Risk scores for predicting early antiretroviral therapy mortality in sub-Saharan Africa to inform who needs intensification of care: a derivation and external validation cohort study

Andrew F Auld, Katherine Fielding, Tefera Agizew, Alice Maida, Anikie Mathoma, Rosanna Boyd, Anand Date, Sherri L Pals, George Bicego, Yuliang Liu, Ray W Shiraishi, Peter Ehrenkranz, Christopher Serumola, Unami Mathebula, Heather Alexander, Salome Charalambous, Courtney Emerson, Goabaone Rankgoane-Pono, Pontsho Pono, Alyssa Finlay, James C Shepherd, Charles Holmes, Tedd V Ellerbrock, Alison D Grant, Andrew F Auld, Katherine Fielding, Tefera Agizew, Alice Maida, Anikie Mathoma, Rosanna Boyd, Anand Date, Sherri L Pals, George Bicego, Yuliang Liu, Ray W Shiraishi, Peter Ehrenkranz, Christopher Serumola, Unami Mathebula, Heather Alexander, Salome Charalambous, Courtney Emerson, Goabaone Rankgoane-Pono, Pontsho Pono, Alyssa Finlay, James C Shepherd, Charles Holmes, Tedd V Ellerbrock, Alison D Grant

Abstract

Background: Clinical scores to determine early (6-month) antiretroviral therapy (ART) mortality risk have not been developed for sub-Saharan Africa (SSA), home to 70% of people living with HIV. In the absence of validated scores, WHO eligibility criteria (EC) for ART care intensification are CD4 < 200/μL or WHO stage III/IV.

Methods: We used Botswana XPRES trial data for adult ART enrollees to develop CD4-independent and CD4-dependent multivariable prognostic models for 6-month mortality. Scores were derived by rescaling coefficients. Scores were developed using the first 50% of XPRES ART enrollees, and their accuracy validated internally and externally using South African TB Fast Track (TBFT) trial data. Predictive accuracy was compared between scores and WHO EC.

Results: Among 5553 XPRES enrollees, 2838 were included in the derivation dataset; 68% were female and 83 (3%) died by 6 months. Among 1077 TBFT ART enrollees, 55% were female and 6% died by 6 months. Factors predictive of 6-month mortality in the derivation dataset at p < 0.01 and selected for the CD4-independent score included male gender (2 points), ≥ 1 WHO tuberculosis symptom (2 points), WHO stage III/IV (2 points), severe anemia (hemoglobin < 8 g/dL) (3 points), and temperature > 37.5 °C (2 points). The same variables plus CD4 < 200/μL (1 point) were included in the CD4-dependent score. Among XPRES enrollees, a CD4-independent score of ≥ 4 would provide 86% sensitivity and 66% specificity, whereas WHO EC would provide 83% sensitivity and 58% specificity. If WHO stage alone was used, sensitivity was 48% and specificity 89%. Among TBFT enrollees, the CD4-independent score of ≥ 4 would provide 95% sensitivity and 27% specificity, whereas WHO EC would provide 100% sensitivity but 0% specificity. Accuracy was similar between CD4-independent and CD4-dependent scores. Categorizing CD4-independent scores into low (< 4), moderate (4-6), and high risk (≥ 7) gave 6-month mortality of 1%, 4%, and 17% for XPRES and 1%, 5%, and 30% for TBFT enrollees.

Conclusions: Sensitivity of the CD4-independent score was nearly twice that of WHO stage in predicting 6-month mortality and could be used in settings lacking CD4 testing to inform ART care intensification. The CD4-dependent score improved specificity versus WHO EC. Both scores should be considered for scale-up in SSA.

Trial registration: ClinicalTrials.gov NCT02538952.

Keywords: Acquired immuno-deficiency syndrome; Antiretroviral therapy; Clinical scores; HIV; Mortality; Predictive models.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Study profile
Fig. 2
Fig. 2
Model A (excluding CD4) development and performance in the internal derivation and validation datasets respectively
Fig. 3
Fig. 3
Model B (including CD4) development and performance in the internal derivation and validation datasets respectively
Fig. 4
Fig. 4
CD4-independent and CD4-dependent clinical score cards
Fig. 5
Fig. 5
Sensitivity, specificity, PPV, and NPV of clinical score in predicting 6-month mortality in XPRES dataset (N = 5553) and external validation TB Fast Track Dataset (N = 1077) for models A (excluding CD4) and B (including CD4)
Fig. 6
Fig. 6
Distribution of risk scores and 6-month mortality risk in the XPRES dataset (N = 5553) and external validation TB Fast Track Dataset (N = 1077) for models A (excluding CD4) and B (including CD4)
Fig. 7
Fig. 7
Survival curves stratified by risk scores in the XPRES dataset (N = 5553) and external validation TB Fast Track Dataset (N = 1077) for models A (excluding CD4) and B (including CD4)

References

    1. UNAIDS. AIDSinfo. Available at: . Accessed 5 June 2020.
    1. Tanser F, Bärnighausen T, Grapsa E, Zaidi J, Newell ML. High coverage of ART associated with decline in risk of HIV acquisition in rural KwaZulu-Natal, South Africa. Science. 2013;339(6122):966–71.
    1. Vandormael A, Akullian A, Siedner M, de Oliveira T, Barnighausen T, Tanser F. Declines in HIV incidence among men and women in a South African population-based cohort. Nat Commun. 2019;10(1):5482. doi: 10.1038/s41467-019-13473-y.
    1. Stover J, Bollinger L, Izazola JA, Loures L, DeLay P, Ghys PD, et al. What is required to end the AIDS epidemic as a public health threat by 2030? The cost and impact of the fast-track approach. PLoS One. 2016;11(5):e0154893. doi: 10.1371/journal.pone.0154893.
    1. Gupta A, Nadkarni G, Yang WT, Chandrasekhar A, Gupte N, Bisson GP, et al. Early mortality in adults initiating antiretroviral therapy (ART) in low- and middle-income countries (LMIC): a systematic review and meta-analysis. PLoS One. 2011;6(12):e28691. doi: 10.1371/journal.pone.0028691.
    1. Haas AD, Zaniewski E, Anderegg N, Ford N, Fox MP, Vinikoor M, et al. Retention and mortality on antiretroviral therapy in sub-Saharan Africa: collaborative analyses of HIV treatment programmes. J Int AIDS Soc. 2018;21(2):e25084.
    1. Auld AF, Shiraishi RW, Oboho I, Ross C, Bateganya M, Pelletier V, et al. Trends in prevalence of advanced HIV disease at antiretroviral therapy enrollment - 10 countries, 2004-2015. MMWR Morb Mortal Wkly Rep. 2017;66(21):558–563. doi: 10.15585/mmwr.mm6621a3.
    1. WHO. Guidelines for managing advanced HIV disease and rapid initiation of antiretroviral therapy. Available at: . Accessed 4 Jan 2020.
    1. McNairy ML, Abrams EJ, Rabkin M, El-Sadr WM. Clinical decision tools are needed to identify HIV-positive patients at high risk for poor outcomes after initiation of antiretroviral therapy. PLoS Med. 2017;14(4):e1002278. doi: 10.1371/journal.pmed.1002278.
    1. WHO. HIV Treatment and Care, What’s new in service delivery fact sheet. Available at: . Accessed 4 Jan 2020.
    1. Hakim J, Musiime V, Szubert AJ, Mallewa J, Siika A, Agutu C, et al. Enhanced prophylaxis plus antiretroviral therapy for advanced HIV infection in Africa. N Engl J Med. 2017;377(3):233–245. doi: 10.1056/NEJMoa1615822.
    1. McNairy ML, Jannat-Khah D, Pape JW, Marcelin A, Joseph P, Mathon JE, et al. Predicting death and lost to follow-up among adults initiating antiretroviral therapy in resource-limited settings: derivation and external validation of a risk score in Haiti. PLoS One. 2018;13(8):e0201945. doi: 10.1371/journal.pone.0201945.
    1. Auld AF, Agizew T, Pals S, Finlay A, Ndwapi N, Boyd R, et al. Implementation of a pragmatic, stepped-wedge cluster randomized trial to evaluate impact of Botswana’s Xpert MTB/RIF diagnostic algorithm on TB diagnostic sensitivity and early antiretroviral therapy mortality. BMC Infect Dis. 2016;16(1):606. doi: 10.1186/s12879-016-1905-4.
    1. Grant AD, Charalambous S, Tlali M, Karat AS, Dorman SE, Hoffmann CJ, et al. Algorithm-guided empirical tuberculosis treatment for people with advanced HIV (TB Fast Track): an open-label, cluster-randomised trial. Lancet HIV. 2020;7(1):e27–e37.
    1. Dryden-Peterson S, Lockman S, Zash R, Lei Q, Chen JY, Souda S, et al. Initial programmatic implementation of WHO option B in Botswana associated with increased projected MTCT. J Acquir Immune Defic Syndr. 2015;68(3):245–249. doi: 10.1097/QAI.0000000000000482.
    1. Auld AF, Agizew T, Mathoma A, Boyd R, Date A, Pals SL, et al. Effect of tuberculosis screening and retention interventions on early antiretroviral therapy mortality in Botswana: a stepped-wedge cluster randomized trial. BMC Med. 2020;18(1):19. doi: 10.1186/s12916-019-1489-0.
    1. Altman DG, Vergouwe Y, Royston P, Moons KG. Prognosis and prognostic research: validating a prognostic model. BMJ. 2009;338:b605. doi: 10.1136/bmj.b605.
    1. Brinkhof MW, Pujades-Rodriguez M, Egger M. Mortality of patients lost to follow-up in antiretroviral treatment programmes in resource-limited settings: systematic review and meta-analysis. PLoS One. 2009;4(6):e5790. doi: 10.1371/journal.pone.0005790.
    1. Royston P, Moons KG, Altman DG, Vergouwe Y. Prognosis and prognostic research: developing a prognostic model. BMJ. 2009;338:b604. doi: 10.1136/bmj.b604.
    1. Auld AF, Shiraishi RW, Couto A, Mbofana F, Colborn K, Alfredo C, et al. A decade of antiretroviral therapy scale-up in Mozambique: evaluation of outcome trends and new models of service delivery among more than 300,000 patients enrolled during 2004-2013. J Acquir Immune Defic Syndr. 2016;73(2):e11–e22. doi: 10.1097/QAI.0000000000001137.
    1. May M, Boulle A, Phiri S, Messou E, Myer L, Wood R, et al. Prognosis of patients with HIV-1 infection starting antiretroviral therapy in sub-Saharan Africa: a collaborative analysis of scale-up programmes. Lancet. 2010;376(9739):449–457. doi: 10.1016/S0140-6736(10)60666-6.
    1. Worodria W, Chang E, Andama A, Sanyu I, Byanyima P, Musisi E, et al. Predictors of mortality among hospitalized patients with lower respiratory tract infections in a high HIV burden setting. J Acquir Immune Defic Syndr. 2018;79(5):624–630. doi: 10.1097/QAI.0000000000001855.
    1. Holmes CB, Sikazwe I, Sikombe K, Eshun-Wilson I, Czaicki N, Beres LK, et al. Estimated mortality on HIV treatment among active patients and patients lost to follow-up in 4 provinces of Zambia: findings from a multistage sampling-based survey. PLoS Med. 2018;15(1):e1002489. doi: 10.1371/journal.pmed.1002489.
    1. Moons KG, Altman DG, Vergouwe Y, Royston P. Prognosis and prognostic research: application and impact of prognostic models in clinical practice. BMJ. 2009;338:b606. doi: 10.1136/bmj.b606.
    1. WHO. Haemoglobin concentrations for the diagnosis of anaemia and assessment of severity (2011). Available at: . Accessed 4 Jan 2020.
    1. Del Bene VE. Clinical methods: the history, physical, and laboratory examinations. 3rd edition. Chapter 218Temperature. Available at: . Accessed 4 Jan 2020.
    1. Koss CA, Jarlsberg LG, den Boon S, Cattamanchi A, Davis JL, Worodria W, et al. A clinical predictor score for 30-day mortality among HIV-infected adults hospitalized with pneumonia in Uganda. PLoS One. 2015;10(5):e0126591. doi: 10.1371/journal.pone.0126591.
    1. McNairy ML, Howard AA, El-Sadr WM. Antiretroviral therapy for prevention of HIV and tuberculosis: a promising intervention but not a panacea. J Acquir Immune Defic Syndr. 2013;63(Suppl 2):S200–S207. doi: 10.1097/QAI.0b013e3182986fc6.
    1. Auld AF, Shiraishi RW, Mbofana F, Couto A, Fetogang EB, El-Halabi S, et al. Lower levels of antiretroviral therapy enrollment among men with HIV compared with women - 12 countries, 2002-2013. MMWR Morb Mortal Wkly Rep. 2015;64(46):1281–1286. doi: 10.15585/mmwr.mm6446a2.
    1. Tate JP, Sterne JAC, Justice AC, Veterans Aging Cohort S, the Antiretroviral Therapy Cohort C. Albumin, white blood cell count, and body mass index improve discrimination of mortality in HIV-positive individuals. AIDS. 2019;33(5):903–912.
    1. Mocroft A, Ledergerber B, Zilmer K, Kirk O, Hirschel B, Viard JP, et al. Short-term clinical disease progression in HIV-1-positive patients taking combination antiretroviral therapy: the EuroSIDA risk-score. AIDS. 2007;21(14):1867–1875. doi: 10.1097/QAD.0b013e328270b877.
    1. Justice AC, Modur SP, Tate JP, Althoff KN, Jacobson LP, Gebo KA, et al. Predictive accuracy of the Veterans Aging Cohort Study index for mortality with HIV infection: a North American cross cohort analysis. J Acquir Immune Defic Syndr. 2013;62(2):149–163. doi: 10.1097/QAI.0b013e31827df36c.
    1. Petti CA, Polage CR, Quinn TC, Ronald AR, Sande MA. Laboratory medicine in Africa: a barrier to effective health care. Clin Infect Dis. 2006;42(3):377–382. doi: 10.1086/499363.
    1. Medina Lara A, Mundy C, Kandulu J, Chisuwo L, Bates I. Evaluation and costs of different haemoglobin methods for use in district hospitals in Malawi. J Clin Pathol. 2005;58(1):56–60. doi: 10.1136/jcp.2004.018366.
    1. Marn H, Critchley JA. Accuracy of the WHO Haemoglobin Colour Scale for the diagnosis of anaemia in primary health care settings in low-income countries: a systematic review and meta-analysis. Lancet Glob Health. 2016;4(4):e251–e265. doi: 10.1016/S2214-109X(16)00005-X.
    1. Malawi Ministry of Health. Facility-level infrastructure, resources, management, and support. Available at: . Accessed 1 Aug 2020.
    1. Nkrumah B, Nguah SB, Sarpong N, Dekker D, Idriss A, May J, et al. Hemoglobin estimation by the HemoCue(R) portable hemoglobin photometer in a resource poor setting. BMC Clin Pathol. 2011;11:5. doi: 10.1186/1472-6890-11-5.
    1. Sanchis-Gomar F, Cortell-Ballester J, Pareja-Galeano H, Banfi G, Lippi G. Hemoglobin point-of-care testing: the HemoCue system. J Lab Autom. 2013;18(3):198–205. doi: 10.1177/2211068212457560.
    1. Larson B, Schnippel K, Ndibongo B, Long L, Fox MP, Rosen S. How to estimate the cost of point-of-care CD4 testing in program settings: an example using the Alere Pima Analyzer in South Africa. PLoS One. 2012;7(4):e35444. doi: 10.1371/journal.pone.0035444.
    1. Gayat E, Aulagnier J, Matthieu E, Boisson M, Fischler M. Non-invasive measurement of hemoglobin: assessment of two different point-of-care technologies. PLoS One. 2012;7(1):e30065. doi: 10.1371/journal.pone.0030065.
    1. Crowley C, Montenegro-Bethancourt G, Solomons NW, Schumann K. Validity and correspondence of non-invasively determined hemoglobin concentrations by two trans-cutaneous digital measuring devices. Asia Pac J Clin Nutr. 2012;21(2):191–200.
    1. PATH. Noninvasive technology for anemia detection (2013). Seattle. PATH. Available at: . Accessed 4 Jan 2020.
    1. Mfinanga SG, Kirenga BJ, Chanda DM, Mutayoba B, Mthiyane T, Yimer G, et al. Early versus delayed initiation of highly active antiretroviral therapy for HIV-positive adults with newly diagnosed pulmonary tuberculosis (TB-HAART): a prospective, international, randomised, placebo-controlled trial. Lancet Infect Dis. 2014;14(7):563–571. doi: 10.1016/S1473-3099(14)70733-9.
    1. Boulware DR, Meya DB, Muzoora C, Rolfes MA, Huppler Hullsiek K, Musubire A, et al. Timing of antiretroviral therapy after diagnosis of cryptococcal meningitis. N Engl J Med. 2014;370(26):2487–2498. doi: 10.1056/NEJMoa1312884.
    1. Harris RJ, Sterne JA, Abgrall S, Dabis F, Reiss P, Saag M, et al. Prognostic importance of anaemia in HIV type-1-infected patients starting antiretroviral therapy: collaborative analysis of prospective cohort studies. Antivir Ther. 2008;13(8):959–967.
    1. Kerkhoff AD, Wood R, Cobelens FG, Gupta-Wright A, Bekker LG, Lawn SD. The predictive value of current haemoglobin levels for incident tuberculosis and/or mortality during long-term antiretroviral therapy in South Africa: a cohort study. BMC Med. 2015;13:70. doi: 10.1186/s12916-015-0320-9.
    1. Belperio PS, Rhew DC. Prevalence and outcomes of anemia in individuals with human immunodeficiency virus: a systematic review of the literature. Am J Med. 2004;116(Suppl 7A):27S–43S. doi: 10.1016/j.amjmed.2003.12.010.
    1. Gibellini D, Clo A, Morini S, Miserocchi A, Ponti C, Re MC. Effects of human immunodeficiency virus on the erythrocyte and megakaryocyte lineages. World J Virol. 2013;2(2):91–101. doi: 10.5501/wjv.v2.i2.91.
    1. Drakesmith H, Prentice AM. Hepcidin and the iron-infection axis. Science. 2012;338(6108):768–772. doi: 10.1126/science.1224577.
    1. Kerkhoff AD, Meintjes G, Burton R, Vogt M, Wood R, Lawn SD. Relationship between blood concentrations of hepcidin and anemia severity, mycobacterial burden, and mortality among patients with HIV-associated tuberculosis. J Infect Dis. 2016;213(1):61–70.
    1. Xu M, Kashanchi F, Foster A, Rotimi J, Turner W, Gordeuk VR, et al. Hepcidin induces HIV-1 transcription inhibited by ferroportin. Retrovirology. 2010;7:104. doi: 10.1186/1742-4690-7-104.
    1. Gupta RK, Lucas SB, Fielding KL, Lawn SD. Prevalence of tuberculosis in post-mortem studies of HIV-infected adults and children in resource-limited settings: a systematic review and meta-analysis. AIDS. 2015;29(15):1987–2002. doi: 10.1097/QAD.0000000000000802.
    1. Kerkhoff AD, Wood R, Lawn SD. Optimum time to start antiretroviral therapy in patients with HIV-associated tuberculosis: before or after tuberculosis diagnosis? AIDS. 2011;25(7):1003–1006. doi: 10.1097/QAD.0b013e328345ee32.
    1. WHO. Lateral flow urine lipoarabinomannan assay (LF-LAM) for the diagnosis of active tuberculosis in people living with HIV. Available at: . Accessed 4 Jan 2020.
    1. Netea MG, Kullberg BJ, Van der Meer JW. Circulating cytokines as mediators of fever. Clin Infect Dis. 2000;31(Suppl 5):S178–S184. doi: 10.1086/317513.
    1. Karat AS, Omar T, von Gottberg A, Tlali M, Chihota VN, Churchyard GJ, et al. Autopsy prevalence of tuberculosis and other potentially treatable infections among adults with advanced HIV enrolled in out-patient care in South Africa. PLoS One. 2016;11(11):e0166158. doi: 10.1371/journal.pone.0166158.
    1. Gupta-Wright A, Corbett EL, Wilson D, van Oosterhout JJ, Dheda K, Huerga H, et al. Risk score for predicting mortality including urine lipoarabinomannan detection in hospital inpatients with HIV-associated tuberculosis in sub-Saharan Africa: derivation and external validation cohort study. PLoS Med. 2019;16(4):e1002776. doi: 10.1371/journal.pmed.1002776.
    1. Centers for Disease C, Prevention Differences between HIV-infected men and women in antiretroviral therapy outcomes - six African countries, 2004–2012. MMWR Morb Mortal Wkly Rep. 2013;62(47):946–952.
    1. Pati R, Lahuerta M, Elul B, Okamura M, Alvim MF, Schackman B, et al. Factors associated with loss to clinic among HIV patients not yet known to be eligible for antiretroviral therapy (ART) in Mozambique. J Int AIDS Soc. 2013;16:18490. doi: 10.7448/IAS.16.1.18490.
    1. Benard A, Tessier JF, Rambeloarisoa J, Bonnet F, Fossoux H, Neau D, et al. HIV infection and tobacco smoking behaviour: prospects for prevention? ANRS CO3 Aquitaine Cohort, 2002. Int J Tuberc Lung Dis. 2006;10(4):378–383.

Source: PubMed

3
S'abonner