Hydrolyzed Chicken Extract (ProBeptigen®) on Cognitive Function in Healthy Middle-Aged People: A Randomized Double-Blind Trial

Dean Wu, Cheng-Chang Yang, Kuan-Yu Chen, Ying-Chin Lin, Pei-Jung Wu, Pei-Hsiu Hsieh, Yoshihiro Nakao, Mandy Y L Ow, Yi-Chen Hsieh, Chaur-Jong Hu, Dean Wu, Cheng-Chang Yang, Kuan-Yu Chen, Ying-Chin Lin, Pei-Jung Wu, Pei-Hsiu Hsieh, Yoshihiro Nakao, Mandy Y L Ow, Yi-Chen Hsieh, Chaur-Jong Hu

Abstract

Cognitive decline is an important issue of global public health. Cognitive aging might begin at middle adulthood, the period particularly vulnerable to stress in lifespan. Essence of chicken (EOC) has consistently demonstrated its beneficial effects on various cognitive domains as nutritional supplementation. This study primarily aimed to examine the cognitive enhancement effects of ProBeptigen® (previously named CMI-168), hydrolyzed peptides extracted from EOC, in healthy middle-aged people under mild stress. Ninety healthy subjects were randomly assigned into the ProBeptigen® or placebo group for eight weeks. Neurocognitive assessment, event-related potentials (ERPs), and blood tests were conducted before, during, and after the treatment. The ProBeptigen® group outperformed placebo group on Logical Memory subtests of Wechsler Memory Scale-third edition (WMS-III) and Spatial Working Memory task in the Cambridge Neuropsychological Test Automated Battery (CANTAB). The anti-inflammatory effects of ProBeptigen® in humans were also confirmed, with progressively declining high-sensitivity C-reactive protein (hs-CRP) levels. Regular dietary supplementation of ProBeptigen® is suggested to improve verbal short- and long-term memory as well as spatial working memory, and reduce inflammation in middle-aged healthy individuals with stress. The effects of ProBeptigen® on cognition warrant further investigation. (NCT03612752).

Keywords: cognitive decline; dietary supplements; essence of chicken.

Conflict of interest statement

Y Nakao and M Ow are employees of BRAND’S Suntory Asia. Other authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Figures

Figure 1
Figure 1
The study protocol. CANTAB, Cambridge Neuropsychological Test Automated Battery; The symbol of “+” denotes the examination performed at that visit. NP, neuropsychological; PSS, Perceived Stress Scale; P300, event-related potential.
Figure 2
Figure 2
The flowchart of this clinical trial.
Figure 3
Figure 3
Results from Logical Memory and Family Pictures subtests of the Wechsler Memory Scale-3rd edition. (A) Logical Memory I, (B) Family Pictures I, (C) Logical Memory II, (D) Family Pictures II, (E) Thematic score of Logical Memory I, (F) Thematic score of Logical Memory II. The unit of the Y-axis is scaled score. Error bars represent standard errors. The p-value shown in each diagram denotes the statistics of time × treatment interaction after considering the baseline data as a covariate. Higher scores indicate better performance.
Figure 4
Figure 4
CANTAB including (A) spatial working memory (SWMBE468) and (B) reaction time task median five-choice reaction time (RTIFMDRT) results. Error bars represent standard errors. The p-value shown in each diagram denotes the statistics of time × treatment interaction after considering the baseline data as a covariate. Lower scores indicate better performance.
Figure 5
Figure 5
Results of perceived stress, depression, anxiety and sleep quality measurements. (A) Perceived Stress Score (PSS), (B) Beck Depression Inventory-II (BDI), (C) Pittsburg Sleep Quality Index (PSQI), (D) State-Trait Anxiety Inventory–trait anxiety (STAI-T), (E) STAI-S, State-Trait Anxiety Inventory–state anxiety (STAI-S). Error bars represent standard errors. The p-value shown in each diagram denotes the statistics of time × treatment interaction after considering the baseline data as a covariate. Lower scores indicate fewer symptoms.
Figure 6
Figure 6
Changes of biochemistry profiles. (A) Glucose, (B) Estimated glomerular filtration rate (eGFR), (C) Creatinine, (D) Blood urea nitrogen (BUN), (E) Triiodothyronine (T3), (F) Thyroid-stimulating hormone (TSH), (G) Free thyroxine (Free T4), (H) Cortisol, (I) Alanine transaminase (ALT), (J) Aspartate aminotransferase (AST), (K) High-sensitivity C-reactive protein (hs-CRP). Error bars represent standard errors. The p-value shown in each diagram denotes the statistics of time × treatment interaction after considering the baseline data as a covariate and the asterisk denotes a statistically significant between-group difference at the specific visit time.
Figure 7
Figure 7
Results of event-related potentials. (A) Latency of positive event-related potentials at 300 ms (P300-L), (B) Amplitude of positive event-related potentials at 300 ms (P300-A). Error bars represent standard errors. The p-value shown in each diagram denotes the statistics of time × treatment interaction after considering the baseline data as a covariate.

References

    1. Barnes D.E., Yaffe K. The projected effect of risk factor reduction on Alzheimer’s disease prevalence. Lancet Neurol. 2011;10:819–828. doi: 10.1016/S1474-4422(11)70072-2.
    1. Deary I.J., Corley J., Gow A.J., Harris S.E., Houlihan L.M., Marioni R.E., Penke L., Rafnsson S.B., Starr J.M. Age-associated cognitive decline. Br. Med. Bull. 2009;92:135–152. doi: 10.1093/bmb/ldp033.
    1. Salthouse T.A. When does age-related cognitive decline begin? Neurobiol. Aging. 2009;30:507–514. doi: 10.1016/j.neurobiolaging.2008.09.023.
    1. Singh-Manoux A., Kivimaki M., Glymour M.M., Elbaz A., Berr C., Ebmeier K.P., Ferrie J.E., Dugravot A. Timing of onset of cognitive decline: Results from Whitehall II prospective cohort study. BMJ. 2012;344:d7622. doi: 10.1136/bmj.d7622.
    1. Karlamangla A.S., Lachman M.E., Han W., Huang M., Greendale G.A. Evidence for Cognitive Aging in Midlife Women: Study of Women’s Health Across the Nation. PLoS ONE. 2017;12:e0169008. doi: 10.1371/journal.pone.0169008.
    1. Walker K.A., Gottesman R.F., Wu A., Knopman D.S., Gross A.L., Mosley T.H., Jr., Selvin E., Windham B.G. Systemic inflammation during midlife and cognitive change over 20 years: The ARIC Study. Neurology. 2019;92:e1256–e1267. doi: 10.1212/WNL.0000000000007094.
    1. Echouffo-Tcheugui J.B., Conner S.C., Himali J.J., Maillard P., DeCarli C.S., Beiser A.S., Vasan R.S., Seshadri S. Circulating cortisol and cognitive and structural brain measures: The Framingham Heart Study. Neurology. 2018;91:e1961–e1970. doi: 10.1212/WNL.0000000000006549.
    1. Goodnite P.M. Stress: A concept analysis. Nurs. Forum. 2014;49:71–74. doi: 10.1111/nuf.12044.
    1. McGrath J.E. Stress and behavior in organizations. In: Dunnette M.D., editor. Handbook of Industrial and Organizational Psychology. Rand Mcnally; Chicago, IL, USA: 1976. pp. 1351–1395.
    1. AbuAlRub R.F. Job stress, job performance, and social support among hospital nurses. J. Nurs. Scholarsh. 2004;36:73–78. doi: 10.1111/j.1547-5069.2004.04016.x.
    1. Gandi J.C., Wai P.S., Karick H., Dagona Z.K. The role of stress and level of burnout in job performance among nurses. Ment. Health Fam. Med. 2011;8:181–194.
    1. Lue B.H., Chen H.J., Wang C.W., Cheng Y., Chen M.C. Stress, personal characteristics and burnout among first postgraduate year residents: A nationwide study in Taiwan. Med. Teach. 2010;32:400–407. doi: 10.3109/01421590903437188.
    1. Sandström A., Peterson J., Sandstrom E., Lundberg M., Nystrom I.L., Nyberg L., Olsson T. Cognitive deficits in relation to personality type and hypothalamic-pituitary-adrenal (HPA) axis dysfunction in women with stress-related exhaustion. Scand. J. Psychol. 2011;52:71–82. doi: 10.1111/j.1467-9450.2010.00844.x.
    1. Wade A.T., Elias M.F., Murphy K.J. Adherence to a Mediterranean diet is associated with cognitive function in an older non-Mediterranean sample: Findings from the Maine-Syracuse Longitudinal Study. Nutr. Neurosci. 2019:1–12. doi: 10.1080/1028415X.2019.1655201.
    1. Nooyens A.C., Milder I.E., van Gelder B.M., Bueno-de-Mesquita H.B., van Boxtel M.P., Verschuren W.M. Diet and cognitive decline at middle age: The role of antioxidants. Br. J. Nutr. 2015;113:1410–1417. doi: 10.1017/S0007114515000720.
    1. Durga J., van Boxtel M.P., Schouten E.G., Kok F.J., Jolles J., Katan M.B., Verhoef P. Effect of 3-year folic acid supplementation on cognitive function in older adults in the FACIT trial: A randomised, double blind, controlled trial. Lancet. 2007;369:208–216. doi: 10.1016/S0140-6736(07)60109-3.
    1. Morris M.C., Evans D.A., Tangney C.C., Bienias J.L., Schneider J.A., Wilson R.S., Scherr P.A. Dietary copper and high saturated and trans fat intakes associated with cognitive decline. Arch. Neurol. 2006;63:1085–1088. doi: 10.1001/archneur.63.8.1085.
    1. Wouters-Wesseling W., Wagenaar L.W., Rozendaal M., Deijen J.B., de Groot L.C., Bindels J.G., van Staveren W.A. Effect of an enriched drink on cognitive function in frail elderly persons. J. Gerontol. A Biol. Sci. Med. Sci. 2005;60:265–270. doi: 10.1093/gerona/60.2.265.
    1. Denis I., Potier B., Heberden C., Vancassel S. Omega-3 polyunsaturated fatty acids and brain aging. Curr. Opin. Clin. Nutr. Metab. Care. 2015;18:139–146. doi: 10.1097/MCO.0000000000000141.
    1. Stough C., Downey L., Silber B., Lloyd J., Kure C., Wesnes K., Camfield D. The effects of 90-day supplementation with the omega-3 essential fatty acid docosahexaenoic acid (DHA) on cognitive function and visual acuity in a healthy aging population. Neurobiol. Aging. 2012;33:824.e821–e823. doi: 10.1016/j.neurobiolaging.2011.03.019.
    1. Stonehouse W., Conlon C.A., Podd J., Hill S.R., Minihane A.M., Haskell C., Kennedy D. DHA supplementation improved both memory and reaction time in healthy young adults: A randomized controlled trial. Am. J. Clin. Nutr. 2013;97:1134–1143. doi: 10.3945/ajcn.112.053371.
    1. Jakobsen L.H., Kondrup J., Zellner M., Tetens I., Roth E. Effect of a high protein meat diet on muscle and cognitive functions: A randomised controlled dietary intervention trial in healthy men. Clin. Nutr. 2011;30:303–311. doi: 10.1016/j.clnu.2010.12.010.
    1. Markus C.R., Olivier B., de Haan E.H. Whey protein rich in alpha-lactalbumin increases the ratio of plasma tryptophan to the sum of the other large neutral amino acids and improves cognitive performance in stress-vulnerable subjects. Am. J. Clin. Nutr. 2002;75:1051–1056. doi: 10.1093/ajcn/75.6.1051.
    1. Nagai H., Harada M., Nakagawa M., Tanaka T., Gunadi B., Setiabudi M.L., Uktolseja J.L., Miyata Y. Effects of chicken extract on the recovery from fatigue caused by mental workload. Appl. Hum. Sci. 1996;15:281–286. doi: 10.2114/jpa.15.281.
    1. Azhar Z.M., Syedsahiljamalulail S. Effect of taking chicken essence on stress and cognition of human volunteers. Malays. J. Nutr. 2003;9:19–29.
    1. Azhar Z.M., Zubaidah J.O., Norjan K.O.N. Effect of taking chicken essence on cognitive functioning of normal stressed human volunteers. Malays. J. Med. Health Sci. 2008;4:57–68.
    1. Chan L., Wang H.M., Chen K.Y., Lin Y.C., Wu P.J., Hsieh W.L., Chen Y.R., Liu C.P., Tsai H.Y., Chen Y.R., et al. Effectiveness of Essence of Chicken in Improving Cognitive Function in Young People Under Work-Related Stress: A Randomized Double-Blind Trial. Medicine. 2016;95:e3640. doi: 10.1097/MD.0000000000003640.
    1. 28-Day Repeated Dose of Oral Toxicity Study in Rats—Chicken Meat Ingredient/CE Protein Powder (Unpublished Report) MedGaea Life Sciences Ltd.; New Taipei City, Taiwan: 2015. pp. 1–168.
    1. 28-Day Repeated Dose of Oral Toxicity Study in Rats—Chicken meat ingredient (Unpublished Report) MedGaea Life Sciences Ltd.; New Taipei City, Taiwan: 2016. pp. 2–76.
    1. A Human Tolerance, Safety, and Quality of Life Study on a Protein-Peptide Extract Health Supplement (Unpublished Report) Asia Global Research Co., Ltd.; Bangkok, Thailand: 2019. pp. 1–56.
    1. Tsai S.F., Chang C.Y., Yong S.M., Lim A.L., Nakao Y., Chen S.J., Kuo Y.M. A Hydrolyzed Chicken Extract CMI-168 Enhances Learning and Memory in Middle-Aged Mice. Nutrients. 2018;11:27. doi: 10.3390/nu11010027.
    1. Chou M.Y., Chen Y.J., Lin L.H., Nakao Y., Lim A.L., Wang M.F., Yong S.M. Protective Effects of Hydrolyzed Chicken Extract (Probeptigen(R)/Cmi-168) on Memory Retention and Brain Oxidative Stress in Senescence-Accelerated Mice. Nutrients. 2019;11:1870. doi: 10.3390/nu11081870.
    1. Azhar Z.M., Zubaidah J.O., Norjan K.O.N., Zhuang C.Y., Tsang F. A pilot placebo-controlled, double-blind, and randomized study on the cognition-enhancing benefits of a proprietary chicken meat ingredient in healthy subjects. Nutr. J. 2013;12:121. doi: 10.1186/1475-2891-12-121.
    1. Ni Y., Ni L., Ma L., Wang Z., Zhao Y., Hu L., Zheng L., Fu Z. Neuroprotective Effects of ProBeptigen/CMI-168 on Aging-Induced Cognitive Decline and Neuroinflammation in Mice: A Comparison with Essence of Chicken. College of Biotechnology and Bioengineering, Zhejiang University of Technology; Hangzhou, China: 2020.
    1. Cambridge Cognition CANTAB® . Cognitive Assessment Software. Cambridge Cognition; Cambridge, UK: 2016.
    1. Cohen S., Kamarck T., Mermelstein R. A global measure of perceived stress. J. Health Soc. Behav. 1983;24:385–396. doi: 10.2307/2136404.
    1. Beck A.T., Steer R.A., Brown G.K. Manual for the Beck Depression Inventory-II. Psychological Corporation; San Antonio, TX, USA: 1996.
    1. Spielberger C.D., Gorsuch R.L., Lushene R., Vagg P.R., Jacobs G.A. Manual for the State-Trait. Anxiety Inventory (STAI) Consulting Psychologists Press; Palo Alto, CA, USA: 1983.
    1. Buysse D.J., Reynolds C.F., 3rd, Monk T.H., Berman S.R., Kupfer D.J. The Pittsburgh Sleep Quality Index: A new instrument for psychiatric practice and research. Psychiatry Res. 1989;28:193–213. doi: 10.1016/0165-1781(89)90047-4.
    1. Faden A.I., Knoblach S.M., Movsesyan V.A., Cernak I. Novel small peptides with neuroprotective and nootropic properties. J. Alzheimers Dis. 2004;6:S93–S97. doi: 10.3233/JAD-2004-6S603.
    1. Tsuruoka N., Beppu Y., Koda H., Doe N., Watanabe H., Abe K. A DKP cyclo(L-Phe-L-Phe) found in chicken essence is a dual inhibitor of the serotonin transporter and acetylcholinesterase. PLoS ONE. 2012;7:e50824. doi: 10.1371/journal.pone.0050824.
    1. Gudasheva T.A., Boyko S.S., Akparov V., Ostrovskaya R.U., Skoldinov S.P., Rozantsev G.G., Voronina T.A., Zherdev V.P., Seredenin S.B. Identification of a novel endogenous memory facilitating cyclic dipeptide cyclo-prolylglycine in rat brain. FEBS Lett. 1996;391:149–152. doi: 10.1016/0014-5793(96)00722-3.
    1. Prasad C. Bioactive cyclic dipeptides. Peptides. 1995;16:151–164. doi: 10.1016/0196-9781(94)00017-Z.
    1. Tabassum S., Ahmad S., Madiha S., Khaliq S., Shahzad S., Batool Z., Haider S. Impact of oral supplementation of Glutamate and GABA on memory performance and neurochemical profile in hippocampus of rats. Pak. J. Pharm. Sci. 2017;30:1013–1021.
    1. Bohme G.A., Bon C., Lemaire M., Reibaud M., Piot O., Stutzmann J.M., Doble A., Blanchard J.C. Altered synaptic plasticity and memory formation in nitric oxide synthase inhibitor-treated rats. Proc. Natl. Acad. Sci. USA. 1993;90:9191–9194. doi: 10.1073/pnas.90.19.9191.
    1. Calabrese V., Mancuso C., Calvani M., Rizzarelli E., Butterfield D.A., Stella A.M. Nitric oxide in the central nervous system: Neuroprotection versus neurotoxicity. Nat. Rev. Neurosci. 2007;8:766–775. doi: 10.1038/nrn2214.
    1. Cooke J.P., Dzau V.J. Nitric oxide synthase: Role in the genesis of vascular disease. Annu. Rev. Med. 1997;48:489–509. doi: 10.1146/annurev.med.48.1.489.
    1. Colzato L.S., Jongkees B.J., Sellaro R., Hommel B. Working memory reloaded: Tyrosine repletes updating in the N-back task. Front. Behav. Neurosci. 2013;7:200. doi: 10.3389/fnbeh.2013.00200.
    1. Shurtleff D., Thomas J.R., Schrot J., Kowalski K., Harford R. Tyrosine reverses a cold-induced working memory deficit in humans. Pharmacol. Biochem. Behav. 1994;47:935–941. doi: 10.1016/0091-3057(94)90299-2.
    1. Thomas J.R., Lockwood P.A., Singh A., Deuster P.A. Tyrosine improves working memory in a multitasking environment. Pharmacol. Biochem. Behav. 1999;64:495–500. doi: 10.1016/S0091-3057(99)00094-5.
    1. Wechsler D. WMS-III: Wechsler Memory Scale Administration and Scoring Manual. The Psychological Corporation; San Antonio, TX, USA: 1997.
    1. The Psychological Corporation . WAIS-III/WMS-III Technical Manual. Harcourt Brace & Company; San Antonio, TX, USA: 1997.
    1. Hua M.-S., Chang B.-S., Lin K.-N., Yang C.-M., Lu L.H.-J., Chen H.-Y. Wechsler Memory Scale- III (Chinese Version): Administration and Scoring Manual. Chinese Behavioral Science Corporation; Taipei, Taiwan: 2005.
    1. Fray P.J., Robbins T.W., Sahakian B.J. Neuropsychiatric applications of CANTAB. Int. J. Geriatr. Psych. 1996;11:329–336. doi: 10.1002/(SICI)1099-1166(199604)11:4<329::AID-GPS453>;2-6.
    1. Cambridge Cognition CANTAB. [(accessed on 2 October 2019)]; Available online: .
    1. Strauss E., Sherman E.M.S., Spreen O. A Compendium of Neuropsychological Tests: Administration, Norms, and Commentary. Oxford University Press; New York, NY, USA: 2006.
    1. Gerhart K.A., Weitzenkamp D.A., Kennedy P., Glass C.A., Charlifue S.W. Correlates of stress in long-term spinal cord injury. Spinal Cord. 1999;37:183–190. doi: 10.1038/sj.sc.3100804.
    1. Lu M.-L., Che H., Chang S.W., Shen W.W. [Reliability and Validity of the Chinese Version of the Beck Depression Inventory-II] Taiwan J. Psychiatry. 2002;16:301–310.
    1. Huang S.-L., Hsieh C.-L., Wu R.-M., Lu W.-S. Test-retest reliability and minimal detectable change of the Beck Depression Inventory and the Taiwan Geriatric Depression Scale in patients with Parkinson’s disease. PLoS ONE. 2017;12:e0184823. doi: 10.1371/journal.pone.0184823.
    1. Wang K.-C., Chung F.-C. An Investigation of Multidimensional Factorial Validity of the Chinese Version of State-Trait Anxiety Inventory. Psychol. Test. 2016;63:287–313.
    1. Tsai P.S., Wang S.Y., Wang M.Y., Su C.T., Yang T.T., Huang C.J., Fang S.C. Psychometric evaluation of the Chinese version of the Pittsburgh Sleep Quality Index (CPSQI) in primary insomnia and control subjects. Qual. Life Res. 2005;14:1943–1952. doi: 10.1007/s11136-005-4346-x.
    1. Squires N.K., Squires K.C., Hillyard S.A. Two varieties of long-latency positive waves evoked by unpredictable auditory stimuli in man. Electroencephalogr. Clin. Neurophysiol. 1975;38:387–401. doi: 10.1016/0013-4694(75)90263-1.
    1. Linden D.E. The p300: Where in the brain is it produced and what does it tell us? Neuroscientist. 2005;11:563–576. doi: 10.1177/1073858405280524.
    1. Portin R., Kovala T., Polo-Kantola P., Revonsuo A., Muller K., Matikainen E. Does P3 reflect attentional or memory performances, or cognition more generally? Scand. J. Psychol. 2000;41:31–40. doi: 10.1111/1467-9450.00168.
    1. Faul F., Erdfelder E., Buchner A., Lang A.G. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods. 2009;41:1149–1160. doi: 10.3758/BRM.41.4.1149.
    1. Liang K.-Y., Zeger S.L. Longitudinal data analysis using generalized linear models. Biometrika. 1986;73:13–22. doi: 10.1093/biomet/73.1.13.
    1. Reder L.M., Wible C., Martin J. Differential memory changes with age: Exact retrieval versus plausible inference. J. Exp. Psychol. Learn. Mem. Cogn. 1986;12:72–81. doi: 10.1037/0278-7393.12.1.72.
    1. Toh D.W.K., Wong C.H., Fam J., Kim J.E. Daily consumption of essence of chicken improves cognitive function: A systematically searched meta-analysis of randomized controlled trials. Nutr. Neurosci. 2019:1–12. doi: 10.1080/1028415X.2019.1619984.
    1. Johnson W., Logie R.H., Brockmole J.R. Working memory tasks differ in factor structure across age cohorts: Implications for dedifferentiation. Intelligence. 2010;38:513–528. doi: 10.1016/j.intell.2010.06.005.
    1. Baddeley A. The episodic buffer: A new component of working memory? Trends Cogn. Sci. 2000;4:417–423. doi: 10.1016/S1364-6613(00)01538-2.
    1. Salthouse T.A. The processing-speed theory of adult age differences in cognition. Psychol. Rev. 1996;103:403–428. doi: 10.1037/0033-295X.103.3.403.
    1. Goodin D.S., Squires K.C., Starr A. Long latency event-related components of the auditory evoked potential in dementia. Brain. 1978;101:635–648. doi: 10.1093/brain/101.4.635.
    1. Parra M.A., Ascencio L.L., Urquina H.F., Manes F., Ibanez A.M. P300 and neuropsychological assessment in mild cognitive impairment and Alzheimer dementia. Front. Neurol. 2012;3:172. doi: 10.3389/fneur.2012.00172.
    1. Kurihara H., Yao X.-S., Nagai H., Tsuruoka N., Shibata H., Kiso Y., Fukami H. Anti-Stress Effect of BRAND’S Essence of Chicken (BEC) on Plasma Glucose Levels in Mice Loaded with Restraint Stress. J. Health Sci. 2006;52:252–258. doi: 10.1248/jhs.52.252.
    1. Terai K., Matsuo A., McGeer P.L. Enhancement of immunoreactivity for NF-kappa B in the hippocampal formation and cerebral cortex of Alzheimer’s disease. Brain Res. 1996;735:159–168. doi: 10.1016/0006-8993(96)00310-1.
    1. Wesnes K.A. Moving beyond the pros and cons of automating cognitive testing in pathological aging and dementia: The case for equal opportunity. Alzheimers Res. Ther. 2014;6:58. doi: 10.1186/s13195-014-0058-1.
    1. Leung D.Y., Lam T.-H., Chan S.S. Three versions of Perceived Stress Scale: Validation in a sample of Chinese cardiac patients who smoke. BMC Public Health. 2010;10:513. doi: 10.1186/1471-2458-10-513.

Source: PubMed

3
S'abonner