Role of peripheral inflammatory markers in postoperative cognitive dysfunction (POCD): a meta-analysis

Linying Peng, Liwei Xu, Wen Ouyang, Linying Peng, Liwei Xu, Wen Ouyang

Abstract

Background: Postoperative cognitive dysfunction (POCD) is common following cardiac and non-cardiac surgery, but the pathogenic mechanisms remain unknown. Many studies suggest that an inflammatory response is a key contributor to POCD. The current meta-analysis shows that the levels of peripheral inflammatory markers are associated with POCD.

Methods: An online search was performed to identify peer-reviewed studies without language restriction that measured peripheral inflammatory markers of patients with and without POCD, using PubMed, ScienceDirect, SinoMed and the National Knowledge Infrastructure database. Extracted data were analyzed with STATA (version 12).The standardized mean difference (SMD) and the 95% confidence interval (95%CI) were calculated for each outcome using a random effect model. Tests of heterogeneity assessment of bias, and meta-regression were performed in the meta-analysis.

Results: A total of 13 studies that measured the concentrations of peripheral inflammatory markers were included. The current meta-analysis found significantly higher concentrations of S-100β(SMD[95%CI]) (1.377 [0.423, 2.331], p-value < 0.001, N [POCD/non-POCD] =178/391, 7 studies), and interleukin(IL)-6 (SMD[95%CI]) (1.614 [0.603,2.624], p-value < 0.001, N[POCD/non-POCD] = 91/99, 5 studies), but not of neuron specific enolase, interleukin-1β, or tumor necrosis factor-α , in POCD compared with patients without POCD. In meta-regression analyses, a significant positive association was found between the SMD and the preoperative interleukin-6 peripheral blood concentration in patients with POCD (Coef.= 0.0587, p-value=0.038, 5 studies).

Conclusions: This study shows that POCD is indeed correlated with the concentrations of peripheral inflammatory markers, particularly interleukin-6 and S-100β.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1. Flow diagram for article selection.
Figure 1. Flow diagram for article selection.
Figure 2. Studies of peripheral blood S-100β.
Figure 2. Studies of peripheral blood S-100β.
Forest plot for S-100β displaying the results of the random effects meta-analysis for the association between peripheral blood S-100β and postoperative cognitive dysfunction (POCD). The standardized mean difference is presented on the horizontal axis; positive values denote higher serum levels in POCD patients; negative values denote higher serum levels in control subjects. The dashed line is at the overall standardized mean difference. CI, confidence interval; SMD, standardized mean difference.
Figure 3. Studies of peripheral blood IL-6.
Figure 3. Studies of peripheral blood IL-6.
Forest plot for IL-6 displaying the results of the random-effects meta-analysis for the association between peripheral blood IL-6 concentrations and POCD. The standardized mean difference is presented on the horizontal axis; positive values denote higher serum levels in patients; negative values denote higher serum levels in control subjects. The dashed line is at the overall weighted mean difference. CI, confidence interval; SMD, standardized mean difference.
Figure 4. Association of preoperative IL-6 blood…
Figure 4. Association of preoperative IL-6 blood concentration in POCD patients with plasma IL-6 SMD using meta-regression.
Plot of the preoperative IL-6 peripheral blood concentration vs. the peripheral blood IL-6 SMD in the 5 included studies showing a fitted random effects meta-regression line.( 5 studies, Coef.=0 .0587 ,p-value = 0.038 ) Coef., coefficient.
Figure 5. Association of preoperative S-100β blood…
Figure 5. Association of preoperative S-100β blood concentration in all subjects with plasma S-100β SMD using meta-regression.
Plot of the preoperative S-100β peripheral blood concentration vs. the peripheral blood S-100β SMD in the 6 included studies, showing a random effects meta-regression line. (6 studies, Coef.= 9.554,p-value = 0.290 ) Coef., coefficient.

References

    1. Silbert B, Evered L, Scott DA (2011) Cognitive decline in the elderly: is anaesthesia implicated? Best Pract Res Clin Anaesthesiol 25: 379-393. doi:10.1016/j.bpa.2011.05.001. PubMed: .
    1. Li YC, Xi CH, An YF, Dong WH, Zhou M (2012) Perioperative inflammatory response and protein S-100beta concentrations - relationship with post-operative cognitive dysfunction in elderly patients. Acta Anaesthesiol Scand 56: 595-600. doi:10.1111/j.1399-6576.2011.02616.x. PubMed: .
    1. Steinmetz J, Christensen KB, Lund T, Lohse N, Rasmussen LS (2009) Long-term consequences of postoperative cognitive dysfunction. Anesthesiology 110: 548-555. doi:10.1097/ALN.0b013e318195b569. PubMed: .
    1. Moller JT, Cluitmans P, Rasmussen LS, Houx P, Rasmussen H et al. (1998) Long-term postoperative cognitive dysfunction in the elderly ISPOCD1 study. ISPOCD investigators. International Study of Post-Operative Cognitive Dysfunction. Lancet 351: 857-861. doi:10.1016/S0140-6736(97)07382-0. PubMed: .
    1. Cibelli M, Fidalgo AR, Terrando N, Ma D, Monaco C et al. (2010) Role of interleukin-1beta in postoperative cognitive dysfunction. Ann Neurol 68: 360-368. doi:10.1002/ana.22082. PubMed: .
    1. Fidalgo AR, Cibelli M, White JP, Nagy I, Maze M et al. (2011) Systemic inflammation enhances surgery-induced cognitive dysfunction in mice. Neurosci Lett 498: 63-66. doi:10.1016/j.neulet.2011.04.063. PubMed: .
    1. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC et al. (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLOS Med 6: e1000100 PubMed: .
    1. van Munster BC, Korse CM, de Rooij SE, Bonfrer JM, Zwinderman AH et al. (2009) Markers of cerebral damage during delirium in elderly patients with hip fracture. BMC Neurol 9: 21. doi:10.1186/1471-2377-9-21. PubMed: .
    1. Linstedt U, Meyer O, Kropp P, Berkau A, Tapp E et al. (2002) Serum concentration of S-100 protein in assessment of cognitive dysfunction after general anesthesia in different types of surgery. Acta Anaesthesiol Scand 46: 384-389. doi:10.1034/j.1399-6576.2002.460409.x. PubMed: .
    1. Rasmussen LS, Christiansen M, Rasmussen H, Kristensen PA, Moller JT (2000) Do blood concentrations of neurone specific enolase and S-100 beta protein reflect cognitive dysfunction after abdominal surgery?ISPOCD Group. Br J Anaesth 84: 242-244. doi:10.1093/oxfordjournals.bja.a013410. PubMed: .
    1. Beloosesky Y, Hendel D, Weiss A, Hershkovitz A, Grinblat J et al. (2007) Cytokines and C-reactive protein production in hip-fracture-operated elderly patients. J Gerontol A Biol Sci Med Sci 62: 420-426. doi:10.1093/gerona/62.4.420. PubMed: .
    1. Hozo SP, Djulbegovic B, Hozo I (2005) Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Methodol 5: 13. doi:10.1186/1471-2288-5-13. PubMed: .
    1. Higgins JP, White IR, Anzures-Cabrera J (2008) Meta-analysis of skewed data: combining results reported on log-transformed or raw scales. Stat Med 27: 6072-6092. doi:10.1002/sim.3427. PubMed: .
    1. Wells GA, Shea B, O’Connell D, Peterson J, Welch V et al. (2011) The Newcastle-Ottawa scale (NOS) for assessing the quality of nonrandomized studies in meta-analysis. Available: . Accessed 20 August 2013.
    1. Tian HZ (2012) Abdominal postoperative cognitive impairment in patients with perioperative inflammatory cytokine expression analysis. China Pract Med 7: 134-135.
    1. Yang ZY, Xu YH, Fei FY (2010) Postoperative cognitive dysfunction and expressions of IL-1β,IL-6 and TNF-α in the elderly. J Clinical Anesthesiol 26: 764-766.
    1. Wu WC, Dong M, Cao YJ (2012) Relationship of NSE and S-100β with POCD in Elderly Patients Undergoing Elective Limb Surgery. Clinical Med Eng 19: 1699-1702.
    1. Peng Y, Xiong H, Dong LP, Li C (2010) Relationship between Postoperative Cognitive Dysfunction and Time Course of Serum Neuron-specific Enolase and S-100β Protein in Elderly Patients. J Nanchang Univ (Medical Science) 50: 21-23.
    1. Xu YH, Liang Q, Yang ZY (2010) Elderly patients with early postoperative cognitive dysfunction and neuron-specific enolase expression. Chinese Journal of Gerontology 30: 3158-3159.
    1. Chen MH (2009) The anesthesia and S100beta protein elderly patients after abdominal surgery cognitive dysfunction relationship, Modern. Med Health 25: 867-868.
    1. Hong T,Wen DX, Hang YN (2006) Relationship of postoperative serum S100ββ protein concentration and cognitive dysfunction in elderly patients underwent elective abdominal surgery. J Clinical Anesthesiol 22: 571-573.
    1. Shi LY, Xu L, Wan YJ (2012) Relationship between postoperative cognitive dysfunction and the expression of inflammatory cytokines of plasma. Shanghai Medical J 35: 115-117.
    1. van Harten AE, Scheeren TW, Absalom AR (2012) A review of postoperative cognitive dysfunction and neuroinflammation associated with cardiac surgery and anaesthesia. Anaesthesia 67: 280-293. doi:10.1111/j.1365-2044.2011.07008.x. PubMed: .
    1. Buvanendran A, Kroin JS, Berger RA, Hallab NJ, Saha C et al. (2006) Upregulation of prostaglandin E2 and interleukins in the central nervous system and peripheral tissue during and after surgery in humans. Anesthesiology 104: 403-410. doi:10.1097/00000542-200603000-00005. PubMed: .
    1. Rosczyk HA, Sparkman NL, Johnson RW (2008) Neuroinflammation and cognitive function in aged mice following minor surgery. Exp Gerontol 43: 840-846. doi:10.1016/j.exger.2008.06.004. PubMed: .
    1. Wu MD, Montgomery SL, Rivera-Escalera F, Olschowka JA, O'Banion MK (2013) Sustained IL-1beta expression impairs adult hippocampal neurogenesis independent of IL-1 signaling in nestin neural precursor cells. Brain Behav Immun.
    1. Barrientos RM, Frank MG, Hein AM, Higgins EA, Watkins LR et al. (2009) Time course of hippocampal IL-1 beta and memory consolidation impairments in aging rats following peripheral infection. Brain Behav Immun 23: 46-54. doi:10.1016/j.bbi.2009.06.083. PubMed: .
    1. Wan Y, Xu J, Ma D, Zeng Y, Cibelli M et al. (2007) Postoperative impairment of cognitive function in rats: a possible role for cytokine-mediated inflammation in the hippocampus. Anesthesiology 106: 436-443. doi:10.1097/00000542-200703000-00007. PubMed: .
    1. Barrientos RM, Hein AM, Frank MG, Watkins LR, Maier SF (2012) Intracisternal interleukin-1 receptor antagonist prevents postoperative cognitive decline and neuroinflammatory response in aged rats. J Neurosci 32: 14641-14648. doi:10.1523/JNEUROSCI.2173-12.2012. PubMed: .
    1. Terrando N, Monaco C, Ma D, Foxwell BM, Feldmann M et al. (2010) Tumor necrosis factor-alpha triggers a cytokine cascade yielding postoperative cognitive decline. Proc Natl Acad Sci U S A 107: 20518-20522. doi:10.1073/pnas.1014557107. PubMed: .
    1. Belarbi K, Jopson T, Tweedie D, Arellano C, Luo W et al. (2012) TNF-alpha protein synthesis inhibitor restores neuronal function and reverses cognitive deficits induced by chronic neuroinflammation. J Neuroinflammation 9: 23. doi:10.1186/1742-2094-9-23. PubMed: .
    1. Horsburgh K, McCarron MO, White F, Nicoll JA (2000) The role of apolipoprotein E in Alzheimer's disease, acute brain injury and cerebrovascular disease: evidence of common mechanisms and utility of animal models. Neurobiol Aging 21: 245-255. doi:10.1016/S0197-4580(00)83441-7. PubMed: .
    1. Cai Y, Hu H, Liu P, Feng G, Dong W et al. (2012) Association between the apolipoprotein E4 and postoperative cognitive dysfunction in elderly patients undergoing intravenous anesthesia and inhalation anesthesia. Anesthesiology 116: 84-93. doi:10.1097/ALN.0b013e31823da7a2. PubMed: .
    1. McDonagh DL, Mathew JP, White WD, Phillips-Bute B, Laskowitz DT et al. (2010) Cognitive function after major noncardiac surgery, apolipoprotein E4 genotype, and biomarkers of brain injury. Anesthesiology 112: 852-859. doi:10.1097/ALN.0b013e3181d31fd7. PubMed: .
    1. Tanzi RE, Bertram L (2005) Twenty years of the Alzheimer's disease amyloid hypothesis: a genetic perspective. Cell 120: 545-555. doi:10.1016/j.cell.2005.02.008. PubMed: .
    1. Wan Y, Xu J, Meng F, Bao Y, Ge Y et al. (2010) Cognitive decline following major surgery is associated with gliosis, beta-amyloid accumulation, and tau phosphorylation in old mice. Crit Care Med 38: 2190-2198. doi:10.1097/CCM.0b013e3181f17bcb. PubMed: .
    1. Maier SF (2003) Bi-directional immune-brain communication: Implications for understanding stress, pain, and cognition. Brain Behav Immun 17: 69-85. doi:10.1016/S0889-1591(03)00032-1. PubMed: .
    1. Banks WA, Farr SA, Morley JE (2002) Entry of blood-borne cytokines into the central nervous system: effects on cognitive processes. Neuroimmunomodulation 10: 319-327. doi:10.1159/000071472. PubMed: .
    1. Skinner RA, Gibson RM, Rothwell NJ, Pinteaux E, Penny JI (2009) Transport of interleukin-1 across cerebromicrovascular endothelial cells. Br J Pharmacol 156: 1115-1123. doi:10.1111/j.1476-5381.2008.00129.x. PubMed: .
    1. Rivest S, Lacroix S, Vallières L, Nadeau S, Zhang J et al. (2000) How the blood talks to the brain parenchyma and the paraventricular nucleus of the hypothalamus during systemic inflammatory and infectious stimuli. Proc Soc Exp Biol Med 223: 22-38. doi:10.1046/j.1525-1373.2000.22304.x. PubMed: .
    1. Block ML, Zecca L, Hong JS (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8: 57-69. doi:10.1038/nrn2038. PubMed: .
    1. Ransohoff RM, Perry VH (2009) Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol 27: 119-145. doi:10.1146/annurev.immunol.021908.132528. PubMed: .
    1. Brown GC, Neher JJ (2010) Inflammatory neurodegeneration and mechanisms of microglial killing of neurons. Mol Neurobiol 41: 242-247. doi:10.1007/s12035-010-8105-9. PubMed: .
    1. Choi DK, Koppula S, Suk K (2011) Inhibitors of microglial neurotoxicity: focus on natural products. Molecules 16: 1021-1043. doi:10.3390/molecules16021021. PubMed: .
    1. Gonçalves CA, Leite MC, Nardin P (2008) Biological and methodological features of the measurement of S100B, a putative marker of brain injury. Clin Biochem 41: 755-763. doi:10.1016/j.clinbiochem.2008.04.003. PubMed: .
    1. Basile AM, Fusi C, Conti AA, Paniccia R, Trefoloni G et al. (2001) S-100 protein and neuron-specific enolase as markers of subclinical cerebral damage after cardiac surgery: preliminary observation of a 6-month follow-up study. Eur Neurol 45: 151-159. doi:10.1159/000052114. PubMed: .
    1. Bianchi R, Adami C, Giambanco I, Donato R (2007) S100B binding to RAGE in microglia stimulates COX-2 expression. J Leukoc Biol 81: 108-118. PubMed: .
    1. Peng M, Wang YL, Wang FF, Chen C, Wang CY (2012) The cyclooxygenase-2 inhibitor parecoxib inhibits surgery-induced proinflammatory cytokine expression in the hippocampus in aged rats. J Surg Res 178: e1-e8. doi:10.1016/j.jss.2012.08.030. PubMed: .
    1. Li RL, Zhang ZZ, Peng M, Wu Y, Zhang JJ et al. (2013) Postoperative impairment of cognitive function in old mice: a possible role for neuroinflammation mediated by HMGB1, S100B, and RAGE. J Surg Res. PubMed: 23899512
    1. Ma CX, Yin WN, Cai BW, Wu J, Wang JY et al. (2009) Toll-like receptor 4/nuclear factor-kappa B signaling detected in brain after early subarachnoid hemorrhage. Chin Med J (Engl) 122: 1575-1581. PubMed: .
    1. Clemens JA, Stephenson DT, Dixon EP, Smalstig EB, Mincy RE et al. (1997) Global cerebral ischemia activates nuclear factor-kappa B prior to evidence of DNA fragmentation. Brain Res. Mol Brain Res 48: 187-196. doi:10.1016/S0169-328X(97)00092-2. PubMed: .
    1. Dhawan J, Benveniste H, Nawrocky M, Smith SD, Biegon A (2010) Transient focal ischemia results in persistent and widespread neuroinflammation and loss of glutamate NMDA receptors. NeuroImage 51: 599-605. doi:10.1016/j.neuroimage.2010.02.073. PubMed: .
    1. Tilvis RS, Kähönen-Väre MH, Jolkkonen J, Valvanne J, Pitkala KH et al. (2004) Predictors of cognitive decline and mortality of aged people over a 10-year period. J Gerontol A Biol Sci Med Sci 59: 268-274. doi:10.1093/gerona/59.3.M268. PubMed: .
    1. Monk TG, Weldon BC, Garvan CW, Dede DE, van der Aa MT et al. (2008) Predictors of cognitive dysfunction after major noncardiac surgery. Anesthesiology 108: 18-30. doi:10.1097/01.anes.0000296071.19434.1e. PubMed: .
    1. Slater JP, Guarino T, Stack J, Vinod K, Bustami RT et al. (2009) Cerebral oxygen desaturation predicts cognitive decline and longer hospital stay after cardiac surgery. Ann Thorac Surg 87: 35-44; discussion: .
    1. Hudetz JA, Gandhi SD, Iqbal Z, Patterson KM, Pagel PS (2011) Elevated postoperative inflammatory biomarkers are associated with short- and medium-term cognitive dysfunction after coronary artery surgery. J Anesth 25: 1-9. doi:10.1007/s00540-010-1042-y. PubMed: .
    1. Späth-Schwalbe E, Hansen K, Schmidt F, Schrezenmeier H, Marshall L et al. (1998) Acute effects of recombinant human interleukin-6 on endocrine and central nervous sleep functions in healthy men. J Clin Endocrinol Metab 83: 1573-1579. doi:10.1210/jc.83.5.1573. PubMed: .
    1. Ye SM, Johnson RW (1999) Increased interleukin-6 expression by microglia from brain of aged mice. J Neuroimmunol 93: 139-148. doi:10.1016/S0165-5728(98)00217-3. PubMed: .
    1. Pressley JC, Trott C, Tang M, Durkin M, Stern Y (2003) Dementia in community-dwelling elderly patients: A comparison of survey data, medicare claims, cognitive screening, reported symptoms, and activity limitations. J Clin Epidemiol 56: 896-905. doi:10.1016/S0895-4356(03)00133-1. PubMed: .
    1. Baker LD, Frank LL, Foster-Schubert K, Green PS, Wilkinson CW et al. (2010) Effects of aerobic exercise on mild cognitive impairment: a controlled trial. Arch Neurol 67: 71-79. doi:10.1001/archneurol.2009.307. PubMed: .
    1. Hattori H, Hattori C, Hokao C, Mizushima K, Mase T (2011) Controlled study on the cognitive and psychological effect of coloring and drawing in mild Alzheimer's disease patients. Geriatr Gerontol Int 11: 431-437. doi:10.1111/j.1447-0594.2011.00698.x. PubMed: .
    1. Witte AV, Fobker M, Gellner R, Knecht S, Flöel A (2009) Caloric restriction improves memory in elderly humans. Proc Natl Acad Sci U S A 106: 1255-1260. doi:10.1073/pnas.0808587106. PubMed: .
    1. He HJ, Wang Y, Le Y, Duan KM, Yan XB et al. (2012) Surgery upregulates high mobility group box-1 and disrupts the blood-brain barrier causing cognitive dysfunction in aged rats. CNS Neurosci Ther 18: 994-1002. doi:10.1111/cns.12018. PubMed: .
    1. Terrando N, Eriksson LI, Ryu JK, Yang T, Monaco C et al. (2011) Resolving postoperative neuroinflammation and cognitive decline. Ann Neurol 70: 986-995. doi:10.1002/ana.22664. PubMed: .

Source: PubMed

3
S'abonner