Congenital leptin deficiency and thyroid function

Gilberto Paz-Filho, Tuncay Delibasi, Halil K Erol, Ma-Li Wong, Julio Licinio, Gilberto Paz-Filho, Tuncay Delibasi, Halil K Erol, Ma-Li Wong, Julio Licinio

Abstract

: Thyroid function is closely related to leptin's secretion by the adipose tissue. In states of leptin-deficiency, the circadian rhythm of TSH is altered, leading to central hypothyroidism in animal models. In humans, central hypothyroidism has also been described in rare cases of congenital leptin deficiency. However, the thyroid phenotype in these cases is heterogeneous, with the occurrence of central hypothyroidism in a minority of cases. Here we describe thyroid function in four leptin-deficient humans (2 males aged 5 and 27, and 2 females aged 35 and 40), before and during leptin replacement with recombinant human methionyl leptin (r-metHuLeptin). The child was evaluated for four years, and the adults, for eight years. In addition, the adults were submitted to a brief withdrawal of leptin during six weeks in the sixth year. Our results show that, regardless of leptin replacement, our leptin-deficient patients have normal thyroid function. In spite of having an important role in regulating the hypothalamic-pituitary-thyroidal axis, leptin is not required for normal thyroid function.

Trial registration: ClinicalTrials.gov Identifiers: NCT00659828 and NCT00657605.

References

    1. Legradi G, Emerson CH, Ahima RS, Rand WM, Flier JS, Lechan RM. Arcuate nucleus ablation prevents fasting-induced suppression of ProTRH mRNA in the hypothalamic paraventricular nucleus. Neuroendocrinology. 1998;68:89–97. doi: 10.1159/000054354.
    1. Kim MS, Small CJ, Stanley SA, Morgan DG, Seal LJ, Kong WM, Edwards CM, Abusnana S, Sunter D, Ghatei MA, Bloom SR. The central melanocortin system affects the hypothalamo-pituitary thyroid axis and may mediate the effect of leptin. J Clin Invest. 2000;105:1005–1011. doi: 10.1172/JCI8857.
    1. Nillni EA, Vaslet C, Harris M, Hollenberg A, Bjorbak C, Flier JS. Leptin regulates prothyrotropin-releasing hormone biosynthesis. Evidence for direct and indirect pathways. J Biol Chem. 2000;275:36124–36133. doi: 10.1074/jbc.M003549200.
    1. Nillni EA. Regulation of prohormone convertases in hypothalamic neurons: implications for prothyrotropin-releasing hormone and proopiomelanocortin. Endocrinology. 2007;148:4191–4200. doi: 10.1210/en.2007-0173.
    1. Farooqi IS, Matarese G, Lord GM, Keogh JM, Lawrence E, Agwu C, Sanna V, Jebb SA, Perna F, Fontana S, Lechler RI, DePaoli AM, O'Rahilly S. Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. J Clin Invest. 2002;110:1093–1103.
    1. Gibson WT, Farooqi IS, Moreau M, DePaoli AM, Lawrence E, O'Rahilly S, Trussell RA. Congenital leptin deficiency due to homozygosity for the Delta133G mutation: report of another case and evaluation of response to four years of leptin therapy. J Clin Endocrinol Metab. 2004;89:4821–4826. doi: 10.1210/jc.2004-0376.
    1. Paz-Filho GJ, Babikian T, Asarnow R, Delibasi T, Esposito K, Erol HK, Wong ML, Licinio J. Leptin replacement improves cognitive development. PLoS ONE. 2008;3:e3098. doi: 10.1371/journal.pone.0003098.
    1. Licinio J, Caglayan S, Ozata M, Yildiz BO, de Miranda PB, O'Kirwan F, Whitby R, Liang L, Cohen P, Bhasin S, Krauss RM, Veldhuis JD, Wagner AJ, DePaoli AM, McCann SM, Wong ML. Phenotypic effects of leptin replacement on morbid obesity, diabetes mellitus, hypogonadism, and behavior in leptin-deficient adults. Proc Natl Acad Sci USA. 2004;101:4531–4536. doi: 10.1073/pnas.0308767101.
    1. Mantzoros CS, Ozata M, Negrao AB, Ziotopoulou M, Caglayan S, Suchard M, Cogswell RJ, Negro P, Elashoff RM, Liberty V, Wong M-L, Veldhuis JD, Ozdemir IC, Gold PW, Flier JS, Licinio J. Synchronicity of frequently sampled TSH and leptin concentrations in healthy adults and leptin deficient subjects: evidence for possible partial TSH regulation by leptin in humans. J Clin Endocrinol Metab. 2001;86:3284–3291. doi: 10.1210/jc.86.7.3284.
    1. Ozata M, Ozisik G, Bingol N, Corakci A, Gundogan MA. The effects of thyroid status on plasma leptin levels in women. J Endocrinol Invest. 1998;21:337–341.
    1. Mantzoros CS, Rosen HN, Greenspan SL, Flier JS, Moses AC. Short-term hyperthyroidism has no effect on leptin levels in man. J Clin Endocrinol Metab. 1997;82:497–499. doi: 10.1210/jc.82.2.497.
    1. Yoshida T, Momotani N, Hayashi M, Monkawa T, Ito K, Saruta T. Serum leptin concentrations in patients with thyroid disorders. Clin Endocrinol (Oxf) 1998;48:299–302. doi: 10.1046/j.1365-2265.1998.00408.x.

Source: PubMed

3
S'abonner