infect. 2017;74(4):331–344. doi: 10.1016/j.jinf.2016.11.013.
    1. Brunkhorst FM, Oppert M, Marx G, et al. Effect of empirical treatment with moxifloxacin and meropenem vs meropenem on sepsis-related organ dysfunction in patients with severe sepsis: a randomized trial. JAMA. 2012;307(22):2390–2399. doi: 10.1001/jama.2012.5833.
    1. Alevizakos M, Karanika S, Detsis M, et al. Colonisation with extended-spectrum beta-lactamase-producing Enterobacteriaceae and risk for infection among patients with solid or haematological malignancy: a systematic review and meta-analysis. Int J Antimicrob Agents. 2016;48(6):647–654. doi: 10.1016/j.ijantimicag.2016.08.021.
    1. Rottier WC, Bamberg YR, Dorigo-Zetsma JW, et al. Predictive value of prior colonization and antibiotic use for third-generation cephalosporin-resistant enterobacteriaceae bacteremia in patients with sepsis. Clin Infect Dis. 2015;60(11):1622–1630. doi: 10.1093/cid/civ121.
    1. Rottier WC, van Werkhoven CH, Bamberg YRP, et al. Development of diagnostic prediction tools for bacteraemia caused by third-generation cephalosporin-resistant enterobacteria in suspected bacterial infections: a nested case-control study. Clin Microbiol Infect. 2018;24(12):1315–1321. doi: 10.1016/j.cmi.2018.03.023.
    1. Arulkumaran N, Routledge M, Schlebusch S, et al. Antimicrobial-associated harm in critical care: a narrative review. Intensive Care Med. 2020;46(2):225–235. doi: 10.1007/s00134-020-05929-3.
    1. Bassetti M, Righi E, Ansaldi F, et al. A multicenter study of septic shock due to candidemia: outcomes and predictors of mortality. Intensive Care Med. 2014;40(6):839–845. doi: 10.1007/s00134-014-3310-z.
    1. Kollef M, Micek S, Hampton N, et al. Septic shock attributed to Candida infection: importance of empiric therapy and source control. Clin Infect Dis. 2012;54(12):1739–1746. doi: 10.1093/cid/cis305.
    1. Magill SS, Edwards JR, Bamberg W, et al. Multistate point-prevalence survey of health care-associated infections. N Engl J Med. 2014;370(13):1198–1208. doi: 10.1056/NEJMoa1306801.
    1. Mean M, Marchetti O, Calandra T. Bench-to-bedside review: Candida infections in the intensive care unit. Crit Care. 2008;12(1):204. doi: 10.1186/cc6212.
    1. Pappas PG, Kauffman CA, Andes DR, et al. Clinical practice guideline for the management of candidiasis: 2016 Update by the Infectious Diseases Society of America. Clin Infect Dis. 2016;62(4):e1–50. doi: 10.1093/cid/civ933.
    1. Garey KW, Rege M, Pai MP, et al. Time to initiation of fluconazole therapy impacts mortality in patients with candidemia: a multi-institutional study. Clin Infect Dis. 2006;43(1):25–31. doi: 10.1086/504810.
    1. Marriott DJ, Playford EG, Chen S, et al. Determinants of mortality in non-neutropenic ICU patients with candidaemia. Crit Care. 2009;13(4):R115. doi: 10.1186/cc7964.
    1. Morrell M, Fraser VJ, Kollef MH. Delaying the empiric treatment of candida bloodstream infection until positive blood culture results are obtained: a potential risk factor for hospital mortality. Antimicrob Agents Chemother. 2005;49(9):3640–3645. doi: 10.1128/AAC.49.9.3640-3645.2005.
    1. Timsit JF, Azoulay E, Schwebel C, et al. Empirical micafungin treatment and survival without invasive fungal infection in adults with ICU-acquired sepsis, candida colonization, and multiple organ failure: the EMPIRICUS Randomized Clinical Trial. JAMA. 2016;316(15):1555–1564. doi: 10.1001/jama.2016.14655.
    1. Freifeld AG, Bow EJ, Sepkowitz KA, et al. Clinical practice guideline for the use of antimicrobial agents in neutropenic patients with cancer: 2010 update by the infectious diseases society of america. Clin Infect Dis. 2011;52(4):e56–93. doi: 10.1093/cid/cir073.
    1. Taplitz RA, Kennedy EB, Bow EJ, et al. Outpatient management of fever and neutropenia in adults treated for malignancy: American Society of Clinical Oncology and Infectious Diseases Society of America Clinical Practice Guideline Update. J Clin Oncol. 2018;36(14):1443–1453. doi: 10.1200/JCO.2017.77.6211.
    1. Clancy CJ, Nguyen MH (2018) Diagnosing invasive candidiasis. J Clin Microbiol 56(5):e01909-17
    1. Kullberg BJ, Arendrup MC. Invasive candidiasis. N Engl J Med. 2015;373(15):1445–1456. doi: 10.1056/NEJMra1315399.
    1. Sandven P, Qvist H, Skovlund E, et al. Significance of Candida recovered from intraoperative specimens in patients with intra-abdominal perforations. Crit Care Med. 2002;30(3):541–547. doi: 10.1097/00003246-200203000-00008.
    1. Hachem R, Hanna H, Kontoyiannis D, et al. The changing epidemiology of invasive candidiasis: Candida glabrata and Candida krusei as the leading causes of candidemia in hematologic malignancy. Cancer. 2008;112(11):2493–2499. doi: 10.1002/cncr.23466.
    1. Horn DL, Neofytos D, Anaissie EJ, et al. Epidemiology and outcomes of candidemia in 2019 patients: data from the prospective antifungal therapy alliance registry. Clin Infect Dis. 2009;48(12):1695–1703. doi: 10.1086/599039.
    1. Andes DR, Safdar N, Baddley JW, et al. Impact of treatment strategy on outcomes in patients with candidemia and other forms of invasive candidiasis: a patient-level quantitative review of randomized trials. Clin Infect Dis. 2012;54(8):1110–1122. doi: 10.1093/cid/cis021.
    1. Kett DH, Azoulay E, Echeverria PM, et al. Candida bloodstream infections in intensive care units: analysis of the extended prevalence of infection in intensive care unit study. Crit Care Med. 2011;39(4):665–670. doi: 10.1097/CCM.0b013e318206c1ca.
    1. Cleveland AA, Harrison LH, Farley MM, et al. Declining incidence of candidemia and the shifting epidemiology of Candida resistance in two US metropolitan areas, 2008–2013: results from population-based surveillance. PLoS One. 2015;10(3):e0120452. doi: 10.1371/journal.pone.0120452.
    1. Zhang AY, Shrum S, Williams S, et al. The changing epidemiology of candidemia in the united states: injection drug use as an increasingly common risk factor-active surveillance in selected sites, United States, 2014–2017. Clin Infect Dis. 2020;71(7):1732–1737. doi: 10.1093/cid/ciz1061.
    1. Blumberg HM, Jarvis WR, Soucie JM, et al. Risk factors for candidal bloodstream infections in surgical intensive care unit patients: the NEMIS prospective multicenter study. The National Epidemiology of Mycosis Survey. Clin Infect Dis. 2001;33(2):177–186. doi: 10.1086/321811.
    1. Fan D, Coughlin LA, Neubauer MM, et al. Activation of HIF-1alpha and LL-37 by commensal bacteria inhibits Candida albicans colonization. Nat Med. 2015;21(7):808–814. doi: 10.1038/nm.3871.
    1. Chow JK, Golan Y, Ruthazer R, et al. Risk factors for albicans and non-albicans candidemia in the intensive care unit. Crit Care Med. 2008;36(7):1993–1998. doi: 10.1097/CCM.0b013e31816fc4cd.
    1. Ostrosky-Zeichner L, Pappas PG. Invasive candidiasis in the intensive care unit. Crit Care Med. 2006;34(3):857–863. doi: 10.1097/01.CCM.0000201897.78123.44.
    1. Vergidis P, Clancy CJ, Shields RK, et al. Intra-abdominal candidiasis: the importance of early source control and antifungal treatment. PLoS One. 2016;11(4):e0153247. doi: 10.1371/journal.pone.0153247.
    1. Ballard N, Robley L, Barrett D, et al. Patients' recollections of therapeutic paralysis in the intensive care unit. Am J Crit Care. 2006;15(1):86–94. doi: 10.4037/ajcc2006.15.1.86.
    1. Horvath EE, Murray CK, Vaughan GM, et al. Fungal wound infection (not colonization) is independently associated with mortality in burn patients. Ann Surg. 2007;245(6):978–985. doi: 10.1097/01.sla.0000256914.16754.80.
    1. Murray CK, Loo FL, Hospenthal DR, et al. Incidence of systemic fungal infection and related mortality following severe burns. Burns. 2008;34(8):1108–1112. doi: 10.1016/j.burns.2008.04.007.
    1. Baughman RP, Rhodes JC, Dohn MN, et al. Detection of cryptococcal antigen in bronchoalveolar lavage fluid: a prospective study of diagnostic utility. Am Rev Respir Dis. 1992;145(5):1226–1229. doi: 10.1164/ajrccm/145.5.1226.
    1. Ford N, Shubber Z, Jarvis JN, et al. CD4 cell count threshold for cryptococcal antigen screening of HIV-infected individuals: a systematic review and meta-analysis. Clin Infect Dis. 2018;66(2):S152–S159. doi: 10.1093/cid/cix1143.
    1. Hage CA, Ribes JA, Wengenack NL, et al. A multicenter evaluation of tests for diagnosis of histoplasmosis. Clin Infect Dis. 2011;53(5):448–454. doi: 10.1093/cid/cir435.
    1. Clumeck N, Sonnet J, Taelman H, et al. Acquired immunodeficiency syndrome in African patients. N Engl J Med. 1984;310(8):492–497. doi: 10.1056/NEJM198402233100804.
    1. Hajjeh RA, Conn LA, Stephens DS, et al. Cryptococcosis: population-based multistate active surveillance and risk factors in human immunodeficiency virus-infected persons. Cryptococcal Active Surveillance Group. J Infect Dis. 1999;179(2):449–454. doi: 10.1086/314606.
    1. Maziarz EK, Perfect JR. Cryptococcosis. Infect Dis Clin N Am. 2016;30(1):179–206. doi: 10.1016/j.idc.2015.10.006.
    1. McCarthy KM, Morgan J, Wannemuehler KA, et al. Population-based surveillance for cryptococcosis in an antiretroviral-naive South African province with a high HIV seroprevalence. AIDS. 2006;20(17):2199–2206. doi: 10.1097/QAD.0b013e3280106d6a.
    1. Husain S, Wagener MM, Singh N. Cryptococcus neoformans infection in organ transplant recipients: variables influencing clinical characteristics and outcome. Emerg Infect Dis. 2001;7(3):375–381. doi: 10.3201/eid0703.017302.
    1. Pappas PG, Alexander BD, Andes DR, et al. Invasive fungal infections among organ transplant recipients: results of the Transplant-Associated Infection Surveillance Network (TRANSNET) Clin Infect Dis. 2010;50(8):1101–1111. doi: 10.1086/651262.
    1. Singh N, Gayowski T, Wagener MM, et al. Clinical spectrum of invasive cryptococcosis in liver transplant recipients receiving tacrolimus. Clin Transplant. 1997;11(1):66–70.
    1. Kontoyiannis DP, Marr KA, Park BJ, et al. Prospective surveillance for invasive fungal infections in hematopoietic stem cell transplant recipients, 2001–2006: overview of the Transplant-Associated Infection Surveillance Network (TRANSNET) Database. Clin Infect Dis. 2010;50(8):1091–1100. doi: 10.1086/651263.
    1. Nath DS, Kandaswamy R, Gruessner R, et al. Fungal infections in transplant recipients receiving alemtuzumab. Transplant Proc. 2005;37(2):934–936. doi: 10.1016/j.transproceed.2005.01.054.
    1. Tsiodras S, Samonis G, Boumpas DT, et al. Fungal infections complicating tumor necrosis factor alpha blockade therapy. Mayo Clin Proc. 2008;83(2):181–194. doi: 10.1016/S0025-6196(11)60839-2.
    1. Nsenga L, Kajjimu J, Olum R, et al. Cryptococcosis complicating diabetes mellitus: a scoping review. Ther Adv Infect Dis. 2021;8:20499361211014769.
    1. Wald A, Leisenring W, van Burik JA, et al. Epidemiology of Aspergillus infections in a large cohort of patients undergoing bone marrow transplantation. J Infect Dis. 1997;175(6):1459–1466. doi: 10.1086/516480.
    1. Mengoli C, Cruciani M, Barnes RA, et al. Use of PCR for diagnosis of invasive aspergillosis: systematic review and meta-analysis. Lancet Infect Dis. 2009;9(2):89–96. doi: 10.1016/S1473-3099(09)70019-2.
    1. White PL, Bretagne S, Klingspor L, et al. Aspergillus PCR: one step closer to standardization. J Clin Microbiol. 2010;48(4):1231–1240. doi: 10.1128/JCM.01767-09.
    1. White PL, Wingard JR, Bretagne S, et al. Aspergillus polymerase chain reaction: systematic review of evidence for clinical use in comparison with antigen testing. Clin Infect Dis. 2015;61(8):1293–1303. doi: 10.1093/cid/civ507.
    1. Meersseman W, Lagrou K, Maertens J, et al. Invasive aspergillosis in the intensive care unit. Clin Infect Dis. 2007;45(2):205–216. doi: 10.1086/518852.
    1. Barnes PD, Marr KA. Aspergillosis: spectrum of disease, diagnosis, and treatment. Infect Dis Clin N Am. 2006;20(3):545–561. doi: 10.1016/j.idc.2006.06.001.
    1. Gavalda J, Len O, San Juan R, et al. Risk factors for invasive aspergillosis in solid-organ transplant recipients: a case-control study. Clin Infect Dis. 2005;41(1):52–59. doi: 10.1086/430602.
    1. Fukuda T, Boeckh M, Carter RA, et al. Risks and outcomes of invasive fungal infections in recipients of allogeneic hematopoietic stem cell transplants after nonmyeloablative conditioning. Blood. 2003;102(3):827–833. doi: 10.1182/blood-2003-02-0456.
    1. Pagano L, Busca A, Candoni A, et al. Risk stratification for invasive fungal infections in patients with hematological malignancies: SEIFEM recommendations. Blood Rev. 2017;31(2):17–29. doi: 10.1016/j.blre.2016.09.002.
    1. Baddley JW. Clinical risk factors for invasive aspergillosis. Med Mycol. 2011;49(Suppl 1):S7–S12. doi: 10.3109/13693786.2010.505204.
    1. Ruiz-Camps I, Aguilar-Company J. Risk of infection associated with targeted therapies for solid organ and hematological malignancies. Ther Adv Infect Dis. 2021;8:2049936121989548.
    1. Cantan B, Luyt CE, Martin-Loeches I. Influenza infections and emergent viral infections in intensive care unit. Semin Respir Crit Care Med. 2019;40(4):488–497. doi: 10.1055/s-0039-1693497.
    1. Legoff J, Zucman N, Lemiale V, et al. Clinical significance of upper airway virus detection in critically ill hematology patients. Am J Respir Crit Care Med. 2019;199(4):518–528. doi: 10.1164/rccm.201804-0681OC.
    1. Muscedere J, Ofner M, Kumar A, et al. The occurrence and impact of bacterial organisms complicating critical care illness associated with 2009 influenza A(H1N1) infection. Chest. 2013;144(1):39–47. doi: 10.1378/chest.12-1861.
    1. van Someren GF, Juffermans NP, Bos LDJ, et al. Respiratory viruses in invasively ventilated critically ill patients-a prospective multicenter observational study. Crit Care Med. 2018;46(1):29–36. doi: 10.1097/CCM.0000000000002752.
    1. Aziz S, Arabi YM, Alhazzani W, et al (2020) Managing ICU surge during the COVID-19 crisis: rapid guidelines. Intensive Care Med 46(7):1303–1325
    1. Wiersinga WJ, Rhodes A, Cheng AC, et al. Pathophysiology, transmission, diagnosis, and rreatment of Coronavirus Disease 2019 (COVID-19): a review. JAMA. 2020;324(8):782–793. doi: 10.1001/jama.2020.12839.
    1. Muthuri SG, Venkatesan S, Myles PR, et al. Effectiveness of neuraminidase inhibitors in reducing mortality in patients admitted to hospital with influenza A H1N1pdm09 virus infection: a meta-analysis of individual participant data. Lancet Respir Med. 2014;2(5):395–404. doi: 10.1016/S2213-2600(14)70041-4.
    1. Alhazzani W, Moller MH, Arabi YM, et al. Surviving Sepsis Campaign: guidelines on the management of critically ill adults with Coronavirus Disease 2019 (COVID-19) Intensive Care Med. 2020;46(5):854–887. doi: 10.1007/s00134-020-06022-5.
    1. Tunkel AR, Glaser CA, Bloch KC, et al. The management of encephalitis: clinical practice guidelines by the Infectious Diseases Society of America. Clin Infect Dis. 2008;47(3):303–327. doi: 10.1086/589747.
    1. Uyeki TM, Bernstein HH, Bradley JS, et al. Clinical Practice Guidelines by the Infectious Diseases Society of America: 2018 Update on Diagnosis, Treatment, Chemoprophylaxis, and Institutional Outbreak Management of Seasonal Influenzaa. Clin Infect Dis. 2019;68(6):895–902. doi: 10.1093/cid/ciy874.
    1. Lin GL, McGinley JP, Drysdale SB, et al. Epidemiology and immune pathogenesis of viral sepsis. Front Immunol. 2018;9:2147. doi: 10.3389/fimmu.2018.02147.
    1. Goncalves-Pereira J, Povoa P. Antibiotics in critically ill patients: a systematic review of the pharmacokinetics of beta-lactams. Crit Care. 2011;15(5):R206. doi: 10.1186/cc10441.
    1. Mohd Hafiz AA, Staatz CE, Kirkpatrick CM, et al. Continuous infusion vs. bolus dosing: implications for beta-lactam antibiotics. Minerva Anestesiol. 2012;78(1):94–104.
    1. Roberts JA, Abdul-Aziz MH, Davis JS, et al. Continuous versus intermittent beta-lactam infusion in severe sepsis. A meta-analysis of individual patient data from randomized trials. Am J Respir Crit Care Med. 2016;194(6):681–691. doi: 10.1164/rccm.201601-0024OC.
    1. Vardakas KZ, Voulgaris GL, Maliaros A, et al. Prolonged versus short-term intravenous infusion of antipseudomonal beta-lactams for patients with sepsis: a systematic review and meta-analysis of randomised trials. Lancet Infect Dis. 2018;18(1):108–120. doi: 10.1016/S1473-3099(17)30615-1.
    1. De Waele JJ, Lipman J, Carlier M, et al. Subtleties in practical application of prolonged infusion of beta-lactam antibiotics. Int J Antimicrob Agents. 2015;45(5):461–463. doi: 10.1016/j.ijantimicag.2015.01.007.
    1. Roberts JA, Paratz J, Paratz E, et al. Continuous infusion of beta-lactam antibiotics in severe infections: a review of its role. Int J Antimicrob Agents. 2007;30(1):11–18. doi: 10.1016/j.ijantimicag.2007.02.002.
    1. Lipman J, Brett SJ, De Waele JJ, et al. A protocol for a phase 3 multicentre randomised controlled trial of continuous versus intermittent beta-lactam antibiotic infusion in critically ill patients with sepsis: BLING III. Crit Care Resusc. 2019;21(1):63–68.
    1. Roberts JA, Abdul-Aziz MH, Lipman J, et al. Individualised antibiotic dosing for patients who are critically ill: challenges and potential solutions. Lancet Infect Dis. 2014;14(6):498–509. doi: 10.1016/S1473-3099(14)70036-2.
    1. Roberts JA, Paul SK, Akova M, et al. DALI: defining antibiotic levels in intensive care unit patients: are current beta-lactam antibiotic doses sufficient for critically ill patients? Clin Infect Dis. 2014;58(8):1072–1083. doi: 10.1093/cid/ciu027.
    1. Veiga RP, Paiva JA. Pharmacokinetics-pharmacodynamics issues relevant for the clinical use of beta-lactam antibiotics in critically ill patients. Crit Care. 2018;22(1):233. doi: 10.1186/s13054-018-2155-1.
    1. Nelson NR, Morbitzer KA, Jordan JD, et al. The impact of capping creatinine clearance on achieving therapeutic vancomycin concentrations in neurocritically ill patients with traumatic brain injury. Neurocrit Care. 2019;30(1):126–131. doi: 10.1007/s12028-018-0583-z.
    1. Gregoire N, Marchand S, Ferrandiere M, et al. Population pharmacokinetics of daptomycin in critically ill patients with various degrees of renal impairment. J Antimicrob Chemother. 2019;74(1):117–125.
    1. Ulldemolins M, Roberts JA, Rello J, et al. The effects of hypoalbuminaemia on optimizing antibacterial dosing in critically ill patients. Clin Pharmacokinet. 2011;50(2):99–110. doi: 10.2165/11539220-000000000-00000.
    1. Choi G, Gomersall CD, Tian Q, et al. Principles of antibacterial dosing in continuous renal replacement therapy. Crit Care Med. 2009;37(7):2268–2282. doi: 10.1097/CCM.0b013e3181aab3d0.
    1. Roberts JA, Joynt G, Lee A, et al (2020) The effect of renal replacement therapy and antibiotic dose on antibiotic concentrations in critically ill patients: data from the multinational SMARRT Study. Clin Infect Dis 72(8):1369–1378
    1. Bougle A, Dujardin O, Lepere V, et al. PHARMECMO: Therapeutic drug monitoring and adequacy of current dosing regimens of antibiotics in patients on Extracorporeal Life Support. Anaesth Crit Care Pain Med. 2019;38(5):493–497. doi: 10.1016/j.accpm.2019.02.015.
    1. Cheng V, Abdul-Aziz MH, Roberts JA, et al. Overcoming barriers to optimal drug dosing during ECMO in critically ill adult patients. Expert Opin Drug Metab Toxicol. 2019;15(2):103–112. doi: 10.1080/17425255.2019.1563596.
    1. Guilhaumou R, Benaboud S, Bennis Y, et al. Optimization of the treatment with beta-lactam antibiotics in critically ill patients-guidelines from the French Society of Pharmacology and Therapeutics (Societe Francaise de Pharmacologie et Therapeutique-SFPT) and the French Society of Anaesthesia and Intensive Care Medicine (Societe Francaise d'Anesthesie et Reanimation-SFAR) Crit Care. 2019;23(1):104. doi: 10.1186/s13054-019-2378-9.
    1. Turner RB, Kojiro K, Shephard EA, et al. Review and validation of bayesian dose-optimizing software and equations for calculation of the vancomycin area under the curve in critically ill patients. Pharmacotherapy. 2018;38(12):1174–1183. doi: 10.1002/phar.2191.
    1. Rybak M, Lomaestro B, Rotschafer JC, et al. Therapeutic monitoring of vancomycin in adult patients: a consensus review of the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the Society of Infectious Diseases Pharmacists. Am J Health Syst Pharm. 2009;66(1):82–98. doi: 10.2146/ajhp080434.
    1. McKinnon PS, Paladino JA, Schentag JJ. Evaluation of area under the inhibitory curve (AUIC) and time above the minimum inhibitory concentration (T>MIC) as predictors of outcome for cefepime and ceftazidime in serious bacterial infections. Int J Antimicrob Agents. 2008;31(4):345–351. doi: 10.1016/j.ijantimicag.2007.12.009.
    1. Rayner CR, Forrest A, Meagher AK, et al. Clinical pharmacodynamics of linezolid in seriously ill patients treated in a compassionate use programme. Clin Pharmacokinet. 2003;42(15):1411–1423. doi: 10.2165/00003088-200342150-00007.
    1. Rubino CM, Bhavnani SM, Forrest A, et al. Pharmacokinetics-pharmacodynamics of tigecycline in patients with community-acquired pneumonia. Antimicrob Agents Chemother. 2012;56(1):130–136. doi: 10.1128/AAC.00277-10.
    1. Wong G, Taccone F, Villois P, et al. beta-Lactam pharmacodynamics in Gram-negative bloodstream infections in the critically ill. J Antimicrob Chemother. 2020;75(2):429–433.
    1. Fleuren LM, Roggeveen LF, Guo T, et al. Clinically relevant pharmacokinetic knowledge on antibiotic dosing among intensive care professionals is insufficient: a cross-sectional study. Crit Care. 2019;23(1):185. doi: 10.1186/s13054-019-2438-1.
    1. Ehmann L, Zoller M, Minichmayr IK, et al. Development of a dosing algorithm for meropenem in critically ill patients based on a population pharmacokinetic/pharmacodynamic analysis. Int J Antimicrob Agents. 2019;54(3):309–317. doi: 10.1016/j.ijantimicag.2019.06.016.
    1. Wong G, Briscoe S, McWhinney B, et al. Therapeutic drug monitoring of beta-lactam antibiotics in the critically ill: direct measurement of unbound drug concentrations to achieve appropriate drug exposures. J Antimicrob Chemother. 2018;73(11):3087–3094. doi: 10.1093/jac/dky314.
    1. Williams P, Beall G, Cotta MO, et al. Antimicrobial dosing in critical care: a pragmatic adult dosing nomogram. Int J Antimicrob Agents. 2020;55(2):105837. doi: 10.1016/j.ijantimicag.2019.10.018.
    1. Williams P, Cotta MO, Roberts JA. Pharmacokinetics/Pharmacodynamics of beta-Lactams and Therapeutic Drug Monitoring: From Theory to Practical Issues in the Intensive Care Unit. Semin Respir Crit Care Med. 2019;40(4):476–487. doi: 10.1055/s-0039-1693498.
    1. Nation RL, Garonzik SM, Thamlikitkul V, et al. Dosing guidance for intravenous colistin in critically-ill patients. Clin Infect Dis. 2017;64(5):565–571.
    1. Roberts JA, Taccone FS, Udy AA, et al. Vancomycin dosing in critically ill patients: robust methods for improved continuous-infusion regimens. Antimicrob Agents Chemother. 2011;55(6):2704–2709. doi: 10.1128/AAC.01708-10.
    1. Sinnollareddy M, Peake SL, Roberts MS, et al. Using pharmacokinetics and pharmacodynamics to optimise dosing of antifungal agents in critically ill patients: a systematic review. Int J Antimicrob Agents. 2012;39(1):1–10. doi: 10.1016/j.ijantimicag.2011.07.013.
    1. Jimenez MF, Marshall JC, International Sepsis F Source control in the management of sepsis. Intensive Care Med. 2001;27(Suppl 1):S49–62. doi: 10.1007/PL00003797.
    1. Kim H, Chung SP, Choi SH, et al. Impact of timing to source control in patients with septic shock: a prospective multi-center observational study. J Crit Care. 2019;53:176–182. doi: 10.1016/j.jcrc.2019.06.012.
    1. Martinez ML, Ferrer R, Torrents E, et al. Impact of Source Control in Patients With Severe Sepsis and Septic Shock. Crit Care Med. 2017;45(1):11–19. doi: 10.1097/CCM.0000000000002011.
    1. Azuhata T, Kinoshita K, Kawano D, et al. Time from admission to initiation of surgery for source control is a critical determinant of survival in patients with gastrointestinal perforation with associated septic shock. Crit Care. 2014;18(3):R87. doi: 10.1186/cc13854.
    1. Bloos F, Thomas-Ruddel D, Ruddel H, et al. Impact of compliance with infection management guidelines on outcome in patients with severe sepsis: a prospective observational multi-center study. Crit Care. 2014;18(2):R42. doi: 10.1186/cc13755.
    1. Buck DL, Vester-Andersen M, Moller MH. Surgical delay is a critical determinant of survival in perforated peptic ulcer. Br J Surg. 2013;100(8):1045–1049. doi: 10.1002/bjs.9175.
    1. Chao WN, Tsai CF, Chang HR, et al. Impact of timing of surgery on outcome of Vibrio vulnificus-related necrotizing fasciitis. Am J Surg. 2013;206(1):32–39. doi: 10.1016/j.amjsurg.2012.08.008.
    1. Karvellas CJ, Abraldes JG, Zepeda-Gomez S, et al. The impact of delayed biliary decompression and anti-microbial therapy in 260 patients with cholangitis-associated septic shock. Aliment Pharmacol Ther. 2016;44(7):755–766. doi: 10.1111/apt.13764.
    1. Moss RL, Musemeche CA, Kosloske AM. Necrotizing fasciitis in children: prompt recognition and aggressive therapy improve survival. J Pediatr Surg. 1996;31(8):1142–1146. doi: 10.1016/S0022-3468(96)90104-9.
    1. Wong CH, Chang HC, Pasupathy S, et al. Necrotizing fasciitis: clinical presentation, microbiology, and determinants of mortality. J Bone Joint Surg Am. 2003;85(8):1454–1460. doi: 10.2106/00004623-200308000-00005.
    1. Solomkin JS, Mazuski JE, Bradley JS, et al. Diagnosis and management of complicated intra-abdominal infection in adults and children: guidelines by the Surgical Infection Society and the Infectious Diseases Society of America. Clin Infect Dis. 2010;50(2):133–164. doi: 10.1086/649554.
    1. Mermel LA, Allon M, Bouza E, et al. Clinical practice guidelines for the diagnosis and management of intravascular catheter-related infection: 2009 Update by the Infectious Diseases Society of America. Clin Infect Dis. 2009;49(1):1–45. doi: 10.1086/599376.
    1. Rijnders BJ, Peetermans WE, Verwaest C, et al. Watchful waiting versus immediate catheter removal in ICU patients with suspected catheter-related infection: a randomized trial. Intensive Care Med. 2004;30(6):1073–1080. doi: 10.1007/s00134-004-2212-x.
    1. Garnacho-Montero J, Aldabo-Pallas T, Palomar-Martinez M, et al. Risk factors and prognosis of catheter-related bloodstream infection in critically ill patients: a multicenter study. Intensive Care Med. 2008;34(12):2185–2193. doi: 10.1007/s00134-008-1204-7.
    1. Lorente L, Martin MM, Vidal P, et al. Should central venous catheter be systematically removed in patients with suspected catheter related infection? Crit Care. 2014;18(5):564. doi: 10.1186/s13054-014-0564-3.
    1. Tabah A, Bassetti M, Kollef MH, et al. Antimicrobial de-escalation in critically ill patients: a position statement from a task force of the European Society of Intensive Care Medicine (ESICM) and European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Critically Ill Patients Study Group (ESGCIP) Intensive Care Med. 2020;46(2):245–265. doi: 10.1007/s00134-019-05866-w.
    1. Leone M, Bechis C, Baumstarck K, et al. De-escalation versus continuation of empirical antimicrobial treatment in severe sepsis: a multicenter non-blinded randomized noninferiority trial. Intensive Care Med. 2014;40(10):1399–1408. doi: 10.1007/s00134-014-3411-8.
    1. Tabah A, Cotta MO, Garnacho-Montero J, et al. A systematic review of the definitions, determinants, and clinical outcomes of antimicrobial de-escalation in the intensive care unit. Clin Infect Dis. 2016;62(8):1009–1017. doi: 10.1093/cid/civ1199.
    1. De Bus L, Depuydt P, Steen J, et al (2020) Antimicrobial de-escalation in the critically ill patient and assessment of clinical cure: the DIANA study. Intensive Care Med 46(7):1404–1417
    1. Fernandez-Lazaro CI, Brown KA, Langford BJ, et al. Late-career physicians prescribe longer courses of antibiotics. Clin Infect Dis. 2019;69(9):1467–1475. doi: 10.1093/cid/ciy1130.
    1. Hanretty AM, Gallagher JC. Shortened courses of antibiotics for bacterial infections: a systematic review of randomized controlled trials. Pharmacotherapy. 2018;38(6):674–687. doi: 10.1002/phar.2118.
    1. Royer S, DeMerle KM, Dickson RP, et al. shorter versus longer courses of antibiotics for infection in hospitalized patients: a systematic review and meta-analysis. J Hosp Med. 2018;13(5):336–342. doi: 10.12788/jhm.2905.
    1. Spellberg B. The new antibiotic mantra-"Shorter Is Better". JAMA Intern Med. 2016;176(9):1254–1255. doi: 10.1001/jamainternmed.2016.3646.
    1. Wald-Dickler N, Spellberg B. Short-course antibiotic therapy-replacing constantine units with "Shorter Is Better". Clin Infect Dis. 2019;69(9):1476–1479. doi: 10.1093/cid/ciy1134.
    1. Chastre J, Wolff M, Fagon JY, et al. Comparison of 8 vs 15 days of antibiotic therapy for ventilator-associated pneumonia in adults: a randomized trial. JAMA. 2003;290(19):2588–2598. doi: 10.1001/jama.290.19.2588.
    1. Choudhury G, Mandal P, Singanayagam A, et al. Seven-day antibiotic courses have similar efficacy to prolonged courses in severe community-acquired pneumonia—a propensity-adjusted analysis. Clin Microbiol Infect. 2011;17(12):1852–1858. doi: 10.1111/j.1469-0691.2011.03542.x.
    1. Kalil AC, Metersky ML, Klompas M, et al. Management of adults with hospital-acquired and ventilator-associated pneumonia: 2016 clinical practice guidelines by the infectious diseases society of America and the American Thoracic Society. Clin Infect Dis. 2016;63(5):e61–e111. doi: 10.1093/cid/ciw353.
    1. Vaughn VM, Flanders SA, Snyder A, et al. Excess antibiotic treatment duration and adverse events in patients hospitalized with pneumonia: a multihospital cohort study. Ann Intern Med. 2019;171(3):153–163. doi: 10.7326/M18-3640.
    1. Eliakim-Raz N, Yahav D, Paul M, et al. Duration of antibiotic treatment for acute pyelonephritis and septic urinary tract infection—7 days or less versus longer treatment: systematic review and meta-analysis of randomized controlled trials. J Antimicrob Chemother. 2013;68(10):2183–2191. doi: 10.1093/jac/dkt177.
    1. Runyon BA, McHutchison JG, Antillon MR, et al. Short-course versus long-course antibiotic treatment of spontaneous bacterial peritonitis. A randomized controlled study of 100 patients. Gastroenterology. 1991;100(6):1737–1742. doi: 10.1016/0016-5085(91)90677-D.
    1. Yahav D, Franceschini E, Koppel F, et al. Seven versus 14 days of antibiotic therapy for uncomplicated gram-negative bacteremia: a noninferiority randomized controlled Trial. Clin Infect Dis. 2019;69(7):1091–1098. doi: 10.1093/cid/ciy1054.
    1. Sawyer RG, Claridge JA, Nathens AB, et al. Trial of short-course antimicrobial therapy for intraabdominal infection. N Engl J Med. 2015;372(21):1996–2005. doi: 10.1056/NEJMoa1411162.
    1. Corona A, Bertolini G, Ricotta AM, et al. Variability of treatment duration for bacteraemia in the critically ill: a multinational survey. J Antimicrob Chemother. 2003;52(5):849–852. doi: 10.1093/jac/dkg447.
    1. Burnham JP, Olsen MA, Stwalley D, et al. Infectious diseases consultation reduces 30-day and 1-year all-cause mortality for multidrug-resistant organism infections. Open Forum Infect Dis. 2018;5(3):ofy06. doi: 10.1093/ofid/ofy026.
    1. Macheda G, Dyar OJ, Luc A, et al. Are infection specialists recommending short antibiotic treatment durations? An ESCMID international cross-sectional survey. J Antimicrob Chemother. 2018;73(4):1084–1090. doi: 10.1093/jac/dkx528.
    1. Madaline T, Wadskier Montagne F, Eisenberg R, et al. Early infectious disease consultation is associated with lower mortality in patients with severe sepsis or septic shock who complete the 3-hour sepsis treatment bundle. Open Forum Infect Dis. 2019;6(10):ofz408. doi: 10.1093/ofid/ofz408.
    1. Schmitt S, McQuillen DP, Nahass R, et al. Infectious diseases specialty intervention is associated with decreased mortality and lower healthcare costs. Clin Infect Dis. 2014;58(1):22–28. doi: 10.1093/cid/cit610.
    1. Turner RB, Valcarlos E, Won R, et al. Impact of infectious diseases consultation on clinical outcomes of patients with staphylococcus aureus bacteremia in a community health system. Antimicrob Agents Chemother. 2016;60(10):5682–5687. doi: 10.1128/AAC.00439-16.
    1. Viale P, Tedeschi S, Scudeller L, et al. Infectious diseases team for the early management of severe sepsis and septic shock in the emergency department. Clin Infect Dis. 2017;65(8):1253–1259. doi: 10.1093/cid/cix548.
    1. Pugh R, Grant C, Cooke RP, et al. Short-course versus prolonged-course antibiotic therapy for hospital-acquired pneumonia in critically ill adults. Cochrane Database Syst Rev. 2015;8:CD007577.
    1. Havey TC, Fowler RA, Daneman N. Duration of antibiotic therapy for bacteremia: a systematic review and meta-analysis. Crit Care. 2011;15(6):R267. doi: 10.1186/cc10545.
    1. Dimopoulos G, Matthaiou DK, Karageorgopoulos DE, et al. Short- versus long-course antibacterial therapy for community-acquired pneumonia: a meta-analysis. Drugs. 2008;68(13):1841–1854. doi: 10.2165/00003495-200868130-00004.
    1. Tansarli GS, Andreatos N, Pliakos EE, et al (2019) a systematic review and meta-analysis of antibiotic treatment duration for bacteremia due to enterobacteriaceae. Antimicrob Agents Chemother 63(5):e02495-18
    1. Montravers P, Tubach F, Lescot T, et al. Short-course antibiotic therapy for critically ill patients treated for postoperative intra-abdominal infection: the DURAPOP randomised clinical trial. Intensive Care Med. 2018;44(3):300–310. doi: 10.1007/s00134-018-5088-x.
    1. Mazuski JE, Sawyer RG, Nathens AB, et al. The Surgical Infection Society guidelines on antimicrobial therapy for intra-abdominal infections: evidence for the recommendations. Surg Infect (Larchmt) 2002;3(3):175–233. doi: 10.1089/109629602761624180.
    1. van Engelen TSR, Wiersinga WJ, Scicluna BP, et al. Biomarkers in Sepsis. Crit Care Clin. 2018;34(1):139–152. doi: 10.1016/j.ccc.2017.08.010.
    1. Annane D, Maxime V, Faller JP, et al (2013) Procalcitonin levels to guide antibiotic therapy in adults with non-microbiologically proven apparent severe sepsis: a randomised controlled trial. BMJ Open 3(2):e002186
    1. Bloos F, Trips E, Nierhaus A, et al. Effect of Sodium Selenite Administration and Procalcitonin-Guided Therapy on Mortality in Patients With Severe Sepsis or Septic Shock: A Randomized Clinical Trial. JAMA Intern Med. 2016;176(9):1266–1276. doi: 10.1001/jamainternmed.2016.2514.
    1. Bouadma L, Luyt CE, Tubach F, et al. Use of procalcitonin to reduce patients' exposure to antibiotics in intensive care units (PRORATA trial): a multicentre randomised controlled trial. Lancet. 2010;375(9713):463–474. doi: 10.1016/S0140-6736(09)61879-1.
    1. de Jong E, van Oers JA, Beishuizen A, et al. Efficacy and safety of procalcitonin guidance in reducing the duration of antibiotic treatment in critically ill patients: a randomised, controlled, open-label trial. Lancet Infect Dis. 2016;16(7):819–827. doi: 10.1016/S1473-3099(16)00053-0.
    1. Deliberato RO, Marra AR, Sanches PR, et al. Clinical and economic impact of procalcitonin to shorten antimicrobial therapy in septic patients with proven bacterial infection in an intensive care setting. Diagn Microbiol Infect Dis. 2013;76(3):266–271. doi: 10.1016/j.diagmicrobio.2013.03.027.
    1. Hochreiter M, Kohler T, Schweiger AM, et al. Procalcitonin to guide duration of antibiotic therapy in intensive care patients: a randomized prospective controlled trial. Crit Care. 2009;13(3):R83. doi: 10.1186/cc7903.
    1. Liu BH, Li HF, Lei Y, et al. Clinical significance of dynamic monitoring of procalcitonin in guiding the use of antibiotics in patients with sepsis in ICU. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2013;25(11):690–693.
    1. Nobre V, Harbarth S, Graf JD, et al. Use of procalcitonin to shorten antibiotic treatment duration in septic patients: a randomized trial. Am J Respir Crit Care Med. 2008;177(5):498–505. doi: 10.1164/rccm.200708-1238OC.
    1. Oliveira CF, Botoni FA, Oliveira CR, et al. Procalcitonin versus C-reactive protein for guiding antibiotic therapy in sepsis: a randomized trial. Crit Care Med. 2013;41(10):2336–2343. doi: 10.1097/CCM.0b013e31828e969f.
    1. Qu R, Ji Y, Ling Y, et al. Procalcitonin is a good tool to guide duration of antibiotic therapy in patients with severe acute pancreatitis. A randomized prospective single-center controlled trial. Saudi Med J. 2012;33(4):382–387.
    1. Schroeder S, Hochreiter M, Koehler T, et al. Procalcitonin (PCT)-guided algorithm reduces length of antibiotic treatment in surgical intensive care patients with severe sepsis: results of a prospective randomized study. Langenbecks Arch Surg. 2009;394(2):221–226. doi: 10.1007/s00423-008-0432-1.
    1. Shehabi Y, Sterba M, Garrett PM, et al. Procalcitonin algorithm in critically ill adults with undifferentiated infection or suspected sepsis. A randomized controlled trial. Am J Respir Crit Care Med. 2014;190(10):1102–1110. doi: 10.1164/rccm.201408-1483OC.
    1. Stolz D, Smyrnios N, Eggimann P, et al. Procalcitonin for reduced antibiotic exposure in ventilator-associated pneumonia: a randomised study. Eur Respir J. 2009;34(6):1364–1375. doi: 10.1183/09031936.00053209.
    1. Xu XL, Yan FD, Yu JQ, et al. Efficacy and safety of procalcitonin guidance in reducing the duration of antibiotic treatment of sepsis patients. Zhonghua Yi Xue Za Zhi. 2017;97(5):343–346.
    1. Arulkumaran N, Khpal M, Tam K, et al. Effect of antibiotic discontinuation strategies on mortality and infectious complications in critically ill septic patients: a meta-analysis and trial sequential analysis. Crit Care Med. 2020;48(5):757–764. doi: 10.1097/CCM.0000000000004267.
    1. Collins CD, Brockhaus K, Sim T, et al. Analysis to determine cost-effectiveness of procalcitonin-guided antibiotic use in adult patients with suspected bacterial infection and sepsis. Am J Health Syst Pharm. 2019;76(16):1219–1225. doi: 10.1093/ajhp/zxz129.
    1. Lewis SR, Pritchard MW, Evans DJ, et al. Colloids versus crystalloids for fluid resuscitation in critically ill people. Cochrane Database Syst Rev. 2018;8:CD000567.
    1. Awad S, Allison SP, Lobo DN. The history of 0.9% saline. Clin Nutr. 2008;27(2):179–188. doi: 10.1016/j.clnu.2008.01.008.
    1. Chowdhury AH, Cox EF, Francis ST, et al. A randomized, controlled, double-blind crossover study on the effects of 2-L infusions of 0.9% saline and plasma-lyte(R) 148 on renal blood flow velocity and renal cortical tissue perfusion in healthy volunteers. Ann Surg. 2012;256(1):18–24. doi: 10.1097/SLA.0b013e318256be72.
    1. Kellum JA. Fluid resuscitation and hyperchloremic acidosis in experimental sepsis: improved short-term survival and acid-base balance with Hextend compared with saline. Crit Care Med. 2002;30(2):300–305. doi: 10.1097/00003246-200202000-00006.
    1. Kellum JA, Song M, Almasri E. Hyperchloremic acidosis increases circulating inflammatory molecules in experimental sepsis. Chest. 2006;130(4):962–967. doi: 10.1378/chest.130.4.962.
    1. Waters JH, Gottlieb A, Schoenwald P, et al. Normal saline versus lactated Ringer's solution for intraoperative fluid management in patients undergoing abdominal aortic aneurysm repair: an outcome study. Anesth Analg. 2001;93(4):817–822. doi: 10.1097/00000539-200110000-00004.
    1. Williams EL, Hildebrand KL, McCormick SA, et al. The effect of intravenous lactated Ringer's solution versus 0.9% sodium chloride solution on serum osmolality in human volunteers. Anesth Analg. 1999;88(5):999–1003.
    1. Rochwerg B, Alhazzani W, Sindi A, et al. Fluid resuscitation in sepsis: a systematic review and network meta-analysis. Ann Intern Med. 2014;161(5):347–355. doi: 10.7326/M14-0178.
    1. Young P, Bailey M, Beasley R, et al. Effect of a buffered crystalloid solution vs saline on acute kidney injury among patients in the intensive care unit: the SPLIT Randomized Clinical Trial. JAMA. 2015;314(16):1701–1710. doi: 10.1001/jama.2015.12334.
    1. Semler MW, Wanderer JP, Ehrenfeld JM, et al. Balanced crystalloids versus saline in the intensive care unit. The SALT Randomized Trial. Am J Respir Crit Care Med. 2017;195(10):1362–1372. doi: 10.1164/rccm.201607-1345OC.
    1. Semler MW, Self WH, Wanderer JP, et al. Balanced crystalloids versus saline in critically ill adults. N Engl J Med. 2018;378(9):829–839. doi: 10.1056/NEJMoa1711584.
    1. Brown RM, Wang L, Coston TD, et al. Balanced crystalloids versus saline in sepsis. A secondary analysis of the SMART clinical trial. Am J Respir Crit Care Med. 2019;200(12):1487–1495. doi: 10.1164/rccm.201903-0557OC.
    1. Myburgh J. Patient-Centered Outcomes and Resuscitation Fluids. N Engl J Med. 2018;378(9):862–863. doi: 10.1056/NEJMe1800449.
    1. Zampieri FG, Azevedo LCP, Correa TD, et al. Study protocol for the Balanced Solution versus Saline in Intensive Care Study (BaSICS): a factorial randomised trial. Crit Care Resusc. 2017;19(2):175–182.
    1. Institute G (2020) Plasma-Lyte 148® versUs Saline Study (PLUS).: . Available from:
    1. Caironi P, Tognoni G, Gattinoni L. Albumin replacement in severe sepsis or septic shock. N Engl J Med. 2014;371(1):84.
    1. Martin GS, Bassett P. Crystalloids vs. colloids for fluid resuscitation in the Intensive Care Unit: a systematic review and meta-analysis. J Crit Care. 2019;50:144–154. doi: 10.1016/j.jcrc.2018.11.031.
    1. Park CHL, de Almeida JP, de Oliveira GQ, et al. Lactated ringer's versus 4% albumin on lactated ringer's in early sepsis therapy in cancer patients: a pilot single-center randomized trial. Crit Care Med. 2019;47(10):e798–e805. doi: 10.1097/CCM.0000000000003900.
    1. Kakaei FHS, Asheghvatan A, Zarrintan S, Asvadi T, Beheshtirouy S, Mohajer A. Albumin as a resuscitative fluid in patients with severe sepsis: a randomized clinical trial. Adv Biosci Clin Med. 2017;5(4):9–16. doi: 10.7575/aiac.abcmed.17.05.04.02.
    1. Haase N, Perner A, Hennings LI, et al. Hydroxyethyl starch 130/0.38–0.45 versus crystalloid or albumin in patients with sepsis: systematic review with meta-analysis and trial sequential analysis. BMJ. 2013;346:f839. doi: 10.1136/bmj.f839.
    1. Annane D, Siami S, Jaber S, et al. Effects of fluid resuscitation with colloids vs crystalloids on mortality in critically ill patients presenting with hypovolemic shock: the CRISTAL randomized trial. JAMA. 2013;310(17):1809–1817. doi: 10.1001/jama.2013.280502.
    1. Rochwerg B, Alhazzani W, Gibson A, et al. Fluid type and the use of renal replacement therapy in sepsis: a systematic review and network meta-analysis. Intensive Care Med. 2015;41(9):1561–1571. doi: 10.1007/s00134-015-3794-1.
    1. Moeller C, Fleischmann C, Thomas-Rueddel D, et al. How safe is gelatin? A systematic review and meta-analysis of gelatin-containing plasma expanders vs crystalloids and albumin. J Crit Care. 2016;35:75–83. doi: 10.1016/j.jcrc.2016.04.011.
    1. Avni T, Lador A, Lev S, et al. Vasopressors for the treatment of septic shock: systematic review and meta-analysis. PLoS One. 2015;10(8):e0129305. doi: 10.1371/journal.pone.0129305.
    1. Regnier B, Safran D, Carlet J, et al. Comparative haemodynamic effects of dopamine and dobutamine in septic shock. Intensive Care Med. 1979;5(3):115–120. doi: 10.1007/BF01683192.
    1. De Backer D, Creteur J, Silva E, et al. Effects of dopamine, norepinephrine, and epinephrine on the splanchnic circulation in septic shock: which is best? Crit Care Med. 2003;31(6):1659–1667. doi: 10.1097/01.CCM.0000063045.77339.B6.
    1. Cui J, Wei X, Lv H, et al. The clinical efficacy of intravenous IgM-enriched immunoglobulin (pentaglobin) in sepsis or septic shock: a meta-analysis with trial sequential analysis. Ann Intensive Care. 2019;9(1):27. doi: 10.1186/s13613-019-0501-3.
    1. Myburgh JA, Higgins A, Jovanovska A, et al. A comparison of epinephrine and norepinephrine in critically ill patients. Intensive Care Med. 2008;34(12):2226–2234. doi: 10.1007/s00134-008-1219-0.
    1. Holmes CL, Patel BM, Russell JA, et al. Physiology of vasopressin relevant to management of septic shock. Chest. 2001;120(3):989–1002. doi: 10.1378/chest.120.3.989.
    1. Landry DW, Levin HR, Gallant EM, et al. Vasopressin deficiency contributes to the vasodilation of septic shock. Circulation. 1997;95(5):1122–1125. doi: 10.1161/01.CIR.95.5.1122.
    1. Gordon AC, Mason AJ, Thirunavukkarasu N, et al. Effect of early vasopressin vs norepinephrine on kidney failure in patients with septic shock: the VANISH randomized clinical trial. JAMA. 2016;316(5):509–518. doi: 10.1001/jama.2016.10485.
    1. Dunser MW, Mayr AJ, Tur A, et al. Ischemic skin lesions as a complication of continuous vasopressin infusion in catecholamine-resistant vasodilatory shock: incidence and risk factors. Crit Care Med. 2003;31(5):1394–1398. doi: 10.1097/01.CCM.0000059722.94182.79.
    1. Russell JA, Walley KR, Singer J, et al. Vasopressin versus norepinephrine infusion in patients with septic shock. N Engl J Med. 2008;358(9):877–887. doi: 10.1056/NEJMoa067373.
    1. Ukor IF, Walley KR. Vasopressin in Vasodilatory Shock. Crit Care Clin. 2019;35(2):247–261. doi: 10.1016/j.ccc.2018.11.004.
    1. McIntyre WF, Um KJ, Alhazzani W, et al. Association of vasopressin plus catecholamine vasopressors vs catecholamines alone with atrial fibrillation in patients with distributive shock: a systematic review and meta-analysis. JAMA. 2018;319(18):1889–1900. doi: 10.1001/jama.2018.4528.
    1. Nagendran M, Russell JA, Walley KR, et al. Vasopressin in septic shock: an individual patient data meta-analysis of randomised controlled trials. Intensive Care Med. 2019;45(6):844–855. doi: 10.1007/s00134-019-05620-2.
    1. Gamper G, Havel C, Arrich J, et al. Vasopressors for hypotensive shock. Cochrane Database Syst Rev. 2016;2:CD0037709.
    1. Akinaga J, Lima V, Kiguti LR, et al. Differential phosphorylation, desensitization, and internalization of alpha1A-adrenoceptors activated by norepinephrine and oxymetazoline. Mol Pharmacol. 2013;83(4):870–881. doi: 10.1124/mol.112.082313.
    1. Belletti A, Benedetto U, Biondi-Zoccai G, et al. The effect of vasoactive drugs on mortality in patients with severe sepsis and septic shock. A network meta-analysis of randomized trials. J Crit Care. 2017;37:91–98. doi: 10.1016/j.jcrc.2016.08.010.
    1. Russell JA, Vincent JL, Kjolbye AL, et al. Selepressin, a novel selective vasopressin V1A agonist, is an effective substitute for norepinephrine in a phase IIa randomized, placebo-controlled trial in septic shock patients. Crit Care. 2017;21(1):213. doi: 10.1186/s13054-017-1798-7.
    1. Laterre PF, Berry SM, Blemings A, et al (2019) Effect of selepressin vs placebo on ventilator- and vasopressor-free days in patients with septic shock: the SEPSIS-ACT randomized clinical trial. JAMA 322(15):1476–1485
    1. Chawla LS, Busse L, Brasha-Mitchell E, et al. Intravenous angiotensin II for the treatment of high-output shock (ATHOS trial): a pilot study. Crit Care. 2014;18(5):534. doi: 10.1186/s13054-014-0534-9.
    1. Khanna A, English SW, Wang XS, et al. Angiotensin II for the treatment of vasodilatory shock. N Engl J Med. 2017;377(5):419–430. doi: 10.1056/NEJMoa1704154.
    1. Liu ZM, Chen J, Kou Q, et al. Terlipressin versus norepinephrine as infusion in patients with septic shock: a multicentre, randomised, double-blinded trial. Intensive Care Med. 2018;44(11):1816–1825. doi: 10.1007/s00134-018-5267-9.
    1. Walley KR. Sepsis-induced myocardial dysfunction. Curr Opin Crit Care. 2018;24(4):292–299. doi: 10.1097/MCC.0000000000000507.
    1. Cunha-Goncalves D, Perez-de-Sa V, Larsson A, et al. Inotropic support during experimental endotoxemic shock: part II. A comparison of levosimendan with dobutamine. Anesth Analg. 2009;109(5):1576–1583. doi: 10.1213/ane.0b013e3181af40e0.
    1. Dubin A, Lattanzio B, Gatti L. The spectrum of cardiovascular effects of dobutamine—from healthy subjects to septic shock patients. Rev Bras Ter Intensiva. 2017;29(4):490–498. doi: 10.5935/0103-507X.20170068.
    1. Wilkman E, Kaukonen KM, Pettila V, et al. Association between inotrope treatment and 90-day mortality in patients with septic shock. Acta Anaesthesiol Scand. 2013;57(4):431–442. doi: 10.1111/aas.12056.
    1. Dunser MW, Festic E, Dondorp A, et al. Recommendations for sepsis management in resource-limited settings. Intensive Care Med. 2012;38(4):557–574. doi: 10.1007/s00134-012-2468-5.
    1. Gordon AC, Perkins GD, Singer M, et al. Levosimendan for the prevention of acute organ dysfunction in sepsis. N Engl J Med. 2016;375(17):1638–1648. doi: 10.1056/NEJMoa1609409.
    1. Bhattacharjee S, Soni KD, Maitra S, et al. Levosimendan does not provide mortality benefit over dobutamine in adult patients with septic shock: a meta-analysis of randomized controlled trials. J Clin Anesth. 2017;39:67–72. doi: 10.1016/j.jclinane.2017.03.011.
    1. Araghi A, Bander JJ, Guzman JA. Arterial blood pressure monitoring in overweight critically ill patients: invasive or noninvasive? Crit Care. 2006;10(2):R64. doi: 10.1186/cc4896.
    1. Bur A, Hirschl MM, Herkner H, et al. Accuracy of oscillometric blood pressure measurement according to the relation between cuff size and upper-arm circumference in critically ill patients. Crit Care Med. 2000;28(2):371–376. doi: 10.1097/00003246-200002000-00014.
    1. Kaur B, Kaur S, Yaddanapudi LN, et al. Comparison between invasive and noninvasive blood pressure measurements in critically ill patients receiving inotropes. Blood Press Monit. 2019;24(1):24–29. doi: 10.1097/MBP.0000000000000358.
    1. Lehman LW, Saeed M, Talmor D, et al. Methods of blood pressure measurement in the ICU. Crit Care Med. 2013;41(1):34–40. doi: 10.1097/CCM.0b013e318265ea46.
    1. Riley LE, Chen GJ, Latham HE. Comparison of noninvasive blood pressure monitoring with invasive arterial pressure monitoring in medical ICU patients with septic shock. Blood Press Monit. 2017;22(4):202–207. doi: 10.1097/MBP.0000000000000258.
    1. Vincent J (2019) Arterial, central venous, and pulmonary artery catheters. In: JE P (ed) Critical care medicine: principles and diagnosis and management in the adult, 5th edn. Elsevier, Philadelphia, pp 40–49
    1. Scheer B, Perel A, Pfeiffer UJ. Clinical review: complications and risk factors of peripheral arterial catheters used for haemodynamic monitoring in anaesthesia and intensive care medicine. Crit Care. 2002;6(3):199–204. doi: 10.1186/cc1489.
    1. Bhattacharjee S, Maitra S, Baidya DK. Comparison between ultrasound guided technique and digital palpation technique for radial artery cannulation in adult patients: an updated meta-analysis of randomized controlled trials. J Clin Anesth. 2018;47:54–59. doi: 10.1016/j.jclinane.2018.03.019.
    1. Gu WJ, Wu XD, Wang F, et al. Ultrasound guidance facilitates radial artery catheterization: a meta-analysis with trial sequential analysis of randomized controlled trials. Chest. 2016;149(1):166–179. doi: 10.1378/chest.15-1784.
    1. O'Horo JC, Maki DG, Krupp AE, et al. Arterial catheters as a source of bloodstream infection: a systematic review and meta-analysis. Crit Care Med. 2014;42(6):1334–1339. doi: 10.1097/CCM.0000000000000166.
    1. Delaney A, Finnis M, Bellomo R, et al. Initiation of vasopressor infusions via peripheral versus central access in patients with early septic shock: a retrospective cohort study. Emerg Med Australas. 2020;32(2):210–219. doi: 10.1111/1742-6723.13394.
    1. Ricard JD, Salomon L, Boyer A, et al. Central or peripheral catheters for initial venous access of ICU patients: a randomized controlled trial. Crit Care Med. 2013;41(9):2108–2115. doi: 10.1097/CCM.0b013e31828a42c5.
    1. Cardenas-Garcia J, Schaub KF, Belchikov YG, et al. Safety of peripheral intravenous administration of vasoactive medication. J Hosp Med. 2015;10(9):581–585. doi: 10.1002/jhm.2394.
    1. Tian DH, Smyth C, Keijzers G, et al. Safety of peripheral administration of vasopressor medications: a systematic review. Emerg Med Australas. 2020;32(2):220–227. doi: 10.1111/1742-6723.13406.
    1. Loubani OM, Green RS. A systematic review of extravasation and local tissue injury from administration of vasopressors through peripheral intravenous catheters and central venous catheters. J Crit Care. 2015;30(3):653e9-17. doi: 10.1016/j.jcrc.2015.01.014.
    1. Beck V, Chateau D, Bryson GL, et al. Timing of vasopressor initiation and mortality in septic shock: a cohort study. Crit Care. 2014;18(3):R97. doi: 10.1186/cc13868.
    1. Black LP, Puskarich MA, Smotherman C, et al. Time to vasopressor initiation and organ failure progression in early septic shock. J Am Coll Emerg Physicians Open. 2020;1(3):222–230. doi: 10.1002/emp2.12060.
    1. Edaigbini SAAM, Delia IZ, Ibrahim A, Okwunodulo O, Alegbejo-Olarinoye M. Clinical competence with central venous lines by resident doctors in a Nigerian teaching hospital. Sub-Saharan Afr J Med. 2017;4:47–51. doi: 10.4103/ssajm.ssajm_37_16.
    1. Rivers E, Nguyen B, Havstad S, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345(19):1368–1377. doi: 10.1056/NEJMoa010307.
    1. Alphonsus CS, Rodseth RN. The endothelial glycocalyx: a review of the vascular barrier. Anaesthesia. 2014;69(7):777–784. doi: 10.1111/anae.12661.
    1. Boyd JH, Forbes J, Nakada TA, et al. Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality. Crit Care Med. 2011;39(2):259–265. doi: 10.1097/CCM.0b013e3181feeb15.
    1. Marik PE, Linde-Zwirble WT, Bittner EA, et al. Fluid administration in severe sepsis and septic shock, patterns and outcomes: an analysis of a large national database. Intensive Care Med. 2017;43(5):625–632. doi: 10.1007/s00134-016-4675-y.
    1. Chen C, Kollef MH. Targeted fluid minimization following initial resuscitation in septic shock: a pilot study. Chest. 2015;148(6):1462–1469. doi: 10.1378/chest.15-1525.
    1. Corl KA, Prodromou M, Merchant RC, et al. The restrictive IV Fluid trial in severe sepsis and septic shock (RIFTS): a randomized pilot study. Crit Care Med. 2019;47(7):951–959. doi: 10.1097/CCM.0000000000003779.
    1. Hjortrup PB, Haase N, Bundgaard H, et al. Restricting volumes of resuscitation fluid in adults with septic shock after initial management: the CLASSIC randomised, parallel-group, multicentre feasibility trial. Intensive Care Med. 2016;42(11):1695–1705. doi: 10.1007/s00134-016-4500-7.
    1. Macdonald SPJ, Keijzers G, Taylor DM, et al. Restricted fluid resuscitation in suspected sepsis associated hypotension (REFRESH): a pilot randomised controlled trial. Intensive Care Med. 2018;44(12):2070–2078. doi: 10.1007/s00134-018-5433-0.
    1. Semler MW, Janz DR, Casey JD, et al (2019) Conservative fluid management after sepsis resuscitation: a pilot randomized trial. J Intensive Care Med 35(12):1374–1382. 10.1177/0885066618823183
    1. Meyhoff TS, Hjortrup PB, Moller MH, et al. Conservative vs liberal fluid therapy in septic shock (CLASSIC) trial-Protocol and statistical analysis plan. Acta Anaesthesiol Scand. 2019;63(9):1262–1271. doi: 10.1111/aas.13434.
    1. Self WH, Semler MW, Bellomo R, et al. Liberal versus restrictive intravenous fluid therapy for early septic shock: rationale for a randomized trial. Ann Emerg Med. 2018;72(4):457–466. doi: 10.1016/j.annemergmed.2018.03.039.
    1. Girardis M, Busani S, Damiani E, et al. Effect of Conservative vs conventional oxygen therapy on mortality among patients in an intensive care unit: the oxygen-ICU randomized clinical trial. JAMA. 2016;316(15):1583–1589. doi: 10.1001/jama.2016.11993.
    1. Investigators I-R, the A, New Zealand Intensive Care Society Clinical Trials G et al. Conservative Oxygen Therapy during Mechanical Ventilation in the ICU. N Engl J Med. 2020;382(11):989–998. doi: 10.1056/NEJMoa1903297.
    1. Panwar R, Hardie M, Bellomo R, et al. Conservative versus liberal oxygenation targets for mechanically ventilated patients. A pilot multicenter randomized controlled trial. Am J Respir Crit Care Med. 2016;193(1):43–51. doi: 10.1164/rccm.201505-1019OC.
    1. Chu DK, Kim LH, Young PJ, et al. Mortality and morbidity in acutely ill adults treated with liberal versus conservative oxygen therapy (IOTA): a systematic review and meta-analysis. Lancet. 2018;391(10131):1693–1705. doi: 10.1016/S0140-6736(18)30479-3.
    1. Young P, Mackle D, Bellomo R, et al. Conservative oxygen therapy for mechanically ventilated adults with sepsis: a post hoc analysis of data from the intensive care unit randomized trial comparing two approaches to oxygen therapy (ICU-ROX) Intensive Care Med. 2020;46(1):17–26. doi: 10.1007/s00134-019-05857-x.
    1. Barrot L, Asfar P, Mauny F, et al. Liberal or conservative oxygen therapy for acute respiratory distress syndrome. N Engl J Med. 2020;382(11):999–1008. doi: 10.1056/NEJMoa1916431.
    1. Mauri T, Turrini C, Eronia N, et al. Physiologic effects of high-flow nasal cannula in acute hypoxemic respiratory failure. Am J Respir Crit Care Med. 2017;195(9):1207–1215. doi: 10.1164/rccm.201605-0916OC.
    1. Frat JP, Thille AW, Mercat A, et al. High-flow oxygen through nasal cannula in acute hypoxemic respiratory failure. N Engl J Med. 2015;372(23):2185–2196. doi: 10.1056/NEJMoa1503326.
    1. Ni YN, Luo J, Yu H, et al. The effect of high-flow nasal cannula in reducing the mortality and the rate of endotracheal intubation when used before mechanical ventilation compared with conventional oxygen therapy and noninvasive positive pressure ventilation. A systematic review and meta-analysis. Am J Emerg Med. 2018;36(2):226–233. doi: 10.1016/j.ajem.2017.07.083.
    1. Ou X, Hua Y, Liu J, et al. Effect of high-flow nasal cannula oxygen therapy in adults with acute hypoxemic respiratory failure: a meta-analysis of randomized controlled trials. CMAJ. 2017;189(7):E260–E267. doi: 10.1503/cmaj.160570.
    1. Rochwerg B, Granton D, Wang DX, et al. High-flow nasal cannula compared with conventional oxygen therapy for acute hypoxemic respiratory failure: author's reply. Intensive Care Med. 2019;45(8):1171. doi: 10.1007/s00134-019-05658-2.
    1. Demoule A, Chevret S, Carlucci A, et al. Changing use of noninvasive ventilation in critically ill patients: trends over 15 years in francophone countries. Intensive Care Med. 2016;42(1):82–92. doi: 10.1007/s00134-015-4087-4.
    1. Demoule A, Girou E, Richard JC, et al. Benefits and risks of success or failure of noninvasive ventilation. Intensive Care Med. 2006;32(11):1756–1765. doi: 10.1007/s00134-006-0324-1.
    1. Bellani G, Laffey JG, Pham T, et al. Noninvasive ventilation of patients with acute respiratory distress syndrome. Insights from the LUNG SAFE Study. Am J Respir Crit Care Med. 2017;195(1):67–77. doi: 10.1164/rccm.201606-1306OC.
    1. Antonelli M, Conti G, Rocco M, et al. A comparison of noninvasive positive-pressure ventilation and conventional mechanical ventilation in patients with acute respiratory failure. N Engl J Med. 1998;339(7):429–435. doi: 10.1056/NEJM199808133390703.
    1. Honrubia T, Garcia Lopez FJ, Franco N, et al. Noninvasive vs conventional mechanical ventilation in acute respiratory failure: a multicenter, randomized controlled trial. Chest. 2005;128(6):3916–3924. doi: 10.1378/chest.128.6.3916.
    1. Belenguer-Muncharaz A, Cubedo-Bort M, Blasco-Asensio D, et al. Non-invasive ventilation versus invasive mechanical ventilation in patients with hypoxemic acute respiratory failure in an Intensive Care Unit. A randomized controlled study. Minerva Pneumologica. 2017;56:1–10.
    1. Tonelli R, Fantini R, Tabbi L, et al. Early inspiratory effort assessment by esophageal manometry predicts noninvasive ventilation outcome in de novo respiratory failure. A pilot study. Am J Respir Crit Care Med. 2020;202(4):558–567. doi: 10.1164/rccm.201912-2512OC.
    1. Bernard GR, Artigas A, Brigham KL, et al. The American-European Consensus Conference on ARDS definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med. 1994;149(3 Pt 1):818–824. doi: 10.1164/ajrccm.149.3.7509706.
    1. Force ADT, Ranieri VM, Rubenfeld GD, et al. Acute respiratory distress syndrome: the Berlin Definition. JAMA. 2012;307(23):2526–2533.
    1. Brower RG, Matthay MA, Acute Respiratory Distress Syndrome N et al. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1301–1308. doi: 10.1056/NEJM200005043421801.
    1. Amato MB, Barbas CS, Medeiros DM, et al. Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med. 1998;338(6):347–354. doi: 10.1056/NEJM199802053380602.
    1. Brochard L, Roudot-Thoraval F, Roupie E, et al. Tidal volume reduction for prevention of ventilator-induced lung injury in acute respiratory distress syndrome. The Multicenter Trail Group on Tidal Volume reduction in ARDS. Am J Respir Crit Care Med. 1998;158(6):1831–1838. doi: 10.1164/ajrccm.158.6.9801044.
    1. Brower RG, Shanholtz CB, Fessler HE, et al. Prospective, randomized, controlled clinical trial comparing traditional versus reduced tidal volume ventilation in acute respiratory distress syndrome patients. Crit Care Med. 1999;27(8):1492–1498. doi: 10.1097/00003246-199908000-00015.
    1. Eichacker PQ, Gerstenberger EP, Banks SM, et al. Meta-analysis of acute lung injury and acute respiratory distress syndrome trials testing low tidal volumes. Am J Respir Crit Care Med. 2002;166(11):1510–1514. doi: 10.1164/rccm.200208-956OC.
    1. Marini JJ, Gattinoni L. Ventilatory management of acute respiratory distress syndrome: a consensus of two. Crit Care Med. 2004;32(1):250–255. doi: 10.1097/01.CCM.0000104946.66723.A8.
    1. Tobin MJ. Culmination of an era in research on the acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1360–1361. doi: 10.1056/NEJM200005043421808.
    1. Hager DN, Krishnan JA, Hayden DL, et al. Tidal volume reduction in patients with acute lung injury when plateau pressures are not high. Am J Respir Crit Care Med. 2005;172(10):1241–1245. doi: 10.1164/rccm.200501-048CP.
    1. Checkley W, Brower R, Korpak A, et al. Effects of a clinical trial on mechanical ventilation practices in patients with acute lung injury. Am J Respir Crit Care Med. 2008;177(11):1215–1222. doi: 10.1164/rccm.200709-1424OC.
    1. Amato MB, Meade MO, Slutsky AS, et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med. 2015;372(8):747–755. doi: 10.1056/NEJMsa1410639.
    1. Papazian L, Aubron C, Brochard L, et al. Formal guidelines: management of acute respiratory distress syndrome. Ann Intensive Care. 2019;9(1):69. doi: 10.1186/s13613-019-0540-9.
    1. Laffey JG, Bellani G, Pham T, et al. Potentially modifiable factors contributing to outcome from acute respiratory distress syndrome: the LUNG SAFE study. Intensive Care Med. 2016;42(12):1865–1876. doi: 10.1007/s00134-016-4571-5.
    1. Villar J, Martin-Rodriguez C, Dominguez-Berrot AM, et al. A quantile analysis of plateau and driving pressures: effects on mortality in patients with acute respiratory distress syndrome receiving lung-protective ventilation. Crit Care Med. 2017;45(5):843–850. doi: 10.1097/CCM.0000000000002330.
    1. Hodgson CL, Cooper DJ, Arabi Y, et al. Maximal recruitment open lung ventilation in acute respiratory distress syndrome (PHARLAP). A phase II, multicenter randomized controlled clinical trial. Am J Respir Crit Care Med. 2019;200(11):1363–1372. doi: 10.1164/rccm.201901-0109OC.
    1. Cavalcanti AB, Suzumura EA, Writing Group for the Alveolar Recruitment for Acute Respiratory Distress Syndrome Trial I et al. Effect of lung recruitment and titrated positive end-expiratory pressure (PEEP) vs low PEEP on mortality in patients with acute respiratory distress syndrome: a randomized clinical trial. JAMA. 2017;318(14):1335–1345. doi: 10.1001/jama.2017.14171.
    1. Brower RG, Lanken PN, MacIntyre N, et al. Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med. 2004;351(4):327–336. doi: 10.1056/NEJMoa032193.
    1. Meade MO, Cook DJ, Guyatt GH, et al. Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA. 2008;299(6):637–645. doi: 10.1001/jama.299.6.637.
    1. Mercat A, Richard JC, Vielle B, et al. Positive end-expiratory pressure setting in adults with acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA. 2008;299(6):646–655. doi: 10.1001/jama.299.6.646.
    1. Kacmarek RM, Villar J, Sulemanji D, et al. Open lung approach for the acute respiratory distress syndrome: a pilot randomized. controlled trial. Crit Care Med. 2016;44(1):32–42. doi: 10.1097/CCM.0000000000001383.
    1. Briel M, Meade M, Mercat A, et al. Higher vs lower positive end-expiratory pressure in patients with acute lung injury and acute respiratory distress syndrome: systematic review and meta-analysis. JAMA. 2010;303(9):865–873. doi: 10.1001/jama.2010.218.
    1. Goligher EC, Kavanagh BP, Rubenfeld GD, et al. Oxygenation response to positive end-expiratory pressure predicts mortality in acute respiratory distress syndrome. A secondary analysis of the LOVS and ExPress trials. Am J Respir Crit Care Med. 2014;190(1):70–76. doi: 10.1164/rccm.201404-0688OC.
    1. Amato MB, Barbas CS, Medeiros DM, et al. Beneficial effects of the "open lung approach" with low distending pressures in acute respiratory distress syndrome. A prospective randomized study on mechanical ventilation. Am J Respir Crit Care Med. 1995;152(6 Pt 1):1835–1846. doi: 10.1164/ajrccm.152.6.8520744.
    1. Gattinoni L, Caironi P, Cressoni M, et al. Lung recruitment in patients with the acute respiratory distress syndrome. N Engl J Med. 2006;354(17):1775–1786. doi: 10.1056/NEJMoa052052.
    1. Beitler JR, Sarge T, Banner-Goodspeed VM, et al. Effect of titrating positive end-expiratory pressure (PEEP) with an esophageal pressure-guided strategy vs an empirical high PEEP-Fio2 strategy on death and days free from mechanical ventilation among patients with acute respiratory distress syndrome: a randomized clinical trial. JAMA. 2019;321(9):846–857. doi: 10.1001/jama.2019.0555.
    1. Talmor D, Sarge T, Malhotra A, et al. Mechanical ventilation guided by esophageal pressure in acute lung injury. N Engl J Med. 2008;359(20):2095–2104. doi: 10.1056/NEJMoa0708638.
    1. Turbil E, Galerneau LM, Terzi N, et al. Positive-end expiratory pressure titration and transpulmonary pressure: the EPVENT 2 trial. J Thorac Dis. 2019;11(Suppl 15):S2012–S2017. doi: 10.21037/jtd.2019.06.34.
    1. Serpa Neto A, Cardoso SO, Manetta JA, et al. Association between use of lung-protective ventilation with lower tidal volumes and clinical outcomes among patients without acute respiratory distress syndrome: a meta-analysis. JAMA. 2012;308(16):1651–1659. doi: 10.1001/jama.2012.13730.
    1. Pipeling MR, Fan E. Therapies for refractory hypoxemia in acute respiratory distress syndrome. JAMA. 2010;304(22):2521–2527. doi: 10.1001/jama.2010.1752.
    1. Cavalcanti AB, Suzumura ÉA, Laranjeira LN, et al. Effect of lung recruitment and titrated positive end-expiratory pressure (PEEP) vs low PEEP on mortality in patients with acute respiratory distress syndrome: a randomized clinical trial. JAMA. 2017;318(14):1335–1345. doi: 10.1001/jama.2017.14171.
    1. Fan E, Wilcox ME, Brower RG, et al. Recruitment maneuvers for acute lung injury a systematic review. Am J Respir Crit Care Med. 2008;178(11):1156–1163. doi: 10.1164/rccm.200802-335OC.
    1. Munshi L, Del Sorbo L, Adhikari NKJ, et al. Prone position for acute respiratory distress syndrome. A systematic review and meta-analysis. Ann Am Thorac Soc. 2017;14(Supplement_4):S280-s8. doi: 10.1513/AnnalsATS.201704-343OT.
    1. Sud S, Friedrich JO, Taccone P, et al. Prone ventilation reduces mortality in patients with acute respiratory failure and severe hypoxemia: systematic review and meta-analysis. Intensive Care Med. 2010;36(4):585–599. doi: 10.1007/s00134-009-1748-1.
    1. Guérin C, Reignier J, Richard JC, et al. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med. 2013;368(23):2159–2168. doi: 10.1056/NEJMoa1214103.
    1. Jolliet P, Bulpa P, Chevrolet JC. Effects of the prone position on gas exchange and hemodynamics in severe acute respiratory distress syndrome. Crit Care Med. 1998;26(12):1977–1985. doi: 10.1097/00003246-199812000-00023.
    1. Lamm WJ, Graham MM, Albert RK. Mechanism by which the prone position improves oxygenation in acute lung injury. Am J Respir Crit Care Med. 1994;150(1):184–193. doi: 10.1164/ajrccm.150.1.8025748.
    1. Stocker R, Neff T, Stein S, et al. Prone postioning and low-volume pressure-limited ventilation improve survival in patients with severe ARDS. Chest. 1997;111(4):1008–1017. doi: 10.1378/chest.111.4.1008.
    1. Gattinoni L, Tognoni G, Pesenti A, et al. Effect of prone positioning on the survival of patients with acute respiratory failure. N Engl J Med. 2001;345(8):568–573. doi: 10.1056/NEJMoa010043.
    1. Guerin C, Gaillard S, Lemasson S, et al. Effects of systematic prone positioning in hypoxemic acute respiratory failure: a randomized controlled trial. JAMA. 2004;292(19):2379–2387. doi: 10.1001/jama.292.19.2379.
    1. Klessig HT, Geiger HJ, Murray MJ, et al. A National Survey on the practice patterns of anesthesiologist intensivists in the use of muscle-relaxants. Crit Care Med. 1992;20(9):1341–1345. doi: 10.1097/00003246-199209000-00024.
    1. Murray MJ, Cowen J, DeBlock H, et al. Clinical practice guidelines for sustained neuromuscular blockade in the adult critically ill patient. Crit Care Med. 2002;30(1):142–156. doi: 10.1097/00003246-200201000-00021.
    1. Hansenflaschen JH, Brazinsky S, Basile C, et al. USE OF sedating drugs and neuromuscular blocking-agents in patients requiring mechanical ventilation for respiratory-failure—a National Survey. JAMA. 1991;266(20):2870–2875. doi: 10.1001/jama.1991.03470200082040.
    1. Forel JM, Roch A, Marin V, et al. Neuromuscular blocking agents decrease inflammatory response in patients presenting with acute respiratory distress syndrome. Crit Care Med. 2006;34(11):2749–2757. doi: 10.1097/01.CCM.0000239435.87433.0D.
    1. Gainnier M, Roch A, Forel JM, et al. Effect of neuromuscular blocking agents on gas exchange in patients presenting with acute respiratory distress syndrome. Crit Care Med. 2004;32(1):113–119. doi: 10.1097/01.CCM.0000104114.72614.BC.
    1. Papazian L, Forel JM, Gacouin A, et al. Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med. 2010;363(12):1107–1116. doi: 10.1056/NEJMoa1005372.
    1. Alhazzani W, Alshahrani M, Jaeschke R, et al. Neuromuscular blocking agents in acute respiratory distress syndrome: a systematic review and meta-analysis of randomized controlled trials. Crit Care. 2013;17(2):R43. doi: 10.1186/cc12557.
    1. Guervilly C, Bisbal M, Forel JM, et al. Effects of neuromuscular blockers on transpulmonary pressures in moderate to severe acute respiratory distress syndrome. Intensive Care Med. 2017;43(3):408–418. doi: 10.1007/s00134-016-4653-4.
    1. Lyu G, Wang X, Jiang W, et al. Clinical study of early use of neuromuscular blocking agents in patients with severe sepsis and acute respiratory distress syndrome. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2014;26(5):325–329.
    1. National Heart L, Blood Institute PCTN, Moss M, et al. Early Neuromuscular Blockade in the Acute Respiratory Distress Syndrome. N Engl J Med. 2019;380(21):1997–2008. doi: 10.1056/NEJMoa1901686.
    1. Alhazzani W, Belley-Cote E, Moller MH, et al (2020) Neuromuscular blockade in patients with ARDS: a rapid practice guideline. Intensive Care Med
    1. Tarazan N, Alshehri M, Sharif S, et al. Neuromuscular blocking agents in acute respiratory distress syndrome: updated systematic review and meta-analysis of randomized trials. Intensive Care Med Exp. 2020;8(1):61. doi: 10.1186/s40635-020-00348-6.
    1. Johnson KL, Cheung RB, Johnson SB, et al. Therapeutic paralysis of critically ill trauma patients: perceptions of patients and their family members. Am J Crit Care. 1999;8(1):490–498. doi: 10.4037/ajcc1999.8.1.490.
    1. Munshi L, Walkey A, Goligher E, et al. Venovenous extracorporeal membrane oxygenation for acute respiratory distress syndrome: a systematic review and meta-analysis. Lancet Respir Med. 2019;7(2):163–172. doi: 10.1016/S2213-2600(18)30452-1.
    1. Combes A, Hajage D, Capellier G, et al. Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome. N Engl J Med. 2018;378(21):1965–1975. doi: 10.1056/NEJMoa1800385.
    1. Peek GJ, Mugford M, Tiruvoipati R, et al. Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): a multicentre randomised controlled trial. Lancet. 2009;374(9698):1351–1363. doi: 10.1016/S0140-6736(09)61069-2.
    1. Annane D, Renault A, Brun-Buisson C, et al. Hydrocortisone plus Fludrocortisone for Adults with Septic Shock. N Engl J Med. 2018;378(9):809–818. doi: 10.1056/NEJMoa1705716.
    1. Venkatesh B, Finfer S, Cohen J, et al. Adjunctive glucocorticoid therapy in patients with septic shock. N Engl J Med. 2018;378(9):797–808. doi: 10.1056/NEJMoa1705835.
    1. Rygård SL, Butler E, Granholm A, et al. Low-dose corticosteroids for adult patients with septic shock: a systematic review with meta-analysis and trial sequential analysis. Intensive Care Med. 2018;44(7):1003–1016. doi: 10.1007/s00134-018-5197-6.
    1. Dellinger RP, Bagshaw SM, Antonelli M, et al. Effect of targeted polymyxin B hemoperfusion on 28-day mortality in patients with septic shock and elevated endotoxin level: the EUPHRATES Randomized Clinical Trial. JAMA. 2018;320(14):1455–1463. doi: 10.1001/jama.2018.14618.
    1. Zhou F, Peng Z, Murugan R, et al. Blood purification and mortality in sepsis: a meta-analysis of randomized trials. Crit Care Med. 2013;41(9):2209–2220. doi: 10.1097/CCM.0b013e31828cf412.
    1. David S, Bode C, Putensen C, et al. Adjuvant therapeutic plasma exchange in septic shock. Intensive Care Med. 2021;47(3):352–354. doi: 10.1007/s00134-020-06339-1.
    1. Hébert PC, Wells G, Blajchman MA, et al. a multicenter, randomized, controlled clinical trial of transfusion requirements in critical care. N Engl J Med. 1999;340(6):409–417. doi: 10.1056/NEJM199902113400601.
    1. Holst LB, Haase N, Wetterslev J, et al. Lower versus higher hemoglobin threshold for transfusion in septic shock. N Engl J Med. 2014;371(15):1381–1391. doi: 10.1056/NEJMoa1406617.
    1. Hirano Y, Miyoshi Y, Kondo Y, et al. Liberal versus restrictive red blood cell transfusion strategy in sepsis or septic shock: a systematic review and meta-analysis of randomized trials. Crit Care. 2019;23(1):262. doi: 10.1186/s13054-019-2543-1.
    1. Bergamin FS, Almeida JP, Landoni G, et al. Liberal versus restrictive transfusion strategy in critically ill oncologic patients: the transfusion requirements in critically ill oncologic patients randomized controlled trial. Crit Care Med. 2017;45(5):766–773. doi: 10.1097/CCM.0000000000002283.
    1. Hotchkiss RS, Monneret G, Payen D. Immunosuppression in sepsis: a novel understanding of the disorder and a new therapeutic approach. Lancet Infect Dis. 2013;13(3):260–268. doi: 10.1016/S1473-3099(13)70001-X.
    1. Madsen MB, Hjortrup PB, Hansen MB, et al. Immunoglobulin G for patients with necrotising soft tissue infection (INSTINCT): a randomised, blinded, placebo-controlled trial. Intensive Care Med. 2017;43(11):1585–1593. doi: 10.1007/s00134-017-4786-0.
    1. Welte T, Dellinger RP, Ebelt H, et al. Efficacy and safety of trimodulin, a novel polyclonal antibody preparation, in patients with severe community-acquired pneumonia: a randomized, placebo-controlled, double-blind, multicenter, phase II trial (CIGMA study) Intensive Care Med. 2018;44(4):438–448. doi: 10.1007/s00134-018-5143-7.
    1. Alejandria MM, Lansang MA, Dans LF, et al. Intravenous immunoglobulin for treating sepsis, severe sepsis and septic shock. Cochrane Database Syst Rev. 2013;9:Cd001090.
    1. Busani S, Damiani E, Cavazzuti I, et al. Intravenous immunoglobulin in septic shock: review of the mechanisms of action and meta-analysis of the clinical effectiveness. Minerva Anestesiol. 2016;82(5):559–572.
    1. Cook DJ, Fuller HD, Guyatt GH, et al. Risk factors for gastrointestinal bleeding in critically ill patients. Canadian Critical Care Trials Group. N Engl J Med. 1994;330(6):377–381. doi: 10.1056/NEJM199402103300601.
    1. Krag M, Marker S, Perner A, et al. Pantoprazole in patients at risk for gastrointestinal bleeding in the ICU. N Engl J Med. 2018;379(23):2199–2208. doi: 10.1056/NEJMoa1714919.
    1. D'Silva KM, Mehta R, Mitchell M, et al (2021) Proton pump inhibitor use and risk for recurrent Clostridioides difficile infection: a systematic review and meta-analysis. Clin Microbiol Infect
    1. Granholm A, Zeng L, Dionne JC, et al. Predictors of gastrointestinal bleeding in adult ICU patients: a systematic review and meta-analysis. Intensive Care Med. 2019;45(10):1347–1359. doi: 10.1007/s00134-019-05751-6.
    1. Cook D, Crowther M, Meade M, et al. Deep venous thrombosis in medical-surgical critically ill patients: prevalence, incidence, and risk factors. Crit Care Med. 2005;33(7):1565–1571. doi: 10.1097/01.CCM.0000171207.95319.B2.
    1. Alhazzani W, Lim W, Jaeschke RZ, et al. Heparin thromboprophylaxis in medical-surgical critically ill patients: a systematic review and meta-analysis of randomized trials. Crit Care Med. 2013;41(9):2088–2098. doi: 10.1097/CCM.0b013e31828cf104.
    1. Kahn SR, Lim W, Dunn AS, et al. Prevention of VTE in nonsurgical patients: antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2012;141(2 Suppl):e195S–e226S. doi: 10.1378/chest.11-2296.
    1. Arabi YM, Al-Hameed F, Burns KEA, et al. Adjunctive intermittent pneumatic compression for venous thromboprophylaxis. N Engl J Med. 2019;380(14):1305–1315. doi: 10.1056/NEJMoa1816150.
    1. Kellum JA, Angus DC, Johnson JP, et al. Continuous versus intermittent renal replacement therapy: a meta-analysis. Intensive Care Med. 2002;28(1):29–37. doi: 10.1007/s00134-001-1159-4.
    1. Tonelli M, Manns B, Feller-Kopman D. Acute renal failure in the intensive care unit: a systematic review of the impact of dialytic modality on mortality and renal recovery. Am J Kidney Dis. 2002;40(5):875–885. doi: 10.1053/ajkd.2002.36318.
    1. Zha J, Li C, Cheng G, et al. The efficacy of renal replacement therapy strategies for septic-acute kidney injury: a PRISMA-compliant network meta-analysis. Medicine (Baltimore) 2019;98(16):e15257. doi: 10.1097/MD.0000000000015257.
    1. Zhao Y, Chen Y. Effect of renal replacement therapy modalities on renal recovery and mortality for acute kidney injury: A PRISMA-compliant systematic review and meta-analysis. Semin Dial. 2020;33(2):127–132. doi: 10.1111/sdi.12861.
    1. Zarbock A, Kellum JA, Schmidt C, et al. Effect of early vs delayed initiation of renal replacement therapy on mortality in critically ill patients with acute kidney injury: the ELAIN Randomized Clinical Trial. JAMA. 2016;315(20):2190–2199. doi: 10.1001/jama.2016.5828.
    1. Gaudry S, Hajage D, Schortgen F, et al. Initiation strategies for renal-replacement therapy in the intensive care unit. N Engl J Med. 2016;375(2):122–133. doi: 10.1056/NEJMoa1603017.
    1. Barbar SD, Clere-Jehl R, Bourredjem A, et al. Timing of renal-replacement therapy in patients with acute kidney injury and sepsis. N Engl J Med. 2018;379(15):1431–1442. doi: 10.1056/NEJMoa1803213.
    1. Investigators S-A, Canadian Critical Care Trials G, Australian et al. Timing of Initiation of Renal-Replacement Therapy in Acute Kidney Injury. N Engl J Med. 2020;383(3):240–251. doi: 10.1056/NEJMoa2000741.
    1. Badawi O, Waite MD, Fuhrman SA, et al. Association between intensive care unit-acquired dysglycemia and in-hospital mortality. Crit Care Med. 2012;40(12):3180–3188. doi: 10.1097/CCM.0b013e3182656ae5.
    1. Krinsley JS. Glycemic variability: a strong independent predictor of mortality in critically ill patients. Crit Care Med. 2008;36(11):3008–3013. doi: 10.1097/CCM.0b013e31818b38d2.
    1. Siegelaar SE, Hermanides J, Oudemans-van Straaten HM, et al. Mean glucose during ICU admission is related to mortality by a U-shaped curve in surgical and medical patients: a retrospective cohort study. Crit Care. 2010;14(6):R224. doi: 10.1186/cc9369.
    1. Diabetes Care in the Hospital Standards of Medical Care in Diabetes—2018. Diabetes Care. 2018;41(Supplement 1):S144–S151.
    1. van den Berghe G, Wouters P, Weekers F, et al. Intensive insulin therapy in critically ill patients. N Engl J Med. 2001;345(19):1359–1367. doi: 10.1056/NEJMoa011300.
    1. Brunkhorst FM, Engel C, Bloos F, et al. Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med. 2008;358(2):125–139. doi: 10.1056/NEJMoa070716.
    1. Preiser JC, Devos P, Ruiz-Santana S, et al. A prospective randomised multi-centre controlled trial on tight glucose control by intensive insulin therapy in adult intensive care units: the Glucontrol study. Intensive Care Med. 2009;35(10):1738–1748. doi: 10.1007/s00134-009-1585-2.
    1. Griesdale DE, de Souza RJ, van Dam RM, et al. Intensive insulin therapy and mortality among critically ill patients: a meta-analysis including NICE-SUGAR study data. CMAJ. 2009;180(8):821–827. doi: 10.1503/cmaj.090206.
    1. Song F, Zhong LJ, Han L, et al (2014) Intensive insulin therapy for septic patients: a meta-analysis of randomized controlled trials. Biomed Res Int 2014:698265. 10.1155/2014/698265
    1. The NICE-SUGAR Study Investigators. Intensive versus conventional glucose control in critically ill patients. N Engl J Med. 2009;360(13):1283–1297
    1. Yatabe T, Inoue S, Sakaguchi M, et al. The optimal target for acute glycemic control in critically ill patients: a network meta-analysis. Intensive Care Med. 2017;43(1):16–28. doi: 10.1007/s00134-016-4558-2.
    1. Kuhn SO, Meissner K, Mayes LM, et al. Vitamin C in sepsis. Curr Opin Anaesthesiol. 2018;31(1):55–60. doi: 10.1097/ACO.0000000000000549.
    1. Marik PE, Khangoora V, Rivera R, et al. Hydrocortisone, vitamin C, and thiamine for the treatment of severe sepsis and septic shock: a retrospective before-after study. Chest. 2017;151(6):1229–1238. doi: 10.1016/j.chest.2016.11.036.
    1. Putzu A, Daems AM, Lopez-Delgado JC, et al. The effect of vitamin c on clinical outcome in critically ill patients: a systematic review with meta-analysis of randomized controlled trials. Crit Care Med. 2019;47(6):774–783. doi: 10.1097/CCM.0000000000003700.
    1. Fowler AA, 3rd, Truwit JD, Hite RD, et al. Effect of vitamin C infusion on organ failure and biomarkers of inflammation and vascular injury in patients with sepsis and severe acute respiratory failure: the CITRIS-ALI Randomized Clinical Trial. JAMA. 2019;322(13):1261–1270. doi: 10.1001/jama.2019.11825.
    1. Fujii T, Luethi N, Young PJ, et al. Effect of vitamin C, hydrocortisone, and thiamine vs hydrocortisone alone on time alive and free of vasopressor support among patients with septic shock: the VITAMINS Randomized Clinical Trial. JAMA. 2020;323(5):423–431. doi: 10.1001/jama.2019.22176.
    1. Moskowitz A, Huang DT, Hou PC, et al. Effect of ascorbic acid, corticosteroids, and thiamine on organ injury in septic shock: the ACTS Randomized Clinical Trial. JAMA. 2020;324(7):642–650. doi: 10.1001/jama.2020.11946.
    1. Cooper DJ, Walley KR, Wiggs BR, et al. Bicarbonate does not improve hemodynamics in critically ill patients who have lactic acidosis. A prospective, controlled clinical study. Ann Intern Med. 1990;112(7):492–498. doi: 10.7326/0003-4819-112-7-492.
    1. Mathieu D, Neviere R, Billard V, et al. Effects of bicarbonate therapy on hemodynamics and tissue oxygenation in patients with lactic acidosis: a prospective, controlled clinical study. Crit Care Med. 1991;19(11):1352–1356. doi: 10.1097/00003246-199111000-00008.
    1. Jaber S, Paugam C, Futier E, et al. Sodium bicarbonate therapy for patients with severe metabolic acidaemia in the intensive care unit (BICAR-ICU): a multicentre, open-label, randomised controlled, phase 3 trial. Lancet. 2018;392(10141):31–40. doi: 10.1016/S0140-6736(18)31080-8.
    1. Kudsk KA. Current aspects of mucosal immunology and its influence by nutrition. Am J Surg. 2002;183(4):390–398. doi: 10.1016/S0002-9610(02)00821-8.
    1. McClave SA, Heyland DK. The physiologic response and associated clinical benefits from provision of early enteral nutrition. Nutr Clin Pract. 2009;24(3):305–315. doi: 10.1177/0884533609335176.
    1. Reignier J, Boisramé-Helms J, Brisard L, et al. Enteral versus parenteral early nutrition in ventilated adults with shock: a randomised, controlled, multicentre, open-label, parallel-group study (NUTRIREA-2) Lancet. 2018;391(10116):133–143. doi: 10.1016/S0140-6736(17)32146-3.
    1. Ibrahim EH, Mehringer L, Prentice D, et al. Early versus late enteral feeding of mechanically ventilated patients: results of a clinical trial. JPEN J Parenter Enteral Nutr. 2002;26(3):174–181. doi: 10.1177/0148607102026003174.
    1. Malhotra A, Mathur AK, Gupta S. Early enteral nutrition after surgical treatment of gut perforations: a prospective randomised study. J Postgrad Med. 2004;50(2):102–106.
    1. Pupelis G, Austrums E, Jansone A, et al. Randomised trial of safety and efficacy of postoperative enteral feeding in patients with severe pancreatitis: preliminary report. Eur J Surg. 2000;166(5):383–387. doi: 10.1080/110241500750008934.
    1. Singh G, Ram RP, Khanna SK. Early postoperative enteral feeding in patients with nontraumatic intestinal perforation and peritonitis. J Am Coll Surg. 1998;187(2):142–146. doi: 10.1016/S1072-7515(98)00154-9.
    1. Ely EW. The ABCDEF Bundle: science and philosophy of how ICU liberation serves patients and families. Crit Care Med. 2017;45(2):321–330. doi: 10.1097/CCM.0000000000002175.
    1. Brinkman-Stoppelenburg A, Rietjens JA, van der Heide A. The effects of advance care planning on end-of-life care: a systematic review. Palliat Med. 2014;28(8):1000–1025. doi: 10.1177/0269216314526272.
    1. White DB, Angus DC, Shields AM, et al. A randomized trial of a family-support intervention in intensive care units. N Engl J Med. 2018;378(25):2365–2375. doi: 10.1056/NEJMoa1802637.
    1. Schneiderman LJ, Gilmer T, Teetzel HD. Impact of ethics consultations in the intensive care setting: a randomized, controlled trial. Crit Care Med. 2000;28(12):3920–3924. doi: 10.1097/00003246-200012000-00033.
    1. Schneiderman LJ, Gilmer T, Teetzel HD, et al. Effect of ethics consultations on nonbeneficial life-sustaining treatments in the intensive care setting: a randomized controlled trial. JAMA. 2003;290(9):1166–1172. doi: 10.1001/jama.290.9.1166.
    1. Chen C, Michaels J, Meeker MA (2019) Family outcomes and perceptions of end-of-life care in the intensive care unit: a mixed-methods review. J Palliat Care 35(3):143–153. 10.1177/0825859719874767
    1. Andereck WS, McGaughey JW, Schneiderman LJ, et al. Seeking to reduce nonbeneficial treatment in the ICU: an exploratory trial of proactive ethics intervention. Crit Care Med. 2014;42(4):824–830. doi: 10.1097/CCM.0000000000000034.
    1. Carson SS, Cox CE, Wallenstein S, et al. Effect of palliative care-led meetings for families of patients with chronic critical illness: a randomized clinical trial. JAMA. 2016;316(1):51–62. doi: 10.1001/jama.2016.8474.
    1. Picker D, Dans M, Heard K, et al. A randomized trial of palliative care discussions linked to an automated early warning system alert. Crit Care Med. 2017;45(2):234–240. doi: 10.1097/CCM.0000000000002068.
    1. Cheung W, Aggarwal G, Fugaccia E, et al. Palliative care teams in the intensive care unit: a randomised, controlled, feasibility study. Crit Care Resusc. 2010;12(1):28–35.
    1. Curtis JR, Nielsen EL, Treece PD, et al. Effect of a quality-improvement intervention on end-of-life care in the intensive care unit: a randomized trial. Am J Respir Crit Care Med. 2011;183(3):348–355. doi: 10.1164/rccm.201006-1004OC.
    1. Lautrette A, Darmon M, Megarbane B, et al. A communication strategy and brochure for relatives of patients dying in the ICU. N Engl J Med. 2007;356(5):469–478. doi: 10.1056/NEJMoa063446.
    1. Ma J, Chi S, Buettner B, et al. Early palliative care consultation in the medical ICU: a cluster randomized crossover trial. Crit Care Med. 2019;47(12):1707–1715. doi: 10.1097/CCM.0000000000004016.
    1. Clark E, MacCrosain A, Ward NS, et al. The key features and role of peer support within group self-management interventions for stroke? A systematic review. Disabil Rehabil. 2020;42(3):307–316. doi: 10.1080/09638288.2018.1498544.
    1. Govindan S, Iwashyna TJ, Watson SR, et al. Issues of survivorship are rarely addressed during intensive care unit stays. Baseline results from a statewide quality improvement collaborative. Ann Am Thorac Soc. 2014;11(4):587–591. doi: 10.1513/AnnalsATS.201401-007BC.
    1. Wobma R, Nijland RH, Ket JC, et al. Evidence for peer support in rehabilitation for individuals with acquired brain injury: a systematic review. J Rehabil Med. 2016;48(10):837–840. doi: 10.2340/16501977-2160.
    1. McPeake J, Hirshberg EL, Christie LM, et al. Models of peer support to remediate post-intensive care xyndrome: a report developed by the Society of Critical Care Medicine Thrive International Peer Support Collaborative. Crit Care Med. 2019;47(1):e21–e27. doi: 10.1097/CCM.0000000000003497.
    1. Mikkelsen ME, Jackson JC, Hopkins RO, et al. Peer support as a novel strategy to mitigate post-intensive care syndrome. AACN Adv Crit Care. 2016;27(2):221–229. doi: 10.4037/aacnacc2016667.
    1. Halm MA. Effects of support groups on anxiety of family members during critical illness. Heart Lung. 1990;19(1):62–71.
    1. Fridlund B, Stener-Bengtsson A, Wannman AL. Social support and social network after acute myocardial infarction; the critically ill male patient's needs, choice and motives. Intensive Crit Care Nurs. 1993;9(2):88–94. doi: 10.1016/0964-3397(93)90049-4.
    1. McPeake J, Shaw M, Iwashyna TJ, et al. Intensive care syndrome: promoting independence and return to employment (InS:PIRE). Early evaluation of a complex intervention. PLoS One. 2017;12(11):e0188028. doi: 10.1371/journal.pone.0188028.
    1. Sabo KA, Kraay C, Rudy E, et al. ICU family support group sessions: family members' perceived benefits. Appl Nurs Res. 1989;2(2):82–89. doi: 10.1016/S0897-1897(89)80050-3.
    1. Parent N, Fortin F. A randomized, controlled trial of vicarious experience through peer support for male first-time cardiac surgery patients: impact on anxiety, self-efficacy expectation, and self-reported activity. Heart Lung. 2000;29(6):389–400. doi: 10.1067/mhl.2000.110626.
    1. Damianakis T, Tough A, Marziali E, et al. Therapy online: A web-based video support group for family caregivers of survivors with traumatic brain injury. J Head Trauma Rehabil. 2016;31(4):E12–20. doi: 10.1097/HTR.0000000000000178.
    1. Harvey C, Dixon M, Padberg N. Support group for families of trauma patients: a unique approach. Crit Care Nurse. 1995;15(4):59–63. doi: 10.4037/ccn1995.15.4.59.
    1. Jones C, Macmillan RR, Griffiths RD. Providing psychological support for patients after critical illness. Clin Intensive Care. 1994;5(4):176–179.
    1. Peskett M, Gibb P. Developing and setting up a patient and relatives intensive care support group. Nurs Crit Care. 2009;14(1):4–10. doi: 10.1111/j.1478-5153.2008.00302.x.
    1. Sacco TL, Stapleton MF, Ingersoll GL. Support groups facilitated by families of former patients: creating family-inclusive critical care units. Crit Care Nurse. 2009;29(3):36–45. doi: 10.4037/ccn2009265.
    1. Haines KJ, Beesley SJ, Hopkins RO, et al. Peer support in critical care: a systematic review. Crit Care Med. 2018;46(9):1522–1531. doi: 10.1097/CCM.0000000000003293.
    1. Danesh V (2019) A prospective, 2-arm, single-blind, randomized controlled clinical feasibility trial design is planned. Forty CCI survivors will be randomized (1:1) to either the PS-PICS (peer support) intervention or usual care (control) group. NCT03788096 2019 Available from:
    1. Haines KJHC, Cranwell K, Skinner EH, Holton S, MacLeod-Smith B, Bates S, Iwashyna TJ, French C, Booth S, Carmody J. Development of a peer support model using experience-based co-design to improve critical care recovery. Crit Care Explor. 2019;1(3):e0006. doi: 10.1097/CCE.0000000000000006.
    1. Matthaeus-Kraemer CT, Thomas-Rueddel DO, Schwarzkopf D, et al. Crossing the handover chasm: Clinicians' perceptions of barriers to the early detection and timely management of severe sepsis and septic shock. J Crit Care. 2016;36:85–91. doi: 10.1016/j.jcrc.2016.06.034.
    1. Parent B, LaGrone LN, Albirair MT, et al. Effect of standardized handoff curriculum on improved clinician preparedness in the intensive care unit: a stepped-wedge cluster randomized clinical trial. JAMA Surg. 2018;153(5):464–470. doi: 10.1001/jamasurg.2017.5440.
    1. Nanchal R, Aebly B, Graves G, et al. Controlled trial to improve resident sign-out in a medical intensive care unit. BMJ Qual Saf. 2017;26(12):987–992. doi: 10.1136/bmjqs-2017-006657.
    1. Hess DR, Tokarczyk A, O'Malley M, et al. The value of adding a verbal report to written handoffs on early readmission following prolonged respiratory failure. Chest. 2010;138(6):1475–1479. doi: 10.1378/chest.09-2140.
    1. Hoffman RL, Saucier J, Dasani S, et al. Development and implementation of a risk identification tool to facilitate critical care transitions for high-risk surgical patients. Int J Qual Health Care. 2017;29(3):412–419. doi: 10.1093/intqhc/mzx032.
    1. Chaboyer W, Lin F, Foster M, et al. Redesigning the ICU nursing discharge process: a quality improvement study. Worldviews Evid Based Nurs. 2012;9(1):40–48. doi: 10.1111/j.1741-6787.2011.00234.x.
    1. Medlock S, Eslami S, Askari M, et al. Improved communication in post-ICU care by improving writing of ICU discharge letters: a longitudinal before-after study. BMJ Qual Saf. 2011;20(11):967–973. doi: 10.1136/bmjqs-2011-000074.
    1. Griffiths J, Hatch RA, Bishop J, et al. An exploration of social and economic outcome and associated health-related quality of life after critical illness in general intensive care unit survivors: a 12-month follow-up study. Crit Care. 2013;17(3):R100. doi: 10.1186/cc12745.
    1. Donnelly JP, Lakkur S, Judd SE, et al. Association of neighborhood socioeconomic status with risk of infection and sepsis. Clin Infect Dis. 2018;66(12):1940–1947. doi: 10.1093/cid/cix1109.
    1. Koch K, Norgaard M, Schonheyder HC, et al. Effect of socioeconomic status on mortality after bacteremia in working-age patients A Danish population-based cohort study. PLoS One. 2013;8(7):e70082. doi: 10.1371/journal.pone.0070082.
    1. Ho KM, Dobb GJ, Knuiman M, et al. The effect of socioeconomic status on outcomes for seriously ill patients: a linked data cohort study. Med J Aust. 2008;189(1):26–30. doi: 10.5694/j.1326-5377.2008.tb01890.x.
    1. Ogundipe F, Kodadhala V, Ogundipe T, et al. Disparities in sepsis mortality by region, urbanization, and race in the USA: a Multiple Cause of Death Analysis. J Racial Ethn Health Dispar. 2019;6(3):546–551. doi: 10.1007/s40615-018-00553-w.
    1. Goodwin AJ, Nadig NR, McElligott JT, et al. Where you live matters: the impact of place of residence on severe sepsis incidence and mortality. Chest. 2016;150(4):829–836. doi: 10.1016/j.chest.2016.07.004.
    1. Prescott HC, Angus DC. Enhancing recovery from sepsis: a review. JAMA. 2018;319(1):62–75. doi: 10.1001/jama.2017.17687.
    1. Gruther W, Pieber K, Steiner I, et al. Can early rehabilitation on the general ward after an intensive care unit stay reduce hospital length of stay in survivors of critical illness?: A randomized controlled trial. Am J Phys Med Rehabil. 2017;96(9):607–615. doi: 10.1097/PHM.0000000000000718.
    1. Huang CY, Daniels R, Lembo A, et al. Life after sepsis: an international survey of survivors to understand the post-sepsis syndrome. Int J Qual Health Care. 2019;31(3):191–198. doi: 10.1093/intqhc/mzy137.
    1. Azoulay E, Pochard F, Chevret S, et al. Impact of a family information leaflet on effectiveness of information provided to family members of intensive care unit patients: a multicenter, prospective, randomized, controlled trial. Am J Respir Crit Care Med. 2002;165(4):438–442. doi: 10.1164/ajrccm.165.4.200108-006oc.
    1. Bench S, Day T, Heelas K, et al. Evaluating the feasibility and effectiveness of a critical care discharge information pack for patients and their families: a pilot cluster randomised controlled trial. BMJ Open. 2015;5(11):e006852. doi: 10.1136/bmjopen-2014-006852.
    1. Demircelik MB, Cakmak M, Nazli Y, et al. Effects of multimedia nursing education on disease-related depression and anxiety in patients staying in a coronary intensive care unit. Appl Nurs Res. 2016;29:5–8. doi: 10.1016/j.apnr.2015.03.014.
    1. Fleischer S, Berg A, Behrens J, et al. Does an additional structured information program during the intensive care unit stay reduce anxiety in ICU patients?: a multicenter randomized controlled trial. BMC Anesthesiol. 2014;14:48. doi: 10.1186/1471-2253-14-48.
    1. Gehrke-Beck S, Bänfer M, Schilling N, et al. The specific needs of patients following sepsis: a nested qualitative interview study. BJGP Open. 2017;1(1):bjgpopen17X100725. doi: 10.3399/bjgpopen17X100725.
    1. Schmidt K, Worrack S, Von Korff M, et al. Effect of a primary care management intervention on mental health-related quality of life among survivors of sepsis: a randomized clinical trial. JAMA. 2016;315(24):2703–2711. doi: 10.1001/jama.2016.7207.
    1. Oermann MH, McInerney SM. An evaluation of sepsis Web sites for patient and family education. Plast Surg Nurs. 2007;27(4):192–196. doi: 10.1097/01.PSN.0000306184.95812.8a.
    1. Légaré F, Adekpedjou R, Stacey D, et al. Interventions for increasing the use of shared decision making by healthcare professionals. Cochrane Database Syst Rev. 2018;7(7):Cd006732.
    1. Anderson WG, Arnold RM, Angus DC, et al. Passive decision-making preference is associated with anxiety and depression in relatives of patients in the intensive care unit. J Crit Care. 2009;24(2):249–254. doi: 10.1016/j.jcrc.2007.12.010.
    1. Bokinskie JC. Family conferences: a method to diminish transfer anxiety. J Neurosci Nurs. 1992;24(3):129–133. doi: 10.1097/01376517-199206000-00002.
    1. Choi J, Lingler JH, Donahoe MP, et al. Home discharge following critical illness: a qualitative analysis of family caregiver experience. Heart Lung. 2018;47(4):401–407. doi: 10.1016/j.hrtlng.2018.04.003.
    1. Moss KO, Douglas SL, Baum E, et al. Family surrogate decision-making in chronic critical Illness: a qualitative analysis. Crit Care Nurse. 2019;39(3):e18–e26. doi: 10.4037/ccn2019176.
    1. Austin CA, Mohottige D, Sudore RL, et al. Tools to promote shared decision making in serious illness: a systematic review. JAMA Intern Med. 2015;175(7):1213–1221. doi: 10.1001/jamainternmed.2015.1679.
    1. Bell CM, Brener SS, Gunraj N, et al. Association of ICU or hospital admission with unintentional discontinuation of medications for chronic diseases. JAMA. 2011;306:840–847. doi: 10.1001/jama.2011.1206.
    1. Fabes J, Seligman W, Barrett C, et al. Does the implementation of a novel intensive care discharge risk score and nurse-led inpatient review tool improve outcome? A prospective cohort study in two intensive care units in the UK. BMJ Open. 2017;7(12):e018322. doi: 10.1136/bmjopen-2017-018322.
    1. Mekonnen AB, McLachlan AJ, Brien JA. Pharmacy-led medication reconciliation programmes at hospital transitions: a systematic review and meta-analysis. J Clin Pharm Ther. 2016;41(2):128–144. doi: 10.1111/jcpt.12364.
    1. Morandi A, Vasilevskis E, Pandharipande PP, et al. Inappropriate medication prescriptions in elderly adults surviving an intensive care unit hospitalization. J Am Geriatr Soc. 2013;61:1128–1134. doi: 10.1111/jgs.12329.
    1. Scales DC, Fischer HD, Li P, et al. Unintentional continuation of medications intended for acute illness after hospital discharge: A population-based cohort study. J Gen Intern Med. 2016;31:196–202. doi: 10.1007/s11606-015-3501-5.
    1. Stelfox HT, Bastos J, Niven DJ, et al. Critical care transition programs and the risk of readmission or death after discharge from ICU. Intensive Care Med. 2016;42(3):401–410. doi: 10.1007/s00134-015-4173-7.
    1. Tomichek JE, Stollings JL, Pandharipande PP, et al. Antipsychotic prescribing patterns during and after critical illness: a prospective cohort study. Crit Care. 2016;20:378. doi: 10.1186/s13054-016-1557-1.
    1. Ball C, Kirkby M, Williams S. Effect of the critical care outreach team on patient survival to discharge from hospital and readmission to critical care: non-randomised population based study. BMJ. 2003;327(7422):1014. doi: 10.1136/bmj.327.7422.1014.
    1. Baxter AD, Cardinal P, Hooper J, et al. Medical emergency teams at The Ottawa Hospital: the first two years. Can J Anaesth. 2008;55(4):223–231. doi: 10.1007/BF03021506.
    1. Choi S, Lee J, Shin Y, et al. Effects of a medical emergency team follow-up programme on patients discharged from the medical intensive care unit to the general ward: a single-centre experience. J Eval Clin Pract. 2016;22(3):356–362. doi: 10.1111/jep.12485.
    1. Elliott D, McKinley S, Alison J, et al. Health-related quality of life and physical recovery after a critical illness: a multi-centre randomised controlled trial of a home-based physical rehabilitation program. Crit Care. 2011;15:R142. doi: 10.1186/cc10265.
    1. Garcea G, Thomasset S, McClelland L, et al. Impact of a critical care outreach team on critical care readmissions and mortality. Acta Anaesthesiol Scand. 2004;48(9):1096–1100. doi: 10.1111/j.1399-6576.2004.00509.x.
    1. Green A, Edmonds L. Bridging the gap between the intensive care unit and general wards-the ICU Liaison Nurse. Intensive Crit Care Nurs. 2004;20(3):133–143. doi: 10.1016/S0964-3397(04)00024-2.
    1. Leary T, Ridley S. Impact of an outreach team on re-admissions to a critical care unit. Anaesthesia. 2003;58(4):328–332. doi: 10.1046/j.1365-2044.2003.03077.x.
    1. Pittard AJ. Out of our reach? Assessing the impact of introducing a critical care outreach service. Anaesthesia. 2003;58(9):882–885. doi: 10.1046/j.1365-2044.2003.03331.x.
    1. Williams TA, Leslie G, Finn J, et al. Clinical effectiveness of a critical care nursing outreach service in facilitating discharge from the intensive care unit. Am J Crit Care. 2010;19(5):e63–72. doi: 10.4037/ajcc2010965.
    1. Pronovost P, Weast B, Schwarz M, et al. Medication reconciliation: a practical tool to reduce the risk of medication errors. J Crit Care. 2003;18(4):201–205. doi: 10.1016/j.jcrc.2003.10.001.
    1. Ravn-Nielsen LV, Duckert ML, Lund ML, et al. Effect of an in-hospital multifaceted clinical pharmacist intervention on the risk of readmission: a randomized clinical trial. JAMA Intern Med. 2018;178(3):375–382. doi: 10.1001/jamainternmed.2017.8274.
    1. Taylor SP, Chou SH, Sierra MF, et al. Association between Adherence to Recommended Care and Outcomes for Adult Survivors of Sepsis. Ann Am Thorac Soc. 2020;17(1):89–97. doi: 10.1513/AnnalsATS.201907-514OC.
    1. Etesse B, Jaber S, Mura T, et al. How the relationships between general practitioners and intensivists can be improved: the general practitioners' point of view. Crit Care. 2010;14(3):R112. doi: 10.1186/cc9061.
    1. Kripalani S, LeFevre F, Phillips CO, et al. Deficits in communication and information transfer between hospital-based and primary care physicians: implications for patient safety and continuity of care. JAMA. 2007;297:831–841. doi: 10.1001/jama.297.8.831.
    1. Robelia PM, Kashiwagi DT, Jenkins SM, et al. Information transfer and the hospital discharge summary: National primary care provider perspectives of challenges and opportunities. J Am Board Fam Med. 2017;30(6):758–765. doi: 10.3122/jabfm.2017.06.170194.
    1. Weissman GE, Harhay MO, Lugo RM, et al. Natural language processing to assess documentation of features of critical illness in discharge documents of acute respiratory distress syndrome survivors. Ann Am Thorac Soc. 2016;13(9):1538–1545. doi: 10.1513/AnnalsATS.201602-131OC.
    1. Needham DM, Davidson J, Cohen H, et al. Improving long-term outcomes after discharge from intensive care unit: report from a stakeholders' conference. Crit Care Med. 2012;40:502–509. doi: 10.1097/CCM.0b013e318232da75.
    1. Iwashyna TJ, Ely EW, Smith DM, et al. Long-term cognitive impairment and functional disability among survivors of severe sepsis. JAMA. 2010;304:1787–1794. doi: 10.1001/jama.2010.1553.
    1. Konig C, Matt B, Kortgen A, et al. What matters most to sepsis survivors: a qualitative analysis to identify specific health-related quality of life domains. Qual Life Res. 2019;28(3):637–647. doi: 10.1007/s11136-018-2028-8.
    1. Dietz BW, Jones TK, Small DS, et al. The relationship between index hospitalizations, sepsis, and death or transition to hospice care during 30-day hospital readmissions. Med Care. 2017;55(4):362–370. doi: 10.1097/MLR.0000000000000669.
    1. Ortego A, Gaieski DF, Fuchs BD, et al. Hospital-based acute care use in survivors of septic shock. Crit Care Med. 2015;43(4):729–737. doi: 10.1097/CCM.0000000000000693.
    1. Mayr FB, Talisa VB, Balakumar V, et al. Proportion and cost of unplanned 30-day readmissions after sepsis compared with other medical conditions. JAMA. 2017;317(5):530–531. doi: 10.1001/jama.2016.20468.
    1. Hernandez AF, Greiner MA, Fonarow GC, et al. Relationship between early physician follow-up and 30-day readmission among Medicare beneficiaries hospitalized for heart failure. JAMA. 2010;303(17):1716–1722. doi: 10.1001/jama.2010.533.
    1. Field TS, Ogarek J, Garber L, et al. Association of early post-discharge follow-up by a primary care physician and 30-day rehospitalization among older adults. J Gen Intern Med. 2015;30(5):565–571. doi: 10.1007/s11606-014-3106-4.
    1. Shen E, Koyama SY, Huynh DN, et al. Association of a dedicated post-hospital discharge follow-up visit and 30-Day readmission risk in a Medicare Advantage population. JAMA Intern Med. 2017;177(1):132–135. doi: 10.1001/jamainternmed.2016.7061.
    1. Douglas SL, Daly BJ, Kelley CG, et al. Chronically critically ill patients: health-related quality of life and resource use after a disease management intervention. Am J Crit Care. 2007;16(5):447–457. doi: 10.4037/ajcc2007.16.5.447.
    1. Jónasdóttir RJ, Jónsdóttir H, Gudmundsdottir B, et al. Psychological recovery after intensive care: Outcomes of a long-term quasi-experimental study of structured nurse-led follow-up. Intensive Crit Care Nurs. 2018;44:59–66. doi: 10.1016/j.iccn.2017.06.001.
    1. Kansagara D, Ramsay RS, Labby D, et al. Post-discharge intervention in vulnerable, chronically ill patients. J Hosp Med. 2012;7(2):124–130. doi: 10.1002/jhm.941.
    1. Deb P, Murtaugh CM, Bowles KH, et al. Does early follow-up improve the outcomes of sepsis survivors discharged to home health care? Med Care. 2019;57(8):633–640. doi: 10.1097/MLR.0000000000001152.
    1. Annane D, Sharshar T. Cognitive decline after sepsis. Lancet Respir Med. 2015;3(1):61–69. doi: 10.1016/S2213-2600(14)70246-2.
    1. Jackson JC, Ely EW, Morey MC, et al. Cognitive and physical rehabilitation of intensive care unit survivors: results of the RETURN randomized controlled pilot investigation. Crit Care Med. 2012;40(4):1088–1097. doi: 10.1097/CCM.0b013e3182373115.
    1. Brummel NE, Girard TD, Ely EW, et al. Feasibility and safety of early combined cognitive and physical therapy for critically ill medical and surgical patients: the Activity and Cognitive Therapy in ICU (ACT-ICU) trial. Intensive Care Med. 2014;40(3):370–379. doi: 10.1007/s00134-013-3136-0.
    1. Zhao J, Yao L, Li M, et al. Effects of early intervention training on cognitive impairment in critical patients. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2019;31(3):298–302.
    1. Wong GKC, Mak JSY, Wong A, et al. Minimum clinically important difference of Montreal Cognitive Assessment in aneurysmal subarachnoid hemorrhage patients. J Clin Neurosci. 2017;46:41–44. doi: 10.1016/j.jocn.2017.08.039.
    1. Teixeira C, Rosa RG. Post-intensive care outpatient clinic: is it feasible and effective? A literature review. Rev Bras Ter Intensiva. 2018;30(1):98–111. doi: 10.5935/0103-507X.20180016.
    1. Cuthbertson BH, Rattray J, Campbell MK, et al. The PRaCTICaL study of nurse led, intensive care follow-up programmes for improving long term outcomes from critical illness: a pragmatic randomised controlled trial. BMJ. 2009;339:b3723. doi: 10.1136/bmj.b3723.
    1. Jensen JF, Egerod I, Bestle MH, et al. A recovery program to improve quality of life, sense of coherence and psychological health in ICU survivors: a multicenter randomized controlled trial, the RAPIT study. Intensive Care Med. 2016;42(11):1733–1743. doi: 10.1007/s00134-016-4522-1.
    1. Schofield-Robinson OJ, Lewis SR, Smith AF, et al. Follow-up services for improving long-term outcomes in intensive care unit (ICU) survivors. Cochrane Database Syst Rev. 2018;11:CD012701.
    1. Kowalkowski M, Chou SH, McWilliams A, et al. Structured, proactive care coordination versus usual care for Improving Morbidity during Post-Acute Care Transitions for Sepsis (IMPACTS): a pragmatic, randomized controlled trial. Trials. 2019;20(1):660. doi: 10.1186/s13063-019-3792-7.
    1. Paratz JD, Kenardy J, Mitchell G, et al. IMPOSE (IMProving Outcomes after Sepsis)-the effect of a multidisciplinary follow-up service on health-related quality of life in patients postsepsis syndromes-a double-blinded randomised controlled trial: protocol. BMJ Open. 2014;4(5):e004966. doi: 10.1136/bmjopen-2014-004966.
    1. Prescott HC, Iwashyna TJ, Blackwood B, et al. Understanding and enhancing sepsis survivorship. Priorities for research and practice. Am J Respir Crit Care Med. 2019;200(8):972–981. doi: 10.1164/rccm.201812-2383CP.
    1. Batterham AM, Bonner S, Wright J, et al. Effect of supervised aerobic exercise rehabilitation on physical fitness and quality-of-life in survivors of critical illness: an exploratory minimized controlled trial (PIX study) Br J Anaesth. 2014;113:130–137. doi: 10.1093/bja/aeu051.
    1. Battle C, James K, Temblett P, et al. Supervised exercise rehabilitation in survivors of critical illness: a randomised controlled trial. J Intensive Care Soc. 2019;20(1):18–26. doi: 10.1177/1751143718767061.
    1. Connolly B, Thompson A, Douiri A, et al. Exercise-based rehabilitation after hospital discharge for survivors of critical illness with intensive care unit-acquired weakness: a pilot feasibility trial. J Crit Care. 2015;30(3):589–598. doi: 10.1016/j.jcrc.2015.02.002.
    1. Jones C, Skirrow P, Griffiths RD, et al. Rehabilitation after critical illness: a randomized, controlled trial. Crit Care Med. 2003;31:2456–2461. doi: 10.1097/01.CCM.0000089938.56725.33.
    1. Jones TK, Fuchs BD, Small DS, et al. Post-acute care use and hospital readmission after sepsis. Ann Am Thorac Soc. 2015;12(6):904–913. doi: 10.1513/AnnalsATS.201411-504OC.
    1. McDowell K, O'Neill B, Blackwood B, et al. Effectiveness of an exercise programme on physical function in patients discharged from hospital following critical illness: a randomised controlled trial (the REVIVE trial) Thorax. 2017;72(7):594–595. doi: 10.1136/thoraxjnl-2016-208723.
    1. McWilliams DJ, Benington S, Atkinson D. Outpatient-based physical rehabilitation for survivors of prolonged critical illness: a randomized controlled trial. Physiother Theory Pract. 2016;32(3):179–190. doi: 10.3109/09593985.2015.1137663.
    1. Walsh TS, Salisbury LG, Merriweather JL, et al. Increased hospital-based physical rehabilitation and information provision after intensive care unit discharge: The RECOVER randomized clinical trial. JAMA Intern Med. 2015;175:901–910. doi: 10.1001/jamainternmed.2015.0822.
    1. Health NIf, Excellence C (2014) Rehabilitation after critical illness in adults: NICE Reino Unido; 2014. . Accessed 17 Mar 2021
    1. Major ME, Kwakman R, Kho ME, et al. Surviving critical illness: what is next? An expert consensus statement on physical rehabilitation after hospital discharge. Crit Care 2016. 2016;20:354.

Source: PubMed

3
S'abonner