Regional brain volume prior to treatment is linked to outcome after cognitive rehabilitation in traumatic brain injury

Alexander Olsen, Emily L Dennis, Jan Stubberud, Elizabeth S Hovenden, Anne-Kristin Solbakk, Tor Endestad, Per Kristian Hol, Anne-Kristine Schanke, Marianne Løvstad, Sveinung Tornås, Alexander Olsen, Emily L Dennis, Jan Stubberud, Elizabeth S Hovenden, Anne-Kristin Solbakk, Tor Endestad, Per Kristian Hol, Anne-Kristine Schanke, Marianne Løvstad, Sveinung Tornås

Abstract

Cognitive rehabilitation is useful for many after traumatic brain injury (TBI), but we lack critical knowledge about which patients benefit the most from different approaches. Advanced neuroimaging techniques have provided important insight into brain pathology and systems plasticity after TBI, and have potential to inform new practices in cognitive rehabilitation. In this study, we aimed to identify candidate structural brain measures with relevance for rehabilitation of cognitive control (executive) function after TBI. Twenty-eight patients (9 female, mean age 40.5 (SD = 13.04) years) with TBI (>21 months since injury) that participated in a randomized controlled cognitive rehabilitation trial (NCT02692352) were included in the analyses. Regional brain volume was extracted from T1-weighted MRI scans before treatment using tensor-based morphometry. Both positive and negative associations between treatment outcome (everyday cognitive control function) and regional brain volume were observed. The most robust associations between regional brain volume and improvement in function were observed in midline fronto-parietal regions, including the anterior and posterior cingulate cortices. The study provides proof of concept and valuable insight for planning future studies focusing on neuroimaging in cognitive rehabilitation after TBI.

Keywords: Brain injury; Executive function; Magnetic resonance imaging; Personalized treatment; Rehabilitation medicine.

Conflict of interest statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved.

Figures

Fig. 1
Fig. 1
Lesion overlap map. This figure shows the anatomical distribution and overlap of manually segmented lesions visible on the T1 scan. Of the 28 participants included (who all had visible lesions on clinical imaging in the acute/subacute phase), 18 had visible lesions on the baseline (before treatment) T1w scan. Red-yellow scale indicates the degree of overlap between lesions from unique participants.
Fig. 2
Fig. 2
Associations between baseline (before treatment) regional brain volume and BRIEF-GEC score change (Δ). Associations between baseline regional brain volume and BRIEF-GEC score change (Δ), *adjusted for baseline BRIEF-GEC, GCS and TSI. Age and sex were also included as covariates in the model. Analyses were corrected for multiple comparisons across all voxels tested using Searchlight FDR [false discovery rate], q < 0.05 (Langers et al., 2007). BRIEF-GEC = Behavior Rating Inventory of Executive Function - Global Executive Composite. GCS = Glasgow coma scale. TSI = Time since injury.
Fig. 3
Fig. 3
Associations between baseline (before treatment) regional brain volume, GCS and TSI. Associations between baseline regional brain volume, injury severity (GCS) and time since injury (TSI). Age and sex were included as covariates in the model. Analyses were corrected for multiple comparisons across all voxels tested using Searchlight FDR [false discovery rate], q < 0.05 (Langers et al., 2007). GCS = Glasgow coma scale. TSI = Time since injury.
Fig. 4
Fig. 4
Associations between baseline (before treatment) regional brain volume and baseline cognitive control efficacy. Associations between baseline regional brain volume and baseline cognitive control (CC) efficacy. Age and sex were included as covariates in the model. Analyses were corrected for multiple comparisons across all voxels tested using Searchlight FDR [false discovery rate], q < 0.05 (Langers et al., 2007).

References

    1. Amyot F., Arciniegas D.B., Brazaitis M.P., Curley K.C., Diaz-Arrastia R., Gandjbakhche A., Herscovitch P., Hinds S.R., Manley G.T., Pacifico A., Razumovsky A., Riley J., Salzer W., Shih R., Smirniotopoulos J.G., Stocker D. A Review of the Effectiveness of Neuroimaging Modalities for the Detection of Traumatic Brain Injury. J. Neurotrauma. 2015;32(22):1693–1721. doi: 10.1089/neu.2013.3306.
    1. Arnemann K.L., Chen A.-J.-W., Novakovic-Agopian T., Gratton C., Nomura E.M., D’Esposito M. Functional brain network modularity predicts response to cognitive training after brain injury. Neurology. 2015;84(15):1568–1574. doi: 10.1212/WNL.0000000000001476.
    1. Azouvi P., Arnould A., Dromer E., Vallat-Azouvi C. Neuropsychology of traumatic brain injury: An expert overview. Revue Neurologique. 2017;173(7–8):461–472. doi: 10.1016/j.neurol.2017.07.006.
    1. Becker F., Kirmess M., Tornås S., Løvstad M., Parente R. A description of cognitive rehabilitation at Sunnaas Rehabilitation Hospital—Balancing comprehensive holistic rehabilitation and retraining of specific functional domains. NeuroRehabilitation. 2014;34(1):87–100.
    1. Bigler E.D. The lesion(s) in traumatic brain injury: Implications for clinical neuropsychology. Arch. Clin. Neuropsychol. 2001;16(2):95–131. doi: 10.1016/S0887-6177(00)00095-0.
    1. Bigler E.D. Traumatic brain injury, neuroimaging, and neurodegeneration. Front. Hum. Neurosci. 2013;7 doi: 10.3389/fnhum.2013.00395.
    1. Bigler E.D., Maxwell W.L. Neuroimaging and neuropathology of TBI. NeuroRehabilitation. 2011;28(2):63–74. doi: 10.3233/NRE-2011-0633.
    1. Boyd J.E., O’Connor C., Protopopescu A., Jetly R., Rhind S.G., Lanius R.A., McKinnon M.C. An Open-Label Feasibility Trial Examining the Effectiveness of a Cognitive Training Program, Goal Management Training, in Individuals With Posttraumatic Stress Disorder. Chronic Stress (Thousand Oaks, Calif.) 2019;3 doi: 10.1177/2470547019841599.
    1. Brezova V., Moen K.G., Skandsen T., Vik A., Brewer J.B., Salvesen O., Håberg A.K. Prospective longitudinal MRI study of brain volumes and diffusion changes during the first year after moderate to severe traumatic brain injury. NeuroImage. Clinical. 2014;5:128–140. doi: 10.1016/j.nicl.2014.03.012.
    1. Caeyenberghs K., Clemente A., Imms P., Egan G., Hocking D.R., Leemans A., Metzler-Baddeley C., Jones D.K., Wilson P.H. Evidence for Training-Dependent Structural Neuroplasticity in Brain-Injured Patients: A Critical Review. Neurorehabilit. Neural Repair. 2018;32(2):99–114. doi: 10.1177/1545968317753076.
    1. Cicerone K.D., Goldin Y., Ganci K., Rosenbaum A., Wethe J.V., Langenbahn D.M., Malec J.F., Bergquist T.F., Kingsley K., Nagele D., Trexler L., Fraas M., Bogdanova Y., Harley J.P. Evidence-Based Cognitive Rehabilitation: Systematic Review of the Literature From 2009 Through 2014. Arch. Phys. Med. Rehabil. 2019;100(8):1515–1533. doi: 10.1016/j.apmr.2019.02.011.
    1. Conners C.K. Multi Health Systems; North Tonawanda, NY, USA: 2000. Conners’ CPT II continuous performance test II.
    1. Delis D.C., Kaplan E., Kramer J.H. The Psychological Corporation; San Antonio, TX, USA: 2001. Delis-Kaplan Executive Functioning System (D-KEFS)
    1. Dennis E.L., Hua X., Villalon-Reina J., Moran L.M., Kernan C., Babikian T., Mink R., Babbitt C., Johnson J., Giza C.C., Thompson P.M., Asarnow R.F. Tensor-Based Morphometry Reveals Volumetric Deficits in Moderate=Severe Pediatric Traumatic Brain Injury. J. Neurotrauma. 2016;33(9):840–852. doi: 10.1089/neu.2015.4012.
    1. Farbota K.D.M., Sodhi A., Bendlin B.B., McLaren D.G., Xu G., Rowley H.A., Johnson S.C. Longitudinal volumetric changes following traumatic brain injury: A tensor-based morphometry study. J. Int. Neuropsychol. Society: JINS. 2012;18(6):1006–1018. doi: 10.1017/S1355617712000835.
    1. Finnanger T.G., Olsen A., Skandsen T., Lydersen S., Vik A., Evensen K.A.I., Catroppa C., Håberg A.K., Andersson S., Indredavik M.S. Life after Adolescent and Adult Moderate and Severe Traumatic Brain Injury: Self-Reported Executive, Emotional, and Behavioural Function 2–5 Years after Injury. Behav. Neurol. 2015;2015:1–19.
    1. Gioia G.A., Isquith P.K., Guy S.C., Kenwothy L. Psychological Assessment Resources, Inc.; Lutz, FL, USA: 2000. Behavior rating inventory of executive function: Professional manual.
    1. Graham N.S., Sharp D.J. Understanding neurodegeneration after traumatic brain injury: From mechanisms to clinical trials in dementia. J. Neurol. Neurosurg. Psychiatry. 2019;90(11):1221–1233. doi: 10.1136/jnnp-2017-317557.
    1. Håberg A.K., Olsen A., Moen K.G., Schirmer‐Mikalsen K., Visser E., Finnanger T.G., Evensen K.A.I., Skandsen T., Vik A., Eikenes L. White matter microstructure in chronic moderate-to-severe traumatic brain injury: Impact of acute-phase injury-related variables and associations with outcome measures. J. Neurosci. Res. 2015;93(7):1109–1126.
    1. Jenkins P.O., De Simoni S., Bourke N.J., Fleminger J., Scott G., Towey D.J., Svensson W., Khan S., Patel M.C., Greenwood R., Friedland D., Hampshire A., Cole J.H., Sharp D.J. Stratifying drug treatment of cognitive impairments after traumatic brain injury using neuroimaging. Brain: A J. Neurol. 2019;142(8):2367–2379. doi: 10.1093/brain/awz149.
    1. Jensen D.A., Halmøy A., Stubberud J., Haavik J., Lundervold A.J., Sørensen L. An Exploratory Investigation of Goal Management Training in Adults With ADHD: Improvements in Inhibition and Everyday Functioning. Front. Psychol. 2021;12 doi: 10.3389/fpsyg.2021.659480.
    1. Kim J., Avants B., Patel S., Whyte J., Coslett B.H., Pluta J., Detre J.A., Gee J.C. Structural consequences of diffuse traumatic brain injury: A large deformation tensor-based morphometry study. NeuroImage. 2008;39(3):1014–1026. doi: 10.1016/j.neuroimage.2007.10.005.
    1. King L.S., Dennis E.L., Humphreys K.L., Thompson P.M., Gotlib I.H. Cross-sectional and longitudinal associations of family income-to-needs ratio with cortical and subcortical brain volume in adolescent boys and girls. Dev. Cognit. Neurosci. 2020;44 doi: 10.1016/j.dcn.2020.100796.
    1. Konstantinou N., Pettemeridou E., Seimenis I., Eracleous E., Papacostas S.S., Papanicolaou A.C., Constantinidou F. Assessing the relationship between neurocognitive performance and brain volume in chronic moderate–severe traumatic brain injury. Front. Neurol. 2016;7 doi: 10.3389/fneur.2016.00029.
    1. Langers D.R.M., Jansen J.F.A., Backes W.H. Enhanced signal detection in neuroimaging by means of regional control of the global false discovery rate. NeuroImage. 2007;38(1):43–56. doi: 10.1016/j.neuroimage.2007.07.031.
    1. Ledig C., Kamnitsas K., Koikkalainen J., Posti J.P., Takala R.S.K., Katila A., Frantzén J., Ala-Seppälä H., Kyllönen A., Maanpää H.-R., Tallus J., Lötjönen J., Glocker B., Tenovuo O., Rueckert D. Regional brain morphometry in patients with traumatic brain injury based on acute- and chronic-phase magnetic resonance imaging. PloS One. 2017;12(11):e0188152. doi: 10.1371/journal.pone.0188152.
    1. Levine B., Schweizer T.A., O’Connor C., Turner G., Gillingham S., Stuss D.T., Manly T., Robertson I.H. Rehabilitation of executive functioning in patients with frontal lobe brain damage with goal management training. Front. Hum. Neurosci. 2011;5:9. doi: 10.3389/fnhum.2011.00009.
    1. Løvstad M., Funderud I., Endestad T., Due-Tønnessen P., Meling T.R., Lindgren M., Knight R.T., Solbakk A.K. Executive functions after orbital or lateral prefrontal lesions: Neuropsychological profiles and self-reported executive functions in everyday living. Brain Inj. 2012;26(13-14):1586–1598.
    1. Lutkenhoff, E. S., Wright, M. J., Shrestha, V., Real, C., McArthur, D. L., Buitrago-Blanco, M., Vespa, P. M., & Monti, M. M., 2019. The thalamic basis of outcome and cognitive impairment in traumatic brain injury. doi:10.1101/669390.
    1. Maas A.I.R., Menon D.K., Adelson P.D., Andelic N., Bell M.J., Belli A., Bragge P., Brazinova A., Büki A., Chesnut R.M., Citerio G., Coburn M., Cooper D.J., Crowder A.T., Czeiter E., Czosnyka M., Diaz-Arrastia R., Dreier J.P., Duhaime A.-C., Ercole A., van Essen T.A., Feigin V.L., Gao G., Giacino J., Gonzalez-Lara L.E., Gruen R.L., Gupta D., Hartings J.A., Hill S., Jiang J.-Y., Ketharanathan N., Kompanje E.J.O., Lanyon L., Laureys S., Lecky F., Levin H., Lingsma H.F., Maegele M., Majdan M., Manley G., Marsteller J., Mascia L., McFadyen C., Mondello S., Newcombe V., Palotie A., Parizel P.M., Peul W., Piercy J., Polinder S., Puybasset L., Rasmussen T.E., Rossaint R., Smielewski P., Söderberg J., Stanworth S.J., Stein M.B., von Steinbüchel N., Stewart W., Steyerberg E.W., Stocchetti N., Synnot A., Te Ao B., Tenovuo O., Theadom A., Tibboel D., Videtta W., Wang K.K.W., Williams W.H., Wilson L., Yaffe K., Adams H., Agnoletti V., Allanson J., Amrein K., Andaluz N., Anke A., Antoni A., van As A.B., Audibert G., Azaševac A., Azouvi P., Azzolini M.L., Baciu C., Badenes R., Barlow K.M., Bartels R., Bauerfeind U., Beauchamp M., Beer D., Beer R., Belda F.J., Bellander B.-M., Bellier R., Benali H., Benard T., Beqiri V., Beretta L., Bernard F., Bertolini G., Bilotta F., Blaabjerg M., den Boogert H., Boutis K., Bouzat P., Brooks B., Brorsson C., Bullinger M., Burns E., Calappi E., Cameron P., Carise E., Castaño-León A.M., Causin F., Chevallard G., Chieregato A., Christie B., Cnossen M., Coles J., Collett J., Della Corte F., Craig W., Csato G., Csomos A., Curry N., Dahyot-Fizelier C., Dawes H., DeMatteo C., Depreitere B., Dewey D., van Dijck J., Đilvesi Đ., Dippel D., Dizdarevic K., Donoghue E., Duek O.r., Dulière G.-L., Dzeko A., Eapen G., Emery C.A., English S., Esser P., Ezer E., Fabricius M., Feng J., Fergusson D., Figaji A., Fleming J., Foks K., Francony G., Freedman S., Freo U., Frisvold S.K., Gagnon I., Galanaud D., Gantner D., Giraud B., Glocker B., Golubovic J., Gómez López P.A., Gordon W.A., Gradisek P., Gravel J., Griesdale D., Grossi F., Haagsma J.A., Håberg A.K., Haitsma I., Van Hecke W., Helbok R., Helseth E., van Heugten C., Hoedemaekers C., Höfer S., Horton L., Hui J., Huijben J.A., Hutchinson P.J., Jacobs B., van der Jagt M., Jankowski S., Janssens K., Jelaca B., Jones K.M., Kamnitsas K., Kaps R., Karan M., Katila A., Kaukonen K.-M., De Keyser V., Kivisaari R., Kolias A.G., Kolumbán B., Kolundžija K., Kondziella D., Koskinen L.-O., Kovács N., Kramer A., Kutsogiannis D., Kyprianou T., Lagares A., Lamontagne F., Latini R., Lauzier F., Lazar I., Ledig C., Lefering R., Legrand V., Levi L., Lightfoot R., Lozano A., MacDonald S., Major S., Manara A., Manhes P., Maréchal H., Martino C., Masala A., Masson S., Mattern J., McFadyen B., McMahon C., Meade M., Melegh B., Menovsky T., Moore L., Morgado Correia M., Morganti-Kossmann M.C., Muehlan H., Mukherjee P., Murray L., van der Naalt J., Negru A., Nelson D., Nieboer D., Noirhomme Q., Nyirádi J., Oddo M., Okonkwo D.O., Oldenbeuving A.W., Ortolano F., Osmond M., Payen J.-F., Perlbarg V., Persona P., Pichon N., Piippo-Karjalainen A., Pili-Floury S., Pirinen M., Ple H., Poca M.A., Posti J., Van Praag D., Ptito A., Radoi A., Ragauskas A., Raj R., Real R.G.L., Reed N., Rhodes J., Robertson C., Rocka S., Røe C., Røise O., Roks G., Rosand J., Rosenfeld J.V., Rosenlund C., Rosenthal G., Rossi S., Rueckert D., de Ruiter G.C.W., Sacchi M., Sahakian B.J., Sahuquillo J., Sakowitz O., Salvato G., Sánchez-Porras R., Sándor J., Sangha G., Schäfer N., Schmidt S., Schneider K.J., Schnyer D., Schöhl H., Schoonman G.G., Schou R.F., Sir Ö., Skandsen T., Smeets D., Sorinola A., Stamatakis E., Stevanovic A., Stevens R.D., Sundström N., Taccone F.S., Takala R., Tanskanen P., Taylor M.S., Telgmann R., Temkin N., Teodorani G., Thomas M., Tolias C.M., Trapani T., Turgeon A., Vajkoczy P., Valadka A.B., Valeinis E., Vallance S., Vámos Z., Vargiolu A., Vega E., Verheyden J., Vik A., Vilcinis R., Vleggeert-Lankamp C., Vogt L., Volovici V., Voormolen D.C., Vulekovic P., Vande Vyvere T., Van Waesberghe J., Wessels L., Wildschut E., Williams G., Winkler M.K.L., Wolf S., Wood G., Xirouchaki N., Younsi A., Zaaroor M., Zelinkova V., Zemek R., Zumbo F. Traumatic brain injury: Integrated approaches to improve prevention, clinical care, and research. Lancet. Neurol. 2017;16(12):987–1048.
    1. Miller J.G., Dennis E.L., Heft-Neal S., Jo B., Gotlib I.H. Fine particulate air pollution, early life stress, and their interactive effects on adolescent structural brain development: a longitudinal tensor-based morphometry study. Cereb. Cortex. 2022;32(10):2156–2169.
    1. Moe H.K., Moen K.G., Skandsen T., Kvistad K.A., Laureys S., Håberg A., Vik A. The Influence of Traumatic Axonal Injury in Thalamus and Brainstem on Level of Consciousness at Scene or Admission: A Clinical Magnetic Resonance Imaging Study. J. Neurotrauma. 2018;35(7):975–984.
    1. Natu V.S., Gomez J., Barnett M., Jeska B., Kirilina E., Jaeger C., Zhen Z., Cox S., Weiner K.S., Weiskopf N., Grill-Spector K. Apparent thinning of human visual cortex during childhood is associated with myelination. PNAS. 2019;116(41):20750–20759. doi: 10.1073/pnas.1904931116.
    1. Nichols T.E., Das S., Eickhoff S.B., Evans A.C., Glatard T., Hanke M., Kriegeskorte N., Milham M.P., Poldrack R.A., Poline J.-B., Proal E., Thirion B., Van Essen D.C., White T., Yeo B.T.T. Best practices in data analysis and sharing in neuroimaging using MRI. Nat. Neurosci. 2017;20(3):299–303. doi: 10.1038/nn.4500.
    1. Olsen A., Ferenc Brunner J., Evensen K.A.I., Garzon B., Landrø N.I., Håberg A.K. The functional topography and temporal dynamics of overlapping and distinct brain activations for adaptive task control and stable task-set maintenance during performance of an fMRI-adapted clinical continuous performance test. J. Cognit. Neurosci. 2013;25(6):903–919. doi: 10.1162/jocn_a_00358.
    1. Olsen A., Brunner J.F., Indredavik Evensen K.A., Finnanger T.G., Vik A., Skandsen T., Landrø N.I., Håberg A.K. Altered Cognitive Control Activations after Moderate-to-Severe Traumatic Brain Injury and Their Relationship to Injury Severity and Everyday-Life Function. Cereb. Cortex. 2015;25(8):2170–2180.
    1. Olsen A., Babikian T., Bigler E.D., Caeyenberghs K., Conde V., Dams-O’Connor K., Dobryakova E., Genova H., Grafman J., Håberg A.K., Heggland I., Hellstrøm T., Hodges C.B., Irimia A., Jha R.M., Johnson P.K., Koliatsos V.E., Levin H., Li L.M., Lindsey H.M., Livny A., Løvstad M., Medaglia J., Menon D.K., Mondello S., Monti M.M., Newcombe V.F.J., Petroni A., Ponsford J., Sharp D., Spitz G., Westlye L.T., Thompson P.M., Dennis E.L., Tate D.F., Wilde E.A., Hillary F.G. Toward a global and reproducible science for brain imaging in neurotrauma: The ENIGMA adult moderate/severe traumatic brain injury working group. Brain Imaging Behav. 2021;15(2):526–554.
    1. Sidaros A., Skimminge A., Liptrot M.G., Sidaros K., Engberg A.W., Herning M., Paulson O.B., Jernigan T.L., Rostrup E. Long-term global and regional brain volume changes following severe traumatic brain injury: A longitudinal study with clinical correlates. NeuroImage. 2009;44(1):1–8. doi: 10.1016/j.neuroimage.2008.08.030.
    1. Skandsen T., Moen K.G., Vik A. In: Management of Severe Traumatic Brain Injury: Evidence, Tricks, and Pitfalls. Sundstrøm T., Grände P.-O., Luoto T., Rosenlund C., Undén J., Wester K.G., editors. Springer International Publishing; Cham: 2020. Subacute MR Imaging: Traumatic Axonal Injury, Brainstem Lesions and Prognostic Factors; pp. 629–635.
    1. Song M.-K., Lin F.-C., Ward S.E., Fine J.P. Composite variables: when and how. Nurs. Res. 2013;62(1):45–49. doi: 10.1097/NNR.0b013e3182741948.
    1. Sørensen L.H., Moen K.G. In: Management of Severe Traumatic Brain Injury: Evidence, Tricks, and Pitfalls. Sundstrøm T., Grände P.-O., Luoto T., Rosenlund C., Undén J., Wester K.G., editors. Springer International Publishing; Cham: 2020. Imaging of Severe Traumatic Brain Injury in the Neurointensive Care Unit; pp. 331–342.
    1. Spitz G., Ponsford J.L., Rudzki D., Maller J.J. Association between cognitive performance and functional outcome following traumatic brain injury: A longitudinal multilevel examination. Neuropsychology. 2012;26(5):604–612. doi: 10.1037/a0029239.
    1. Stamenova V., Levine B. Effectiveness of goal management training® in improving executive functions: A meta-analysis. Neuropsychol. Rehabilit. 2019;29(10):1569–1599. doi: 10.1080/09602011.2018.1438294.
    1. Strangman G., O’Neil-Pirozzi T., Supelana C., Goldstein R., Katz D., Glenn M. Regional Brain Morphometry Predicts Memory Rehabilitation Outcome after Traumatic Brain Injury. Front. Hum. Neurosci. 2010;4 doi: 10.3389/fnhum.2010.00182.
    1. Stubberud J., Langenbahn D., Levine B., Stanghelle J., Schanke A.-K. Goal management training of executive functions in patients with spina bifida: A randomized controlled trial. J. Int. Neuropsychol. Society: JINS. 2013;19(6):672–685. doi: 10.1017/S1355617713000209.
    1. Tate R., Kennedy M., Ponsford J., Douglas J., Velikonja D., Bayley M., Stergiou-Kita M. INCOG recommendations for management of cognition following traumatic brain injury, part III: Executive function and self-awareness. J. Head Trauma Rehabilit. 2014;29(4):338–352. doi: 10.1097/HTR.0000000000000068.
    1. Toplak M.E., West R.F., Stanovich K.E. Practitioner review: Do performance-based measures and ratings of executive function assess the same construct? J. Child Psychol. Psychiatry. 2013;54(2):131–143. doi: 10.1111/jcpp.12001.
    1. Tornås S., Løvstad M., Solbakk A.-K., Evans J., Endestad T., Hol P.K., Schanke A.-K., Stubberud J. Rehabilitation of Executive Functions in Patients with Chronic Acquired Brain Injury with Goal Management Training, External Cuing, and Emotional Regulation: A Randomized Controlled Trial. J. Int. Neuropsychol. Society: JINS. 2016;22(4):436–452. doi: 10.1017/S1355617715001344.
    1. Tornås S., Løvstad M., Solbakk A.-K., Schanke A.-K., Stubberud J. Goal Management Training Combined With External Cuing as a Means to Improve Emotional Regulation, Psychological Functioning, and Quality of Life in Patients With Acquired Brain Injury: A Randomized Controlled Trial. Arch. Phys. Med. Rehabil. 2016;97(11):1841–1852.e3. doi: 10.1016/j.apmr.2016.06.014.
    1. Vander Linden C., Verhelst H., Deschepper E., Vingerhoets G., Deblaere K., Caeyenberghs K. Cognitive training benefit depends on brain injury location in adolescents with traumatic brain injury: A pilot study. Eur. J. Phys. Rehabilit. Med. 2018 doi: 10.23736/S1973-9087.18.05548-X.
    1. Wechsler D. Psychological Corporation; San Antonio, TX, USA: 1999. Manual for the Wechler Abbrivated Scale of Intelligence.
    1. Yushkevich P.A., Piven J., Hazlett H.C., Smith R.G., Ho S., Gee J.C., Gerig G. User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. NeuroImage. 2006;31(3):1116–1128. doi: 10.1016/j.neuroimage.2006.01.015.

Source: PubMed

3
S'abonner