The Modulation of Cognitive Performance with Transcranial Alternating Current Stimulation: A Systematic Review of Frequency-Specific Effects

Katharina Klink, Sven Paßmann, Florian H Kasten, Jessica Peter, Katharina Klink, Sven Paßmann, Florian H Kasten, Jessica Peter

Abstract

Transcranial alternating current stimulation (tACS) is a non-invasive brain stimulation technique that allows the manipulation of intrinsic brain oscillations. Numerous studies have applied tACS in the laboratory to enhance cognitive performance. With this systematic review, we aim to provide an overview of frequency-specific tACS effects on a range of cognitive functions in healthy adults. This may help to transfer stimulation protocols to real-world applications. We conducted a systematic literature search on PubMed and Cochrane databases and considered tACS studies in healthy adults (age > 18 years) that focused on cognitive performance. The search yielded n = 109 studies, of which n = 57 met the inclusion criteria. The results indicate that theta-tACS was beneficial for several cognitive functions, including working memory, executive functions, and declarative memory. Gamma-tACS enhanced performance in both auditory and visual perception but it did not change performance in tasks of executive functions. For attention, the results were less consistent but point to an improvement in performance with alpha- or gamma-tACS. We discuss these findings and point to important considerations that would precede a transfer to real-world applications.

Keywords: cognitive performance; systematic review; tACS; transcranial alternating current stimulation.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Overview of different ways to modulate brain oscillations (AD). (E) Online tACS: applied during a cognitive task; offline tACS: applied either prior to a cognitive task or between tasks. Note: T, target electrode; R, return electrode; mA, milliamps; t, time.
Figure 2
Figure 2
Flow chart of the identification and inclusion of studies in the current systematic review.
Figure 3
Figure 3
Histograms of the mean age (A) as well as the mean sample sizes (B) of all included studies.
Figure 4
Figure 4
Number of times tACS with a certain frequency was applied in all included studies (top) or in each cognitive domain (bottom).

References

    1. Tavakoli A.V., Yun K. Transcranial alternating current stimulation (tACS) mechanisms and protocols. Front. Cell. Neurosci. 2017;11:214. doi: 10.3389/fncel.2017.00214.
    1. Antal A., Herrmann C.S. Transcranial alternating current and random noise stimulation: Possible mechanisms. Neural Plast. 2016;2016:e3616807. doi: 10.1155/2016/3616807.
    1. Johnson L., Alekseichuk I., Krieg J., Doyle A., Yu Y., Vitek J., Johnson M., Opitz A. Dose-dependent effects of transcranial alternating current stimulation on spike timing in awake nonhuman primates. Sci. Adv. 2020;6:eaaz2747. doi: 10.1126/sciadv.aaz2747.
    1. Krause M.R., Vieira P.G., Csorba B.A., Pilly P.K., Pack C.C. Transcranial alternating current stimulation entrains single-neuron activity in the primate brain. Proc. Natl. Acad. Sci. USA. 2019;116:5747–5755. doi: 10.1073/pnas.1815958116.
    1. Fröhlich F., McCormick D.A. Endogenous electric fields may guide neocortical network activity. Neuron. 2010;67:129–143. doi: 10.1016/j.neuron.2010.06.005.
    1. Vossen A., Gross J., Thut G. Alpha power increase after transcranial alternating current stimulation at alpha frequency (a-tACS) reflects plastic changes rather than entrainment. Brain Stimul. 2015;8:499–508. doi: 10.1016/j.brs.2014.12.004.
    1. Kasten F.H., Herrmann C.S. Transcranial alternating current stimulation (tACS) enhances mental rotation performance during and after stimulation. Front. Hum. Neurosci. 2017;11:1–16. doi: 10.3389/fnhum.2017.00002.
    1. Bland N.S., Sale M.V. Current challenges: The ups and downs of tACS. Exp. Brain Res. 2019;237:3071–3088. doi: 10.1007/s00221-019-05666-0.
    1. Sauseng P., Klimesch W. What does phase information of oscillatory brain activity tell us about cognitive processes? Neurosci. Biobehav. Rev. 2008;32:1001–1013. doi: 10.1016/j.neubiorev.2008.03.014.
    1. Morillon B., Arnal L.H., Schroeder C.E., Keitel A. Prominence of delta oscillatory rhythms in the motor cortex and their relevance for auditory and speech perception. Neurosci. Biobehav. Rev. 2019;107:136–142. doi: 10.1016/j.neubiorev.2019.09.012.
    1. Harmony T. The functional significance of delta oscillations in cognitive processing. Front. Integr. Neurosci. 2013;7:83. doi: 10.3389/fnint.2013.00083.
    1. Sauseng P., Griesmayr B., Freunberger R., Klimesch W. Control mechanisms in working memory: A possible function of EEG theta oscillations. Neurosci. Biobehav. Rev. 2010;34:1015–1022. doi: 10.1016/j.neubiorev.2009.12.006.
    1. Hsieh L.-T., Ranganath C. Frontal midline theta oscillations during working memory maintenance and episodic encoding and retrieval. Pt 2Neuroimage. 2014;85:721–729. doi: 10.1016/j.neuroimage.2013.08.003.
    1. Herweg N.A., Solomon E.A., Kahana M.J. Theta oscillations in human memory. Trends Cogn. Sci. 2020;24:208–227. doi: 10.1016/j.tics.2019.12.006.
    1. Kim N.Y., Wittenberg E., Nam C.S. Behavioral and neural correlates of executive function: Interplay between inhibition and updating processes. Front. Neurosci. 2017;11:378. doi: 10.3389/fnins.2017.00378.
    1. Taylor P.C.J., Thut G. Brain activity underlying visual perception and attention as inferred from TMS–EEG: A review. Brain Stimul. 2012;5:124–129. doi: 10.1016/j.brs.2012.03.003.
    1. Mierau A., Klimesch W., Lefebvre J. State-dependent alpha peak frequency shifts: Experimental evidence, potential mechanisms and functional implications. Neuroscience. 2017;360:146–154. doi: 10.1016/j.neuroscience.2017.07.037.
    1. Engel A.K., Fries P. Beta-band oscillations—Signalling the status quo? Curr. Opin. Neurobiol. 2010;20:156–165. doi: 10.1016/j.conb.2010.02.015.
    1. Schmidt R., Ruiz M.H., Kilavik B.E., Lundqvist M., Starr P.A., Aron A.R. Beta oscillations in working memory, executive control of movement and thought, and sensorimotor function. J. Neurosci. 2019;39:8231. doi: 10.1523/JNEUROSCI.1163-19.2019.
    1. Fries P. Rhythms for cognition: Communication through coherence. Neuron. 2015;88:220–235. doi: 10.1016/j.neuron.2015.09.034.
    1. Pina J.E., Bodner M., Ermentrout B. Oscillations in working memory and neural binding: A mechanism for multiple memories and their interactions. PLoS Comput. Biol. 2018;14:e1006517. doi: 10.1371/journal.pcbi.1006517.
    1. Nyhus E., Curran T. Functional role of gamma and theta oscillations in episodic memory. Neurosci. Biobehav. Rev. 2010;34:1023–1035. doi: 10.1016/j.neubiorev.2009.12.014.
    1. Baltus A., Herrmann C.S. The importance of individual frequencies of endogenous brain oscillations for auditory cognition—A short review. Brain Res. 2016;1640:243–250. doi: 10.1016/j.brainres.2015.09.030.
    1. Schutter D.J.L.G., Wischnewski M. A meta-analytic study of exogenous oscillatory electric potentials in neuroenhancement. Neuropsychologia. 2016;86:110–118. doi: 10.1016/j.neuropsychologia.2016.04.011.
    1. Naro A., Leo A., Russo M., Cannavò A., Milardi D., Bramanti P., Calabrò R.S. Does transcranial alternating current stimulation induce cerebellum plasticity? Feasibility, safety and efficacy of a novel electrophysiological approach. Brain Stimul. 2016;9:388–395. doi: 10.1016/j.brs.2016.02.005.
    1. Dayan E., Censor N., Buch E.R., Sandrini M., Cohen L.G. Noninvasive brain stimulation: From physiology to network dynamics and back. Nat. Neurosci. 2013;16:838–844. doi: 10.1038/nn.3422.
    1. Woods A.J., Antal A., Bikson M., Boggio P.S., Brunoni A.R., Celnik P., Cohen L.G., Fregni F., Herrmann C.S., Kappenman E.S., et al. A technical guide to tDCS, and related non-invasive brain stimulation tools. Clin. Neurophysiol. 2016;127:1031–1048. doi: 10.1016/j.clinph.2015.11.012.
    1. Fröhlich F., Sellers K.K., Cordle A.L. Targeting the neurophysiology of cognitive systems with transcranial alternating current stimulation. Expert Rev. Neurother. 2015;15:145–167. doi: 10.1586/14737175.2015.992782.
    1. Moher D., Liberati A., Tetzlaff J., Altman D.G., Group T.P. Preferred reporting items for systematic reviews and Meta-analyses: The PRISMA statement. PLoS Med. 2009;6:e1000097. doi: 10.1371/journal.pmed.1000097.
    1. Schuhmann T., Kemmerer S.K., Duecker F., de Graaf T.A., Ten Oever S., De Weerd P., Sack A.T. Left parietal tACS at alpha frequency induces a shift of visuospatial attention. PLoS ONE. 2019;14:e0217729. doi: 10.1371/journal.pone.0217729.
    1. Deng Y., Reinhart R.M.G., Choi I., Shinn-Cunningham B. Causal links between parietal alpha activity and spatial auditory attention. eLife. 2019;8:1–23. doi: 10.7554/eLife.51184.
    1. Otsuru N., Kamijo K., Otsuki T., Kojima S., Miyaguchi S., Saito K., Inukai Y., Onishi H. 10 Hz transcranial alternating current stimulation over posterior parietal cortex facilitates tactile temporal order judgment. Behav. Brain Res. 2019;368:111899. doi: 10.1016/j.bbr.2019.111899.
    1. Yaple Z., Vakhrushev R. Modulation of the frontal-parietal network by low intensity anti-phase 20 Hz transcranial electrical stimulation boosts performance in the attentional blink task. Int. J. Psychophysiol. 2018;127:11–16. doi: 10.1016/j.ijpsycho.2018.02.014.
    1. Clayton M.S., Yeung N., Cohen Kadosh R. Electrical stimulation of alpha oscillations stabilizes performance on visual attention tasks. J. Exp. Psychol. Gen. 2019;148:203–220. doi: 10.1037/xge0000502.
    1. Hopfinger J.B., Parsons J., Fröhlich F. Differential effects of 10-Hz and 40-Hz transcranial alternating current stimulation (tACS) on endogenous versus exogenous attention. Cogn. Neurosci. 2017;8:102–111. doi: 10.1080/17588928.2016.1194261.
    1. Wöstmann M., Vosskuhl J., Obleser J., Herrmann C.S. Opposite effects of lateralised transcranial alpha versus gamma stimulation on auditory spatial attention. Brain Stimul. 2018;11:752–758. doi: 10.1016/j.brs.2018.04.006.
    1. Meier J., Nolte G., Schneider T.R., Engel A.K., Leicht G., Mulert C. Intrinsic 40Hz-phase asymmetries predict tACS effects during conscious auditory perception. PLoS ONE. 2019;14:e0213996. doi: 10.1371/journal.pone.0213996.
    1. Laczó B., Antal A., Niebergall R., Treue S., Paulus W. Transcranial alternating stimulation in a high gamma frequency range applied over V1 improves contrast perception but does not modulate spatial attention. Brain Stimul. 2012;5:484–491. doi: 10.1016/j.brs.2011.08.008.
    1. Neubauer A.C., Wammerl M., Benedek M., Jauk E., Jaušovec N. The influence of transcranial alternating current stimulation (tACS) on fluid intelligence: An fMRI study. Personal. Individ. Differ. 2017;118:50–55. doi: 10.1016/j.paid.2017.04.016.
    1. Pahor A., Jaušovec N. Making brains run faster: Are they becoming smarter? Span. J. Psychol. 2016;19:1–27. doi: 10.1017/sjp.2016.83.
    1. Grabner R.H., Krenn J., Fink A., Arendasy M., Benedek M. Effects of alpha and gamma transcranial alternating current stimulation (tACS) on verbal creativity and intelligence test performance. Neuropsychologia. 2018;118:91–98. doi: 10.1016/j.neuropsychologia.2017.10.035.
    1. Santarnecchi E., Muller T., Rossi S., Sarkar A., Polizzotto N.R., Rossi A., Cohen Kadosh R. Individual differences and specificity of prefrontal gamma frequency-tACS on fluid intelligence capabilities. Cortex. 2016;75:33–43. doi: 10.1016/j.cortex.2015.11.003.
    1. Santarnecchi E., Polizzotto N.R., Godone M., Giovannelli F., Feurra M., Matzen L., Rossi A., Rossi S. Frequency-dependent enhancement of fluid intelligence induced by transcranial oscillatory potentials. Curr. Biol. 2013;23:1449–1453. doi: 10.1016/j.cub.2013.06.022.
    1. Brignani D., Ruzzoli M., Mauri P., Miniussi C. Is transcranial alternating current stimulation effective in modulating brain oscillations? PLoS ONE. 2013;8:e56589. doi: 10.1371/journal.pone.0056589.
    1. Herring J.D., Esterer S., Marshall T.R., Jensen O., Bergmann T.O. Low-frequency alternating current stimulation rhythmically suppresses gamma-band oscillations and impairs perceptual performance. NeuroImage. 2019;184:440–449. doi: 10.1016/j.neuroimage.2018.09.047.
    1. Gonzalez-Perez M., Wakui E., Thoma V., Nitsche M.A., Rivolta D. Transcranial alternating current stimulation (tACS) at 40 Hz enhances face and object perception. Neuropsychologia. 2019;135:107237. doi: 10.1016/j.neuropsychologia.2019.107237.
    1. Strüber D., Rach S., Trautmann-Lengsfeld S.A., Engel A.K., Herrmann C.S. Antiphasic 40 Hz oscillatory current stimulation affects bistable motion perception. Brain Topogr. 2014;27:158–171. doi: 10.1007/s10548-013-0294-x.
    1. Zoefel B., Archer-Boyd A., Davis M.H. Phase entrainment of brain oscillations causally modulates neural responses to intelligible speech. Curr. Biol. 2018;28:401–408.e5. doi: 10.1016/j.cub.2017.11.071.
    1. Zoefel B., Allard I., Anil M., Davis M.H. Perception of rhythmic speech is modulated by focal bilateral transcranial alternating current stimulation. J. Cogn. Neurosci. 2019;32:226–240. doi: 10.1162/jocn_a_01490.
    1. Riecke L., Sack A.T., Schroeder C.E. Endogenous delta/theta sound-brain phase entrainment accelerates the buildup of auditory streaming. Curr. Biol. 2015;25:3196–3201. doi: 10.1016/j.cub.2015.10.045.
    1. Riecke L., Formisano E., Sorger B., Başkent D., Gaudrain E. Neural entrainment to speech modulates speech intelligibility. Curr. Biol. 2018;28:161–169.e5. doi: 10.1016/j.cub.2017.11.033.
    1. Moliadze V., Sierau L., Lyzhko E., Stenner T., Werchowski M., Siniatchkin M., Hartwigsen G. After-effects of 10 Hz tACS over the prefrontal cortex on phonological word decisions. Brain Stimul. 2019;12:1464–1474. doi: 10.1016/j.brs.2019.06.021.
    1. Rufener K.S., Zaehle T., Oechslin M.S., Meyer M. 40 Hz-Transcranial alternating current stimulation (tACS) selectively modulates speech perception. Int. J. Psychophysiol. 2016;101:18–24. doi: 10.1016/j.ijpsycho.2016.01.002.
    1. Rufener K.S., Oechslin M.S., Zaehle T., Meyer M. Transcranial alternating current stimulation (tACS) differentially modulates speech perception in young and older adults. Brain Stimul. 2016;9:560–565. doi: 10.1016/j.brs.2016.04.002.
    1. Brauer H., Kadish N.E., Pedersen A., Siniatchkin M., Moliadze V. No modulatory effects when stimulating the right inferior frontal gyrus with continuous 6Hz TACs and TRNs on response inhibition: A behavioral study. Neural Plast. 2018;2018 doi: 10.1155/2018/3156796.
    1. Reinhart R.M.G. Disruption and rescue of interareal theta phase coupling and adaptive behavior. Proc. Natl. Acad. Sci. USA. 2017;114:11542–11547. doi: 10.1073/pnas.1710257114.
    1. Van Driel J., Sligte I.G., Linders J., Elport D., Cohen M.X. Frequency band-specific electrical brain stimulation modulates cognitive control processes. PLoS ONE. 2015;10:e0138984. doi: 10.1371/journal.pone.0138984.
    1. Kasten F.H., Maess B., Herrmann C.S. Facilitated event-related power modulations during transcranial alternating current stimulation (tACS) revealed by concurrent tACS-MEG. eNeuro. 2018;5 doi: 10.1523/ENEURO.0069-18.2018.
    1. Wiener M., Parikh A., Krakow A., Coslett H.B. An intrinsic role of beta oscillations in memory for time estimation. Sci. Rep. 2018;8:7992. doi: 10.1038/s41598-018-26385-6.
    1. Fusco G., Scandola M., Feurra M., Pavone E.F., Rossi S., Aglioti S.M. Midfrontal theta transcranial alternating current stimulation modulates behavioural adjustment after error execution. Eur. J. Neurosci. 2018;48:3159–3170. doi: 10.1111/ejn.14174.
    1. Yaple Z., Martinez-Saito M., Feurra M., Shestakova A., Klucharev V. Transcranial alternating current stimulation modulates risky decision making in a frequency-controlled experiment. eNeuro. 2017;4 doi: 10.1523/ENEURO.0136-17.2017.
    1. Zavecz Z., Horváth K., Solymosi P., Janacsek K., Nemeth D. Frontal-midline theta frequency and probabilistic learning: A transcranial alternating current stimulation study. Behav. Brain Res. 2020;393:112733. doi: 10.1016/j.bbr.2020.112733.
    1. Fresnoza S., Christova M., Bieler L., Körner C., Zimmer U., Gallasch E., Ischebeck A. Age-dependent effect of transcranial alternating current stimulation on motor skill consolidation. Front. Aging Neurosci. 2020;12:1–15. doi: 10.3389/fnagi.2020.00025.
    1. Brinkman L., Stolk A., Marshall T.R., Esterer S., Sharp P., Dijkerman H.C., de Lange F.P., Toni I. Independent causal contributions of Alpha- and Beta-band oscillations during movement selection. J. Neurosci. 2016;36:8726–8733. doi: 10.1523/JNEUROSCI.0868-16.2016.
    1. Nowak M., Hinson E., Van Ede F., Pogosyan A., Guerra A., Quinn A., Brown P., Stagg C.J. Driving human motor cortical oscillations leads to behaviorally relevant changes in local GABAA inhibition: A tACS-TMS study. J. Neurosci. 2017;37:4481–4492. doi: 10.1523/JNEUROSCI.0098-17.2017.
    1. Giustiniani A., Tarantino V., Bonaventura R.E., Smirni D., Turriziani P., Oliveri M. Effects of low-gamma tACS on primary motor cortex in implicit motor learning. Behav. Brain Res. 2019;376:112170. doi: 10.1016/j.bbr.2019.112170.
    1. Sugata H., Yagi K., Yazawa S., Nagase Y., Tsuruta K., Ikeda T., Matsushita K., Hara M., Kawakami K., Kawakami K. Modulation of motor learning capacity by transcranial alternating current stimulation. Neuroscience. 2018;391:131–139. doi: 10.1016/j.neuroscience.2018.09.013.
    1. Alekseichuk I., Pabel S.C., Antal A., Paulus W. Intrahemispheric theta rhythm desynchronization impairs working memory. Restor. Neurol. Neurosci. 2017;35:147–158. doi: 10.3233/RNN-160714.
    1. Bender M., Romei V., Sauseng P. Slow theta tACS of the right parietal cortex enhances contralateral visual working memory capacity. Brain Topogr. 2019;32:477–481. doi: 10.1007/s10548-019-00702-2.
    1. Jausovec N., Jausovec K., Pahor A. The influence of theta transcranial alternating current stimulation (tACS) on working memory storage and processing functions. Acta Psychol. 2014;146:1–6. doi: 10.1016/j.actpsy.2013.11.011.
    1. Tseng P., Iu K.C., Juan C.H. The critical role of phase difference in theta oscillation between bilateral parietal cortices for visuospatial working memory. Sci. Rep. 2018;8:1–9. doi: 10.1038/s41598-017-18449-w.
    1. Polanía R., Nitsche M.A., Korman C., Batsikadze G., Paulus W. The importance of timing in segregated theta phase-coupling for cognitive performance. Curr. Biol. 2012;22:1314–1318. doi: 10.1016/j.cub.2012.05.021.
    1. Violante I.R., Li L.M., Carmichael D.W., Lorenz R., Leech R., Hampshire A., Rothwell J.C., Sharp D.J. Externally induced frontoparietal synchronization modulates network dynamics and enhances working memory performance. eLife. 2017;6:1–22. doi: 10.7554/eLife.22001.
    1. Wolinski N., Cooper N.R., Sauseng P., Romei V. The speed of parietal theta frequency drives visuospatial working memory capacity. PLoS Biol. 2018;16:1–17. doi: 10.1371/journal.pbio.2005348.
    1. Gutteling T.P., Schutter D.J.L.G., Medendorp W.P. Alpha-band transcranial alternating current stimulation modulates precision, but not gain during whole-body spatial updating. Neuropsychologia. 2017;106:52–59. doi: 10.1016/j.neuropsychologia.2017.09.005.
    1. Hoy K.E., Bailey N., Arnold S., Windsor K., John J., Daskalakis Z.J., Fitzgerald P.B. The effect of γ-tACS on working memory performance in healthy controls. Brain Cogn. 2015;101:51–56. doi: 10.1016/j.bandc.2015.11.002.
    1. Tseng P., Chang Y.T., Chang C.F., Liang W.K., Juan C.H. The critical role of phase difference in gamma oscillation within the temporoparietal network for binding visual working memory. Sci. Rep. 2016;6:1–15. doi: 10.1038/srep32138.
    1. Borghini G., Candini M., Filannino C., Hussain M., Walsh V., Romei V., Zokaei N., Cappelletti M. Alpha oscillations are causally linked to inhibitory abilities in ageing. J. Neurosci. 2018;38:4418–4429. doi: 10.1523/JNEUROSCI.1285-17.2018.
    1. Antonenko D., Faxel M., Grittner U., Lavidor M., Flöel A. Effects of transcranial alternating current stimulation on cognitive functions in healthy young and older adults. Neural Plast. 2016;2016:4274127. doi: 10.1155/2016/4274127.
    1. De Lara G.A., Alekseichuk I., Turi Z., Lehr A., Antal A., Paulus W. Perturbation of theta-gamma coupling at the temporal lobe hinders verbal declarative memory. Brain Stimul. 2018;11:509–517. doi: 10.1016/j.brs.2017.12.007.
    1. Klink K., Peter J., Wyss P., Klöppel S. Transcranial electric current stimulation during associative memory encoding: Comparing tACS and tDCS effects in healthy aging. Front. Aging Neurosci. 2020;12:66. doi: 10.3389/fnagi.2020.00066.
    1. Alekseichuk I., Turi Z., Veit S., Paulus W. Model-driven neuromodulation of the right posterior region promotes encoding of long-term memories. Brain Stimul. 2019;13:474–483. doi: 10.1016/j.brs.2019.12.019.
    1. Lang S., Gan L.S., Alrazi T., Monchi O. Theta band high definition transcranial alternating current stimulation, but not transcranial direct current stimulation, improves associative memory performance. Sci. Rep. 2019;9 doi: 10.1038/s41598-019-44680-8.
    1. Javadi A.-H., Glen J.C., Halkiopoulos S., Schulz M., Spiers H.J. Oscillatory reinstatement enhances declarative memory. J. Neurosci. 2017;37:9939–9944. doi: 10.1523/JNEUROSCI.0265-17.2017.
    1. Nomura T., Asao A., Kumasaka A. Transcranial alternating current stimulation over the prefrontal cortex enhances episodic memory recognition. Exp. Brain Res. 2019;237:1709–1715. doi: 10.1007/s00221-019-05543-w.
    1. Braun V., Sokoliuk R., Hanslmayr S. On the effectiveness of event-related beta tACS on episodic memory formation and motor cortex excitability. Brain Stimul. 2017;10:910–918. doi: 10.1016/j.brs.2017.04.129.
    1. Henry M.J., Obleser J. Frequency modulation entrains slow neural oscillations and optimizes human listening behavior. Proc. Natl. Acad. Sci. USA. 2012;109:20095–20100. doi: 10.1073/pnas.1213390109.
    1. Bridwell D.A., Henderson S., Sorge M., Plis S., Calhoun V.D. Relationships between alpha oscillations during speech preparation and the listener N400 ERP to the produced speech. Sci. Rep. 2018;8:12838. doi: 10.1038/s41598-018-31038-9.
    1. Klimesch W. α-band oscillations, attention, and controlled access to stored information. Trends Cogn. Sci. (Regul. Ed.) 2012;16:606–617. doi: 10.1016/j.tics.2012.10.007.
    1. Clayton M.S., Yeung N., Cohen Kadosh R. The many characters of visual alpha oscillations. Eur. J. Neurosci. 2018;48:2498–2508. doi: 10.1111/ejn.13747.
    1. Proskovec A.L., Wiesman A.I., Wilson T.W. The strength of alpha and gamma oscillations predicts behavioral switch costs. NeuroImage. 2019;188:274–281. doi: 10.1016/j.neuroimage.2018.12.016.
    1. Roux F., Uhlhaas P.J. Working memory and neural oscillations: Alpha–gamma versus theta–gamma codes for distinct WM information? Trends Cogn. Sci. 2014;18:16–25. doi: 10.1016/j.tics.2013.10.010.
    1. Constantinidis C., Klingberg T. The neuroscience of working memory capacity and training. Nat. Rev. Neurosci. 2016;17:438–449. doi: 10.1038/nrn.2016.43.
    1. Meissner S.N., Krause V., Südmeyer M., Hartmann C.J., Pollok B. The significance of brain oscillations in motor sequence learning: Insights from Parkinson’s disease. NeuroImage Clin. 2018;20:448–457. doi: 10.1016/j.nicl.2018.08.009.
    1. Marco-Pallarés J., Münte T.F., Rodríguez-Fornells A. The role of high-frequency oscillatory activity in reward processing and learning. Neurosci. Biobehav. Rev. 2015;49:1–7. doi: 10.1016/j.neubiorev.2014.11.014.
    1. Bunzeck N., Guitart-Masip M., Dolan R.J., Düzel E. Contextual novelty modulates the neural dynamics of reward anticipation. J. Neurosci. 2011;31:12816–12822. doi: 10.1523/JNEUROSCI.0461-11.2011.
    1. Chuderski A. Fluid intelligence and the cross-frequency coupling of neuronal oscillations. Span. J. Psychol. 2016;19:E91. doi: 10.1017/sjp.2016.86.
    1. Kral A., Tillein J. Brain plasticity under cochlear implant stimulation. Cochlear Brainstem Implant. 2006;64:89–108.
    1. Heimrath K., Fiene M., Rufener K.S., Zaehle T. Modulating human auditory processing by transcranial electrical stimulation. Front. Cell. Neurosci. 2016;10:53. doi: 10.3389/fncel.2016.00053.
    1. Smulders T.V., Black-Dominique A., Choudhury T.S., Constantinescu S.E., Foka K., Walker T.J., Dick K., Bradwel S., McAllister-Williams R.H., Gallagher P. A real-world what-where-when memory test. JoVE. 2017:55646. doi: 10.3791/55646.
    1. Jung S., Yoon Y., Han S.W. Working memory-driven attention in real-world search. Perception. 2018;47:966–975. doi: 10.1177/0301006618791688.
    1. Çukur T., Nishimoto S., Huth A.G., Gallant J.L. Attention during natural vision warps semantic representation across the human brain. Nat. Neurosci. 2013;16:763–770. doi: 10.1038/nn.3381.
    1. Brady T.F., Konkle T., Oliva A., Alvarez G.A. Detecting changes in real-world objects: The relationship between visual long-term memory and change blindness. Commun Integr. Biol. 2009;2:1–3. doi: 10.4161/cib.2.1.7297.
    1. Haberman J., Whitney D. Rapid extraction of mean emotion and gender from sets of faces. Curr. Biol. 2007;17:R751–R753. doi: 10.1016/j.cub.2007.06.039.
    1. Debener S., Emkes R., De Vos M., Bleichner M. Unobtrusive ambulatory EEG using a smartphone and flexible printed electrodes around the ear. Sci. Rep. 2015;5:16743. doi: 10.1038/srep16743.
    1. Debener S., Minow F., Emkes R., Gandras K., de Vos M. How about taking a low-cost, small, and wireless EEG for a walk? Psychophysiology. 2012;49:1617–1621. doi: 10.1111/j.1469-8986.2012.01471.x.
    1. Bleichner M.G., Debener S. Concealed, unobtrusive ear-centered EEG acquisition: cEEGrids for transparent EEG. Front. Hum. Neurosci. 2017;11:163. doi: 10.3389/fnhum.2017.00163.
    1. Griffiths B., Mazaheri A., Debener S., Hanslmayr S. Brain oscillations track the formation of episodic memories in the real world. NeuroImage. 2016;143:256–266. doi: 10.1016/j.neuroimage.2016.09.021.
    1. Seeber M., Scherer R., Wagner J., Solis-Escalante T., Müller-Putz G.R. High and low gamma EEG oscillations in central sensorimotor areas are conversely modulated during the human gait cycle. Neuroimage. 2015;112:318–326. doi: 10.1016/j.neuroimage.2015.03.045.
    1. Liang M., Starrett M.J., Ekstrom A.D. Dissociation of frontal-midline delta-theta and posterior alpha oscillations: A mobile EEG study. Psychophysiology. 2018;55:e13090. doi: 10.1111/psyp.13090.
    1. Feurra M., Pasqualetti P., Bianco G., Santarnecchi E., Rossi A., Rossi S. State-dependent effects of transcranial oscillatory currents on the motor system: What you think matters. J. Neurosci. 2013;33:17483–17489. doi: 10.1523/JNEUROSCI.1414-13.2013.
    1. Ruhnau P., Neuling T., Fuscá M., Herrmann C.S., Demarchi G., Weisz N. Eyes wide shut: Transcranial alternating current stimulation drives alpha rhythm in a state dependent manner. Sci. Rep. 2016;6:27138. doi: 10.1038/srep27138.
    1. Stecher H.I., Pollok T.M., Strüber D., Sobotka F., Herrmann C.S. Ten minutes of α-tACS and ambient illumination independently modulate EEG α-Power. Front. Hum. Neurosci. 2017;11:257. doi: 10.3389/fnhum.2017.00257.
    1. Kasten F.H., Herrmann C.S. Recovering brain dynamics during concurrent tACS-M/EEG: An overview of analysis approaches and their methodological and interpretational pitfalls. Brain Topogr. 2019;32:1013–1019. doi: 10.1007/s10548-019-00727-7.
    1. Kasten F.H., Duecker K., Maack M.C., Meiser A., Herrmann C.S. Integrating electric field modeling and neuroimaging to explain inter-individual variability of tACS effects. Nat. Commun. 2019;10:5427. doi: 10.1038/s41467-019-13417-6.
    1. Huang Y., Thomas C., Datta A., Parra L.C. Optimized tDCS for targeting multiple brain regions: An integrated implementation. Annu. Int. Conf. IEEE. Eng. Med. Biol. Soc. 2018;2018:3545–3548.
    1. Huang Y., Datta A., Bikson M., Parra L.C. Realistic volumetric-approach to simulate transcranial electric stimulation—ROAST—a fully automated open-source pipeline. J. Neural. Eng. 2019;16:056006. doi: 10.1088/1741-2552/ab208d.
    1. Saturnino G.B., Siebner H.R., Thielscher A., Madsen K.H. Accessibility of cortical regions to focal TES: Dependence on spatial position, safety, and practical constraints. NeuroImage. 2019;203:116183. doi: 10.1016/j.neuroimage.2019.116183.
    1. Wagner S., Burger M., Wolters C.H. An optimization approach for well-targeted transcranial direct current stimulation. SIAM J. Appl. Math. 2016;76:2154–2174. doi: 10.1137/15M1026481.
    1. Button K.S., Ioannidis J.P.A., Mokrysz C., Nosek B.A., Flint J., Robinson E.S.J., Munafò M.R. Power failure: Why small sample size undermines the reliability of neuroscience. Nat. Rev. Neurosci. 2013;14:365–376. doi: 10.1038/nrn3475.

Source: PubMed

3
S'abonner