Safety, tolerability, pharmacokinetics and pharmacodynamics of single oral doses of BI 187004, an inhibitor of 11beta-hydroxysteroid dehydrogenase-1, in healthy male volunteers with overweight or obesity

Susanna Bianzano, Tim Heise, Arvid Jungnik, Cornelia Schepers, Corinna Schölch, Ulrike Gräfe-Mody, Susanna Bianzano, Tim Heise, Arvid Jungnik, Cornelia Schepers, Corinna Schölch, Ulrike Gräfe-Mody

Abstract

Background: The study characterizes safety, tolerability, pharmacokinetic and pharmacodynamic profiles of single rising doses of the 11beta-hydroxysteroid dehydrogenase-1 (11beta-HSD1) inhibitor BI 187004 in healthy men with overweight or obesity.

Methods: This was a randomized, double-blind, parallel group, placebo-controlled study with administration of 2.5-360 mg BI 187004 or placebo once daily as single dose in 72 healthy male volunteers with overweight or obesity. Assessments included 11beta-HSD1 inhibition in the liver (assessed indirectly by urinary tetrahydrocortisol/tetrahydrocortisone ratio) and in subcutaneous adipose tissue ex vivo and determination of hypothalamus-pituitary-adrenal axis hormones.

Results: BI 187004 was well tolerated and safe in all tested dose groups. The incidence of drug-related adverse events was 16.7% (n = 9) for all 9 BI 187004 dose groups and 5.9% (n = 1) for placebo. All treatment groups were similar concerning kind and intensity of adverse events. No clinically relevant deviations in clinical laboratory or ECG parameters were reported. Exposure of BI 187004 increased non-proportionally over the entire dose range tested. The geometric mean apparent terminal half-life decreased from 33.5 h (5 mg) to 14.5 h (160 mg) remaining stable up to 360 mg. Renal excretion of BI 187004 was low (3-5%). Urinary tetrahydrocortisol/tetrahydrocortisone ratio decreased, indicating liver 11beta-HSD1 inhibition. Median inhibition of 11beta-HSD1 in subcutaneous adipose tissue biopsies following single dosing ranged from 86.8% (10 mg) to 99.5% (360 mg) after 10 h and from 59.4% (10 mg) to 98.6% (360 mg) after 24 h.

Conclusions: BI 187004 as single dose was safe and well tolerated and is suitable for once daily dosing. There was significant, sustained 11beta-HSD1 inhibition in liver and adipose tissue.

Trial registration: ClinicalTrials.gov, NCT01587417 , registered on 26-Apr-2012.

Keywords: 11beta-Hydroxysteroid dehydrogynase-1 inhibitor; BI 187004; Pharmacodynamics; Pharmacokinetics; Single rising dose; Type 2 diabetes.

Conflict of interest statement

The institution of TH received research grants from the following pharmaceutical companies: Adocia, Aerami Pharmaceutics, Becton Dickinson, Biocon, Boehringer Ingelheim, Eli Lilly, Gan Lee Pharmaceuticals, MedImmune, Merck, Mylan, Nordic Bioscience, Novo Nordisk, Poxel, Sanofi-Aventis, Xeris, and Zealand Pharma in the past 12 months. In addition, TH received travel grants, consulting fees, and speaker honoraria from Eli Lilly, Mylan and Novo Nordisk.

SB, AJ, CSche, CSchoe, and UGM are employees of Boehringer Ingelheim.

© 2021. The Author(s).

Figures

Fig. 1
Fig. 1
Arithmetic mean plasma concentration–time profile of BI 187004 after single oral administration of 2.5, 5, 10, 20, 40, 80, 160, 240 and 360 mg BI 187004 for (A) 24 h and (B) 96 h after drug administration. n = 5 (2.5 mg), n = 6 (5–360 mg)
Fig. 2
Fig. 2
Tetrahydrocortisol (aTHF + THF) / tetrahydrocortisone (THE) at baseline and after single ascending dose administrations in healthy volunteers. Data are mean ± SD, n = 14 (placebo), n = 6 (BI 187004)
Fig. 3
Fig. 3
11beta-HSD1 inhibition in adipose tissue 10 h and 24 h after single oral doses of BI 187004 in healthy male volunteers. Data are median ± SD, n = 14 (placebo), n = 6 (BI 187004)

References

    1. Anagnostis P, Athyros VG, Tziomalos K, Karagiannis A, Mikhailidis DP. Clinical review: the pathogenetic role of cortisol in the metabolic syndrome: a hypothesis. J Clin Endocrinol Metab. 2009;94:2692–2701. doi: 10.1210/jc.2009-0370.
    1. Morton NM. Obesity and corticosteroids: 11beta-hydroxysteroid type 1 as a cause and therapeutic target in metabolic disease. Mol Cell Endocrinol. 2010;316:154–164. doi: 10.1016/j.mce.2009.09.024.
    1. Tomlinson JW, Stewart PM. Cortisol metabolism and the role of 11beta-hydroxysteroid dehydrogenase. Best Pract Res Clin Endocrinol Metab. 2001;15:61–78. doi: 10.1053/beem.2000.0119.
    1. Sjostrand M, Jansson PA, Palming J, School D, Gill D, Rees A, Sjogren L, Persson T, Eriksson JW. Repeated measurements of 11beta-HSD-1 activity in subcutaneous adipose tissue from lean, abdominally obese, and type 2 diabetes subjects–no change following a mixed meal. Horm Metab Res. 2010;42:798–802. doi: 10.1055/s-0030-1254134.
    1. Paulsen SK, Pedersen SB, Fisker S, Richelsen B. 11beta-HSD type 1 expression in human adipose tissue: impact of gender, obesity, and fat localization. Obesity (Silver Spring) 2007;15:1954–1960. doi: 10.1038/oby.2007.233.
    1. Shao S, Zhang X, Zhang M. Inhibition of 11beta-hydroxysteroid dehydrogenase type 1 ameliorates obesity-related insulin resistance. Biochem Biophys Res Commun. 2016;478:474–480. doi: 10.1016/j.bbrc.2016.06.015.
    1. Stimson RH, Andrew R, McAvoy NC, Tripathi D, Hayes PC, Walker BR. Increased whole-body and sustained liver cortisol regeneration by 11beta-hydroxysteroid dehydrogenase type 1 in obese men with type 2 diabetes provides a target for enzyme inhibition. Diabetes. 2011;60:720–725. doi: 10.2337/db10-0726.
    1. Stimson RH, Andersson J, Andrew R, Redhead DN, Karpe F, Hayes PC, Olsson T, Walker BR. Cortisol release from adipose tissue by 11beta-hydroxysteroid dehydrogenase type 1 in humans. Diabetes. 2009;58:46–53. doi: 10.2337/db08-0969.
    1. Rask E, Olsson T, Soderberg S, Andrew R, Livingstone DE, Johnson O, Walker BR. Tissue-specific dysregulation of cortisol metabolism in human obesity. J Clin Endocrinol Metab. 2001;86:1418–1421. doi: 10.1210/jcem.86.3.7453.
    1. Stewart PM, Tomlinson JW. Selective inhibitors of 11beta-hydroxysteroid dehydrogenase type 1 for patients with metabolic syndrome: is the target liver, fat, or both? Diabetes. 2009;58:14–15. doi: 10.2337/db08-1404.
    1. Rosenstock J, Banarer S, Fonseca VA, Inzucchi SE, Sun W, Yao W, Hollis G, Flores R, Levy R, Williams WV, Seckl JR, Huber R. The 11beta-Hydroxysteroid Dehydrogenase Type 1 Inhibitor INCB13739 Improves Hyperglycemia in Patients With Type 2 Diabetes Inadequately Controlled by Metformin Monotherapy. Diabetes Care. 2010;33:1516–1522. doi: 10.2337/dc09-2315.
    1. Heise T, Graefe-Mody EU, Huttner S, Ring A, Trommeshauser D, Dugi KA. Pharmacokinetics, pharmacodynamics and tolerability of multiple oral doses of linagliptin, a dipeptidyl peptidase-4 inhibitor in male type 2 diabetes patients. Diabetes Obes Metab. 2009;11:786–794. doi: 10.1111/j.1463-1326.2009.01046.x.
    1. Stomby A, Andrew R, Walker BR, Olsson T. Tissue-specific dysregulation of cortisol regeneration by 11beta-HSD1 in obesity: has it promised too much? Diabetologia. 2014;57:1100–1110. doi: 10.1007/s00125-014-3228-6.
    1. Semjonous NM, Sherlock M, Jeyasuria P, Parker KL, Walker EA, Stewart PM, Lavery GG. Hexose-6-phosphate dehydrogenase contributes to skeletal muscle homeostasis independent of 11beta-hydroxysteroid dehydrogenase type 1. Endocrinology. 2011;152:93–102. doi: 10.1210/en.2010-0957.
    1. Lavery GG, Zielinska AE, Gathercole LL, Hughes B, Semjonous N, Guest P, Saqib K, Sherlock M, Reynolds G, Morgan SA, Tomlinson JW, Walker EA, Rabbitt EH, Stewart PM. Lack of significant metabolic abnormalities in mice with liver-specific disruption of 11beta-hydroxysteroid dehydrogenase type 1. Endocrinology. 2012;153:3236–3248. doi: 10.1210/en.2012-1019.
    1. Palermo M, Shackleton CH, Mantero F, Stewart PM. Urinary free cortisone and the assessment of 11beta-hydroxysteroid dehydrogenase activity in man. Clin Endocrinol (Oxf) 1996;45:605–611. doi: 10.1046/j.1365-2265.1996.00853.x.
    1. Heise T, Morrow L, Hompesch M, Haring HU, Kapitza C, Abt M, Ramsauer M, Magnone MC, Fuerst-Recktenwald S. Safety, efficacy and weight effect of two 11beta-HSD1 inhibitors in metformin-treated patients with type 2 diabetes. Diabetes Obes Metab. 2014;16:1070–1077. doi: 10.1111/dom.12317.
    1. Sjöstrand M, Hansson GI, Hartford M, Nilsson C, Palming J, Persson T, Walker BR, Andrew R, Vikman K, Eriksson JW. Pharmacodynamic effects of AZD4017, a selective 11beta-HSD1 inhibitor, in liver and adipose tissue. Diabetes. 2011;60 Suppl 1:A319–Abstract 1161-P.
    1. Courtney R, Stewart PM, Toh M, Ndongo MN, Calle RA, Hirshberg B. Modulation of 11beta-hydroxysteroid dehydrogenase (11betaHSD) activity biomarkers and pharmacokinetics of PF-00915275, a selective 11beta-HSD1 inhibitor. J Clin Endocrinol Metab. 2008;93:550–556. doi: 10.1210/jc.2007-1912.
    1. Freude S, Heise T, Worle HJ, Jungnik A, Rauch T, Hamilton B, Scholch C, Huang F, Grafe-Mody U. Safety, pharmacokinetics and pharmacodynamics of BI 135585, a selective 11beta-HSD1 inhibitor in humans: Liver and adipose tissue 11beta-HSD1 inhibition after acute and multiple administrations over 2 weeks. Diabetes Obes Metab. 2016;18:483–490. doi: 10.1111/dom.12635.
    1. Hamilton BS, Himmelsbach F, Nar H, Schuler-Metz A, Krosky P, Guo J, Guo R, Meng S, Zhao Y, Lala DS, Zhuang L, Claremon DA, McGeehan GM. Pharmacological characterization of the selective 11beta-hydroxysteroid dehydrogenase 1 inhibitor, BI 135585, a clinical candidate for the treatment of type 2 diabetes. Eur J Pharmacol. 2015;746:50–55. doi: 10.1016/j.ejphar.2014.10.053.
    1. Williams WV, Huber R, Levy R, Hunter D, Flores R, Klabe R, Wynn R, Troy S, Hollis G, Hazan L, Hompesch M. Endocrine homeostasis with inhibition of tissue-specific cortisone reductase activity in healthy volunteers and obese insulin resistant subjects following oral INCB13739 11beta-HSD1 inhibitor therapy. 2007;ADA 67th Scientific Session Abstract 2255-PO. Published on .
    1. Gibbs JP, Emery MG, McCaffery I, Smith B, Gibbs MA, Akrami A, Rossi J, Paweletz K, Gastonguay MR, Bautista E, Wang M, Perfetti R, Daniels O. Population pharmacokinetic/pharmacodynamic model of subcutaneous adipose 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) activity after oral administration of AMG 221, a Selective 11beta-HSD1 inhibitor. J Clin Pharmacol. 2011;51:830–841. doi: 10.1177/0091270010374470.

Source: PubMed

3
S'abonner