Neuropsychobiological Fingerprints of Chronic Fatigue in Sarcoidosis

Sarah Kettenbach, Sina Radke, Tobias Müller, Ute Habel, Michael Dreher, Sarah Kettenbach, Sina Radke, Tobias Müller, Ute Habel, Michael Dreher

Abstract

Background: Chronic fatigue is a prominent symptom in many sarcoidosis patients, affecting quality of life and interfering with treatment. This study investigated neuropsychobiological mechanisms and markers of chronic fatigue in sarcoidosis.

Methods: Thirty patients with a histological diagnosis of sarcoidosis were included. The Multidimensional Fatigue Inventory was used to define patients with and without chronic fatigue. All patients were then characterised using several depression, quality of life questionnaires, and executive functioning. Cognitive functioning and underlying neural correlates were assessed using an n-back task measuring working memory and (sustained) attention during functional magnetic resonance imaging. Sarcoidosis disease activity was determined using lung function, laboratory parameters, and exercise capacity.

Results: Nineteen patients had chronic fatigue and 11 did not; both groups had similar demographic and disease activity characteristics. Chronic fatigue patients showed more symptoms of depression and anxiety, and lower quality of life. During the n-back task, chronic fatigue was associated with a smaller increase in brain activation with increasing task difficulty versus the group without fatigue, especially in the angular gyrus.

Conclusion: Inadequate adjustment of brain activation with increasing demands appears to be a potential neurobiological marker of chronic fatigue in sarcoidosis patients. The angular gyrus, which plays an important role in the working memory system, was the major area in which fatigue patients showed smaller increase of brain activation compared to those without fatigue. These findings might be relevant for a deeper understanding of chronic fatigue mechanisms in sarcoidosis and future clinical treatment of this disabling syndrome.

Trial registration: ClinicalTrials.gov, Trial registration number: NCT04178239Date of registration: November 26, 2019, retrospectively registeredURL: https://ichgcp.net/clinical-trials-registry/NCT04178239.

Keywords: angular gyrus; chronic fatigue; functional magnetic resonance imaging; rare lung diseases; sarcoidosis.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Kettenbach, Radke, Müller, Habel and Dreher.

Figures

FIGURE 1
FIGURE 1
n-back task. Targets of each condition of the n-back task are circled. The 0-back, 1-back, and 2-back conditions were repeated five times, alternating with the baseline condition. For 0-back, a response on a certain target letter is required (button press for X); for 1-back, the response is required for a repetition of a target letter (e.g., second F); for 2-back, the response has to be on the last but one repetition of the target letter (e.g., L, J, L; response to the L).
FIGURE 2
FIGURE 2
Study flow chart. MFI: Multidimensional Fatigue Inventory; MRI: magnetic resonance imaging.
FIGURE 3
FIGURE 3
Hit rates and response times in n-back task. Hit rates (in proportions) (A) and response times (in milliseconds) (B) on the n-back task in sarcoidosis patients with versus without chronic fatigue presented as box–whisker plots. Horizontal lines denote (from bottom to top) minimum, third quartile, median, first quartile, and maximum. Crosses indicate arithmetic means; points denote statistical outliers.
FIGURE 4
FIGURE 4
Brain activation corresponding to the main effect of condition in n-back task: 2-back > 0-back. Highlighted areas are those that demonstrate more activation in the cognitively more challenging 2-back condition versus the cognitively less challenging 0-back condition.
FIGURE 5
FIGURE 5
Interactions for fatigue > no fatigue in n-back task. Highlighted areas show brain regions that show more activation in the chronic fatigue (CF) versus no chronic fatigue (NCF) group in the contrasts 0-back > 2-back (A) and 0-back > 1-back (B). Box–whisker plots show brain activation of the major cluster’s maximum voxel in arbitrary units. Horizontal lines denote (from bottom to top) minimum, third quartile, median, first quartile, and maximum. Crosses indicate arithmetic means; points denote statistical outliers.

References

    1. Ashburner J. F. K. J. (2005). Unified segmentation. Neuroimage 26 839–851. 10.1016/j.neuroimage.2005.02.018
    1. Ats Committee on Proficiency Standard for Clinical Pulmonary Function Laboratories. (2002). ATS statement: guidelines for the six-minute walk test. Am. J. Respir. Crit. Care Med. 166 111–117. 10.1164/ajrccm.166.1.at1102
    1. Bartes-Serrallonga M., Adan A., Sole-Casals J., Caldú X., Falcón C., Pérez-Pàmies M., et al. (2014). Cerebral networks of sustained attention and working memory: a functional magnetic resonance imaging study based on the Continuous Performance Test. Rev. Neurol. 58 289–295.
    1. Blanca M. J., Alarcón R., Arnau J., Bono R., Bendayan R. (2017). Non-normal data: is ANOVA still a valid option?. Psicothema 29 552–557.
    1. Borg G. A. (1982). Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc. 14 377–381.
    1. Bosse-Henck A., Wirtz H., Hinz A. (2015). Subjective sleep quality in sarcoidosis. Sleep Med. 16 570–576. 10.1016/j.sleep.2014.12.025
    1. Caseras X., Mataix-Cols D., Giampietro V., Rimes K. A., Brammer M., Zelaya F., et al. (2006). Probing the working memory system in chronic fatigue syndrome: a functional magnetic resonance imaging study using the n-back task. Psychosom. Med. 68 947–955. 10.1097/01.psy.0000242770.50979.5f
    1. Collins D. L., Neelin P., Peters T. M., Evans A. C. (1994). Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J. Comput. Assist. Tomogr. 18 192–205. 10.1097/00004728-199403000-00005
    1. Cook D. B., O’Connor P. J., Lange G., Steffener J. (2007). Functional neuroimaging correlates of mental fatigue induced by cognition among chronic fatigue syndrome patients and controls. Neuroimage 36 108–122. 10.1016/j.neuroimage.2007.02.033
    1. Drent M., Lower E. E., de.Vries J. (2012). Sarcoidosis-associated fatigue. Eur. Respir. J. 40 255–263. 10.1183/09031936.00002512
    1. Dumas J. A., Kutz A. M., McDonald B. C., Naylor M. R., Pfaff A. C., Saykin A. J., et al. (2013). Increased working memory-related brain activity in middle-aged women with cognitive complaints. Neurobiol. Aging 34 1145–1147. 10.1016/j.neurobiolaging.2012.08.013
    1. Eickhoff S. B., Stephan K. E., Mohlberg H., Grefkes C., Fink G. R., Amunts K., et al. (2005). A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage 25 1325–1335. 10.1016/j.neuroimage.2004.12.034
    1. Fleischer M., Hinz A., Brahler E., Wirtz H., Bosse-Henck A. (2014). Factors associated with fatigue in sarcoidosis. Respir. Care 59 1086–1094. 10.4187/respcare.02080
    1. Forkmann T., Böcker M., Wirtz M., Gauggel S., Norra C. (2011). Rasch-basiertes depressionsscreening [DESC]. Rasch Based Depres. Screen. 10.6099/1000058
    1. Franke G. H. (2000). BSI: Brief Symptom Inventory von L.R. Derogatis. Göttingen: Beltz-Testges.
    1. Hamilton M. (1960). A rating scale for depression. J. Neurol. Neurosurg. Psychiatry 23 56–62.
    1. Harper A. P. M. (1998). Development of the World Health Organization WHOQOL-BREF quality of life assessment. Psychol. Med. 28 551–558. 10.1017/s0033291798006667
    1. Häuser W., Almouhtasseb R., Muthny F., Grandt D. (2003). Validation of a German version of the Fatigue Impact Scale FIS-D. Z. Gastroenterol. 41 973–982. 10.1055/s-2003-42927
    1. Hautzinger M., Bailer M., Hofmeister D., Keller F. (2012). Allgemeine Depressionsskala: Manual. 2nd ed. Göttingen: Hogrefe.
    1. Hinz A., Fleischer M., Brahler E., Wirtz H., Bosse-Henck A. (2011). Fatigue in patients with sarcoidosis, compared with the general population. Gen. Hosp. Psychiatry 33 462–468. 10.1016/j.genhosppsych.2011.05.009
    1. Jacola L. M., Willard V. W., Ashford J. M., Ogg R. J., Scoggins M. A., Jones M. M., et al. (2014). Clinical utility of the n-back task in functional neuroimaging studies of working memory. J. Clin. Exp. Neuropsychol. 36 875–886. 10.1080/13803395.2014.953039
    1. Kleijn W. P., de Vries J., de Wijnen P. A., Drent M. (2011). Minimal (clinically) important differences for the Fatigue Assessment Scale in sarcoidosis. Respir. Med. 105 1388–1395. 10.1016/j.rmed.2011.05.004
    1. Korenromp I. H., Heijnen C. J., Vogels O. J., van den Bosch J. M. M., Grutters J. C. (2011). Characterization of chronic fatigue in patients with sarcoidosis in clinical remission. Chest 140 441–447. 10.1378/chest.10-2629
    1. Kuhnt S., Ernst J., Singer S., Rüffer J. U., Kortmann R.-D., Stolzenburg J.-U., et al. (2009). Fatigue in cancer survivors–prevalence and correlates. Onkologie 32 312–317. 10.1159/000215943
    1. Lal C., Medarov B. I., Judson M. A. (2015). The interrelationship between sleep disordered breathing and sarcoidosis. Chest 148 1105–1114. 10.1378/chest.15-0584
    1. Lower E. E., Malhotra A., Surdulescu V., Baughman R. P. (2013). Armodafinil for sarcoidosis-associated fatigue: a double-blind, placebo-controlled, crossover trial. J. Pain Symptom Manage. 45 159–169. 10.1016/j.jpainsymman.2012.02.016
    1. Marcellis R. G., Lenssen A. F., Elfferich M. D., De Vries J., Kassim S., Foerster K., et al. (2011). Exercise capacity, muscle strength and fatigue in sarcoidosis. Eur. Respir. J. 38 628–634. 10.1183/09031936.00117710
    1. Matthys H., Zaiss A. W., Theissen J. L., Virchow J. C., Werner P. (1995). Definitionen, Soll- und Meßwerte zur Diagnose obstruktiver, restriktiver sowie gemischter Ventilationsstörungen für die klinische Lungenfunktionsdiagnostik. Atemw Lungenkrkh 21 130–138.
    1. Miller M. R., Hankinson J., Brusasco V., Burgos F., Casaburi R., Coates A., et al. (2005). Standardisation of spirometry. Eur. Respir. J. 26 319–338. 10.1183/09031936.05.00034805
    1. Nissim N. R., O’Shea A. M., Bryant V., Porges E. C., Cohen R., Woods A. J. (2016). Frontal structural neural correlates of working memory performance in older adults. Front. Aging Neurosci. 8:328. 10.3389/fnagi.2016.00328
    1. Provenzano D., Washington S. D., Baraniuk J. N. A. (2020). Machine Learning Approach to the Differentiation of Functional Magnetic Resonance Imaging Data of Chronic Fatigue Syndrome (CFS) From a Sedentary Control. Front. Comput. Neurosci. 14:2. 10.3389/fncom.2020.00002
    1. Reitan R. (1956). Trail Making Test: Manual for Administration, Scoring And Interpretation. Bloomington: Indiana University Press.
    1. Saligan L. N. (2014). The relationship between physical activity, functional performance and fatigue in sarcoidosis. J. Clin. Nurs. 23 2376–2378. 10.1111/jocn.12490
    1. Salminen T., Forlim C. G., Schubert T., Kühn S. (2020). Dual n-back training improves functional connectivity of the right inferior frontal gyrus at rest. Sci. Rep. 10:20379. 10.1038/s41598-020-77310-9
    1. Schwarz R., Krauss O., Hinz A. (2003). Fatigue in the general population. Oncol. Res. Treat. 26 140–144. 10.1159/000069834
    1. Seghier M. L. (2013). The angular gyrus: multiple functions and multiple subdivisions. Neuroscientist 19 43–61. 10.1177/1073858412440596
    1. Shan Z. Y., Finegan K., Bhuta S., Ireland T., Staines D. R., Marshall-Gradisnik S. M., et al. (2018). Decreased connectivity and increased blood oxygenation level dependent complexity in the default mode network in individuals with chronic fatigue syndrome. Brain Connect. 8 33–39. 10.1089/brain.2017.0549
    1. Smets E. M., Garssen B., Bonke B., De Haes J. C. (1995). The Multidimensional Fatigue Inventory (MFI) psychometric qualities of an instrument to assess fatigue. J. Psychosom. Res. 39 315–325. 10.1016/0022-3999(94)00125-o
    1. Song P., Lin H., Liu C., Jiang Y., Lin Y., Xue Q., et al. (2019). Transcranial Magnetic Stimulation to the Middle Frontal Gyrus During Attention Modes Induced Dynamic Module Reconfiguration in Brain Networks. Front. Neuroinform. 13:22. 10.3389/fninf.2019.00022
    1. Spielberger C. D., Gorsuch R. L., Lushene R., Vagg P. R., Jacobs G. A. (1983). Manual for the State-Trait Anxiety Inventory. Palo Alto: Consulting Psychologists Press.
    1. Vatansever D., Manktelow A. E., Sahakian B. J., Menon D. K., Stamatakis E. A. (2017). Angular default mode network connectivity across working memory load. Hum. Brain Mapp. 38 41–52. 10.1002/hbm.23341
    1. Wanger J., Clausen J. L., Coates A., Pedersen O. F., Brusasco V., Burgos F., et al. (2005). Standardisation of the measurement of lung volumes. Eur. Respir. J. 26 511–522.

Source: PubMed

3
S'abonner