Inflammation and vascular dysfunction: The negative synergistic combination of diabetes and COVID-19

Andrea Mario Bolla, Cristian Loretelli, Laura Montefusco, Giovanna Finzi, Reza Abdi, Moufida Ben Nasr, Maria Elena Lunati, Ida Pastore, Joseph V Bonventre, Manuela Nebuloni, Stefano Rusconi, Pierachille Santus, Gianvincenzo Zuccotti, Massimo Galli, Francesca D'Addio, Paolo Fiorina, Andrea Mario Bolla, Cristian Loretelli, Laura Montefusco, Giovanna Finzi, Reza Abdi, Moufida Ben Nasr, Maria Elena Lunati, Ida Pastore, Joseph V Bonventre, Manuela Nebuloni, Stefano Rusconi, Pierachille Santus, Gianvincenzo Zuccotti, Massimo Galli, Francesca D'Addio, Paolo Fiorina

Abstract

Aims: Several reports indicate that diabetes determines an increased mortality risk in patients with coronavirus disease 19 (COVID-19) and a good glycaemic control appears to be associated with more favourable outcomes. Evidence also supports that COVID-19 pneumonia only accounts for a part of COVID-19 related deaths. This disease is indeed characterised by abnormal inflammatory response and vascular dysfunction, leading to the involvement and failure of different systems, including severe acute respiratory distress syndrome, coagulopathy, myocardial damage and renal failure. Inflammation and vascular dysfunction are also well-known features of hyperglycemia and diabetes, making up the ground for a detrimental synergistic combination that could explain the increased mortality observed in hyperglycaemic patients.

Materials and methods: In this work, we conduct a narrative review on this intriguing connection. Together with this, we also present the clinical characteristics, outcomes, laboratory and histopathological findings related to this topic of a cohort of nearly 1000 subjects with COVID-19 admitted to a third-level Hospital in Milan.

Results: We found an increased mortality in subjects with COVID-19 and diabetes, together with an altered inflammatory profile.

Conclusions: This may support the hypothesis that diabetes and COVID-19 meet at the crossroads of inflammation and vascular dysfunction. (ClinicalTrials.gov NCT04463849 and NCT04382794).

Keywords: COVID-19; diabetes; inflammation; vascular dysfunction.

Conflict of interest statement

The authors have no conflicts of interest to disclose related to this manuscript.

© 2022 John Wiley & Sons Ltd.

Figures

FIGURE 1
FIGURE 1
Time to endpoint analysis (death/discharge) in patients with type 2 diabetes (n = 486) or not (n = 396) and admitted to the hospital for COVID‐19. Log‐Rank (Mantel‐Cox) analysis
FIGURE 2
FIGURE 2
Time to clinical endpoint (death/hospital discharge) in all patients grouped according to quartiles of in‐hospital mean blood glucose level (Q1 mean glycaemia  188 mg/dl). Log‐Rank (Mantel‐Cox) analysis
FIGURE 3
FIGURE 3
Differential plasma levels of peripheral cytokines in patients with type 2 diabetes (n = 10) or not (n = 38) and admitted to the hospital for COVID‐19. Analysis performed by a Bio‐Plex Pro Human Cytokine 17‐plex immunoassay on a Bio‐Plex 200 system (both from Bio‐Rad). Two‐tailed t‐student test. *p < 0.05, **p < 0.01
FIGURE 4
FIGURE 4
Electron microscopy of skin capillary sections in healthy control (Panels A and C) and in subject with COVID‐19 (Panels B and D). Panel C: blue arrows indicate Weibel‐Palade granules in endothelial cells. Panel D: red arrows indicate small vesicles within vacuoles
FIGURE 5
FIGURE 5
Excessive inflammation and vascular dysfunction are a key feature of both hyperglycemia and COVID‐19, making up the ground for a detrimental synergistic combination. The increase of IL1‐ra, IL‐6, IL‐8, MCP‐1, IFN‐γ, and IP‐10 observed in subjects with type 2 diabetes and COVID‐19 may contribute to explain the greater disease severity observed in diabetic patients

References

    1. Apicella M, Campopiano MC, Mantuano M, Mazoni L, Coppelli A, Del Prato S. COVID‐19 in people with diabetes: understanding the reasons for worse outcomes. Lancet Diabetes & Endocrinol. 2020;8(9):782‐792. 10.1016/S2213-8587(20)30238-2
    1. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497‐506. 10.1016/S0140-6736(20)30183-5
    1. Grasselli G, Zangrillo A, Zanella A, et al. Baseline characteristics and outcomes of 1591 patients infected with SARS‐CoV‐2 admitted to ICUs of the Lombardy region, Italy. JAMA. 2020;323(16):1574. 10.1001/jama.2020.5394
    1. Alhamar G, Maddaloni E, Al Shukry A, et al. Development of a clinical risk score to predict death in patients with COVID‐19. Diabetes Metab Res Rev. 2022;38(5):e3526. 10.1002/dmrr.3526
    1. Zhu L, She ZG, Cheng X, et al. Association of blood glucose control and outcomes in patients with COVID‐19 and pre‐existing type 2 diabetes. Cell Metab. 2020;31(6):1068‐1077.e3. 10.1016/j.cmet.2020.04.021
    1. Shi Q, Zhang X, Jiang F, et al. Clinical characteristics and risk factors for mortality of COVID‐19 patients with diabetes in Wuhan, China: a two‐center, retrospective study. Diabetes Care. 2020;43(7):1382‐1391. 10.2337/dc20-0598
    1. Yan Y, Yang Y, Wang F, et al. Clinical characteristics and outcomes of patients with severe covid‐19 with diabetes. BMJ Open Diab Res Care. 2020;8(1):e001343. 10.1136/bmjdrc-2020-001343
    1. Tay MZ, Poh CM, Rénia L, MacAry PA, Ng LFP. The trinity of COVID‐19: immunity, inflammation and intervention. Nat Rev Immunol. 2020;20(6):363‐374. 10.1038/s41577-020-0311-8
    1. Ayres JS. A metabolic handbook for the COVID‐19 pandemic. Nat Metab. 2020;2(7):572‐585. 10.1038/s42255-020-0237-2
    1. Esposito K, Nappo F, Marfella R, et al. Inflammatory cytokine concentrations are acutely increased by hyperglycemia in humans: role of oxidative stress. Circulation. 2002;106(16):2067‐2072. 10.1161/01.CIR.0000034509.14906
    1. Kaur R, Kaur M, Singh J. Endothelial dysfunction and platelet hyperactivity in type 2 diabetes mellitus: molecular insights and therapeutic strategies. Cardiovasc Diabetol. 2018;17(1):121. 10.1186/s12933-018-0763-3
    1. Dalan R, Boehm BO. The implications of COVID‐19 infection on the endothelium: a metabolic vascular perspective. Diabetes Metab Res Rev. 2021;37(3):e3402. 10.1002/dmrr.3402
    1. D’Addio F, Vergani A, Potena L, et al. P2X7R mutation disrupts the NLRP3‐mediated Th program and predicts poor cardiac allograft outcomes. J Clin Invest. 2018;128(8):3490‐3503. 10.1172/JCI94524
    1. Loretelli C, Abdelsalam A, D’Addio F, et al. PD‐1 blockade counteracts post‐COVID‐19 immune abnormalities and stimulates the anti‐SARS‐CoV‐2 immune response. JCI Insight. 2021;6(24):e146701. 10.1172/jci.insight.146701
    1. Carey IM, Critchley JA, DeWilde S, Harris T, Hosking FJ, Cook DG. Risk of infection in type 1 and type 2 diabetes compared with the general population: a matched cohort study. Diabetes Care. 2018;41(3):513‐521. 10.2337/dc17-2131
    1. Critchley JA, Carey IM, Harris T, DeWilde S, Hosking FJ, Cook DG. Glycemic control and risk of infections among people with type 1 or type 2 diabetes in a large primary care cohort study. Diabetes Care. 2018;41(10):2127‐2135. 10.2337/dc18-0287
    1. Badawi O, Waite MD, Fuhrman SA, Zuckerman IH. Association between intensive care unit‐acquired dysglycemia and in‐hospital mortality. Crit Care Med. 2012;40(12):3180‐3188. 10.1097/CCM.0b013e3182656ae5
    1. Capes SE, Hunt D, Malmberg K, Gerstein HC. Stress hyperglycaemia and increased risk of death after myocardial infarction in patients with and without diabetes: a systematic overview. Lancet. 2000;355(9206):773‐778. 10.1016/S0140-6736(99)08415-9
    1. Chang CH, Wang JL, Wu LC, Chuang LM, Lin HH. Diabetes, glycemic control, and risk of infection morbidity and mortality: a cohort study. Open Forum Infect Dis. 2019;6(10). 10.1093/ofid/ofz358
    1. Lee YS, Min KH, Lee SY, et al. The value of glycated hemoglobin as predictor of organ dysfunction in patients with sepsis. PLoS ONE. 2019;14(5):e0216397. 10.1371/journal.pone.0216397
    1. Delamaire M, Maugendre D, Moreno M, Le Goff MC, Allannic H, Genetet B. Impaired leucocyte functions in diabetic patients. Diabet Med. 1997;14(1):29‐34. 10.1002/(SICI)1096-9136(199701)14:1<29::AID-DIA300>;2-V
    1. Llorente L, De La Fuente H, Richaud‐Patin Y, et al. Innate immune response mechanisms in non‐insulin dependent diabetes mellitus patients assessed by flow cytoenzymology. Immunol Lett. 2000;74(3):239‐244. 10.1016/s0165-2478(00)00255-8
    1. Hostetter MK. Handicaps to host defense. Effects of hyperglycemia on C3 and Candida albicans. Diabetes. 1990;39(3):271‐275. 10.2337/diab.39.3.271
    1. Geerlings SE, Hoepelman AI. Immune dysfunction in patients with diabetes mellitus (DM). FEMS Immunol Med Microbiol. 1999;26(3–4):259‐265. 10.1111/j.1574-695X.1999.tb01397.x
    1. Kiernan K, MacIver NJ. Viral infection “interferes” with glucose tolerance. Immunity. 2018;49(1):6‐8. 10.1016/j.immuni.2018.06.013
    1. Carnovale C, Pozzi M, Dassano A, et al. The impact of a successful treatment of hepatitis C virus on glyco‐metabolic control in diabetic patients: a systematic review and meta‐analysis. Acta Diabetol. 2019;56(3):341‐354. 10.1007/s00592-018-1257-1
    1. Booth CM, Matukas LM, Tomlinson GA, et al. Clinical features and short‐term outcomes of 144 patients with SARS in the greater Toronto area. JAMA. 2003;289(21):2801‐2809. 10.1001/jama.289.21.JOC30885
    1. Yang JK, Feng Y, Yuan MY, et al. Plasma glucose levels and diabetes are independent predictors for mortality and morbidity in patients with SARS. Diabet Med. 2006;23(6):623‐628. 10.1111/j.1464-5491.2006.01861.x
    1. Garbati MA, Fagbo SF, Fang VJ, et al. A comparative study of clinical presentation and risk factors for adverse outcome in patients hospitalised with acute respiratory disease due to MERS coronavirus or other causes. PLoS ONE. 2016;11(11):e0165978. 10.1371/journal.pone.0165978
    1. Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS‐CoV‐2 Spike glycoprotein. Cell. 2020;181(2):281‐292.e6. 10.1016/j.cell.2020.02.058
    1. Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade‐long structural studies of SARS coronavirus. J Virol. 2020;94(7):e00127‐20. 10.1128/JVI.00127-20
    1. Letko M, Marzi A, Munster V. Functional assessment of cell entry and receptor usage for SARS‐CoV‐2 and other lineage B betacoronaviruses. Nat Microbiol. 2020;5(4):562‐569. 10.1038/s41564-020-0688-y
    1. Abassi Z, Higazi AAR, Kinaneh S, Armaly Z, Skorecki K, Heyman SN. ACE2, COVID‐19 infection, inflammation, and coagulopathy: missing pieces in the puzzle. Front Physiol. 2020;11:574753. 10.3389/fphys.2020.574753
    1. Pal R, Bhansali A. COVID‐19, diabetes mellitus and ACE2: the conundrum. Diabetes Res Clin Pract. 2020;162:108132. 10.1016/j.diabres.2020.108132
    1. Batlle D, Jose Soler M, Ye M. ACE2 and diabetes: ACE of ACEs? Diabetes. 2010;59(12):2994‐2996. 10.2337/db10-1205
    1. Gheblawi M, Wang K, Viveiros A, et al. Angiotensin‐converting enzyme 2: SARS‐CoV‐2 receptor and regulator of the renin‐angiotensin system: celebrating the 20th anniversary of the discovery of ACE2. Circ Res. 2020;126(10):1456‐1474. 10.1161/CIRCRESAHA.120.317015
    1. Rao S, Lau A, So HC. Exploring diseases/traits and blood proteins causally related to expression of ACE2, the putative receptor of SARS‐CoV‐2: a mendelian randomization analysis highlights tentative relevance of diabetes‐related traits. Diabetes Care. 2020;43(7):1416‐1426. 10.2337/dc20-0643
    1. Brufsky A. Hyperglycemia, hydroxychloroquine, and the COVID‐19 pandemic. J Med Virol. 2020;92(7):770‐775. 10.1002/jmv.25887
    1. Ceriello A. Hyperglycemia and the worse prognosis of COVID‐19. Why a fast blood glucose control should be mandatory. Diabetes Res Clin Pract. 2020;163:108186. 10.1016/j.diabres.2020.108186
    1. Chen Y, Guo Y, Pan Y, Zhao ZJ. Structure analysis of the receptor binding of 2019‐nCoV. Biochem Biophys Res Commun. 2020;525(1):135‐140. 10.1016/j.bbrc.2020.02.071
    1. Abassi Z, Skorecki K, Hamo‐Giladi DB, Kruzel‐Davila E, Heyman SN. Kinins and chymase: the forgotten components of the renin‐angiotensin system and their implications in COVID‐19 disease. Am J Physiol Lung Cell Mol Physiol. 2021;320(3):L422‐L429. 10.1152/ajplung.00548.2020
    1. Fadini GP, Morieri ML, Longato E, Avogaro A. Prevalence and impact of diabetes among people infected with SARS‐CoV‐2. J Endocrinol Invest. 2020;43(6):867‐869. 10.1007/s40618-020-01236-2
    1. Guo W, Li M, Dong Y, et al. Diabetes is a risk factor for the progression and prognosis of COVID‐19. Diabetes Metab Res Rev. 2020;36(7):e3319. 10.1002/dmrr.3319
    1. Bode B, Garrett V, Messler J, et al. Glycemic characteristics and clinical outcomes of COVID‐19 patients hospitalized in the United States. J Diabetes Sci Technol. 2020;14(4):813‐821. 10.1177/1932296820924469
    1. Liao WI, Lin CS, Lee CH, et al. An elevated glycemic gap is associated with adverse outcomes in diabetic patients with acute myocardial infarction. Sci Rep. 2016;6(1):27770. 10.1038/srep27770
    1. Gorelik Y, Bloch‐Isenberg N, Hashoul S, Heyman SN, Khamaisi M. Hyperglycemia on admission predicts acute kidney failure and renal functional recovery among inpatients. J Clin Med. 2021;11(1):54. 10.3390/jcm11010054
    1. Clerkin KJ, Fried JA, Raikhelkar J, et al. COVID‐19 and cardiovascular disease. Circulation. 2020;141(20):1648‐1655. 10.1161/CIRCULATIONAHA.120.046941
    1. Cariou B, Hadjadj S, Wargny M, et al. Phenotypic characteristics and prognosis of inpatients with COVID‐19 and diabetes: the CORONADO study. Diabetologia. 2020;63(8):1500‐1515. 10.1007/s00125-020-05180-x
    1. Wargny M, Potier L, Gourdy P, et al. Predictors of hospital discharge and mortality in patients with diabetes and COVID‐19: updated results from the nationwide CORONADO study. Diabetologia. 2021;64(4):778‐794. 10.1007/s00125-020-05351-w
    1. Maddaloni E, D’Onofrio L, Alessandri F, et al. Clinical features of patients with type 2 diabetes with and without Covid‐19: a case control study (CoViDiab I). Diabetes Res Clin Pract. 2020;169:108454. 10.1016/j.diabres.2020.108454
    1. Maddaloni E, D’Onofrio L, Alessandri F, et al. Cardiometabolic multimorbidity is associated with a worse Covid‐19 prognosis than individual cardiometabolic risk factors: a multicentre retrospective study (CoViDiab II). Cardiovasc Diabetol. 2020;19(1):164. 10.1186/s12933-020-01140-2
    1. Solerte SB, D’Addio F, Trevisan R, et al. Sitagliptin treatment at the time of hospitalization was associated with reduced mortality in patients with type 2 diabetes and COVID‐19: a multicenter, case‐control, retrospective, observational study. Diabetes Care. 2020;43(12):2999‐3006. 10.2337/dc20-1521
    1. Solerte SB, Di Sabatino A, Galli M, Fiorina P. Dipeptidyl peptidase‐4 (DPP4) inhibition in COVID‐19. Acta Diabetol. 2020;57(7):779‐783. 10.1007/s00592-020-01539-z
    1. Fadini GP, Morieri ML, Longato E, et al. Exposure to dipeptidyl‐peptidase‐4 inhibitors and COVID‐19 among people with type 2 diabetes: a case‐control study. Diabetes Obes Metab. 2020;22(10):1946‐1950. 10.1111/dom.14097
    1. Strollo R, Maddaloni E, Dauriz M, Pedone C, Buzzetti R, Pozzilli P. Use of DPP4 inhibitors in Italy does not correlate with diabetes prevalence among COVID‐19 deaths. Diabetes Res Clin Pract. 2021;171:108444. 10.1016/j.diabres.2020.108444
    1. Bonora BM, Avogaro A, Fadini GP. Disentangling conflicting evidence on DPP‐4 inhibitors and outcomes of COVID‐19: narrative review and meta‐analysis. J Endocrinol Invest. 2021;44(7):1379‐1386. 10.1007/s40618-021-01515-6
    1. Chen IY, Moriyama M, Chang MF, Ichinohe T. Severe acute respiratory syndrome coronavirus Viroporin 3a activates the NLRP3 inflammasome. Front Microbiol. 2019;10:50. 10.3389/fmicb.2019.00050
    1. Henry BM, de Oliveira MHS, Benoit S, Plebani M, Lippi G. Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID‐19): a meta‐analysis. Clin Chem Lab Med (CCLM). 2020;58(7):1021‐1028. 10.1515/cclm-2020-0369
    1. Cao X. COVID‐19: immunopathology and its implications for therapy. Nat Rev Immunol. 2020;20(5):269‐270. 10.1038/s41577-020-0308-3
    1. Del Valle DM, Kim‐Schulze S, Huang HH, et al. An inflammatory cytokine signature predicts COVID‐19 severity and survival. Nat Med. 2020;26(10):1636‐1643. 10.1038/s41591-020-1051-9
    1. Wu Y, Chen Y, Tan Y, et al. Reduction and functional exhaustion of T cells in patients with coronavirus disease 2019 (COVID‐19). Front Immunol. 2020;11:7. 10.3389/fimmu.2020.00827
    1. Pickup JC, Chusney GD, Thomas SM, Burt D. Plasma interleukin‐6, tumour necrosis factor alpha and blood cytokine production in type 2 diabetes. Life Sci. 2000;67(3):291‐300. 10.1016/s0024-3205(00)00622-6
    1. Chen Y, Yang D, Cheng B, et al. Clinical characteristics and outcomes of patients with diabetes and COVID‐19 in association with glucose‐lowering medication. Diabetes Care. 2020;43(7):1399‐1407. 10.2337/dc20-0660
    1. Gris JC, Perez‐Martin A, Quéré I, Sotto A. COVID‐19 associated coagulopathy: the crowning glory of thrombo‐inflammation concept. Anaesth Crit Care & Pain Med. 2020;39(3):381‐382. 10.1016/j.accpm.2020.04.013
    1. Connors JM, Levy JH. Thromboinflammation and the hypercoagulability of COVID‐19. J Thromb Haemost. 2020;18(7):1559‐1561. 10.1111/jth.14849
    1. Teuwen LA, Geldhof V, Pasut A, Carmeliet P. COVID‐19: the vasculature unleashed. Nat Rev Immunol. 2020;20(7):389‐391. 10.1038/s41577-020-0343-0
    1. Varga Z, Flammer AJ, Steiger P, et al. Endothelial cell infection and endotheliitis in COVID‐19. Lancet. 2020;395(10234):1417‐1418. 10.1016/S0140-6736(20)30937-5
    1. Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID‐19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8(4):420‐422. 10.1016/S2213-2600(20)30076-X
    1. Bansal R, Gubbi S, Muniyappa R. Metabolic syndrome and COVID 19: endocrine‐immune‐vascular interactions shapes clinical course. Endocrinology. 2020;161(10):bqaa112. 10.1210/endocr/bqaa112
    1. Colling ME, Kanthi Y. COVID‐19‐associated coagulopathy: an exploration of mechanisms. Vasc Med. 2020;25(5):478. 10.1177/1358863X20932640
    1. Merad M, Martin JC. Pathological inflammation in patients with COVID‐19: a key role for monocytes and macrophages. Nat Rev Immunol. 2020;20(6):355‐362. 10.1038/s41577-020-0331-4
    1. Ranucci M, Ballotta A, Di Dedda U, et al. The procoagulant pattern of patients with COVID‐19 acute respiratory distress syndrome. J Thromb Haemost. 2020;18(7):1747‐1751. 10.1111/jth.14854
    1. Connors JM, Levy JH. COVID‐19 and its implications for thrombosis and anticoagulation. Blood. 2020;135(23):2033‐2040. 10.1182/blood.2020006000
    1. Jose RJ, Manuel A. COVID‐19 cytokine storm: the interplay between inflammation and coagulation. Lancet Respir Med. 2020;8(6):e46‐e47. 10.1016/S2213-2600(20)30216-2
    1. Guzik TJ, Mohiddin SA, Dimarco A, et al. COVID‐19 and the cardiovascular system: implications for risk assessment, diagnosis, and treatment options. Cardiovasc Res. 2020;116(10):1666‐1687. 10.1093/cvr/cvaa106
    1. Chen L, Li X, Chen M, Feng Y, Xiong C. The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS‐CoV‐2. Cardiovasc Res. 2020;116(6):1097‐1100. 10.1093/cvr/cvaa078
    1. Libby P. The heart in COVID‐19. JACC Basic Transl Sci. 2020;5(5):537‐542. 10.1016/j.jacbts.2020.04.001
    1. Akhmerov A, Marbán E. COVID‐19 and the heart. Circ Res. 2020;126(10):1443‐1455. 10.1161/CIRCRESAHA.120.317055
    1. McGonagle D, O’Donnell JS, Sharif K, Emery P, Bridgewood C. Immune mechanisms of pulmonary intravascular coagulopathy in COVID‐19 pneumonia. Lancet Rheumatol. 2020;2(7):e437‐e445. 10.1016/S2665-9913(20)30121-1
    1. Abdeen S, Bdeir K, Abu‐Fanne R, et al. Alpha‐defensins: risk factor for thrombosis in COVID‐19 infection. Br J Haematol. 2021;194(1):44‐52. 10.1111/bjh.17503
    1. Németh BC, Várkonyi T, Somogyvári F, et al. Relevance of α‐defensins (HNP1‐3) and defensin β‐1 in diabetes. World J Gastroenterol. 2014;20(27):9128‐9137. 10.3748/wjg.v20.i27.9128
    1. Locatelli L, Inglebert M, Scrimieri R, et al. Human endothelial cells in high glucose: new clues from culture in 3D microfluidic chips. FASEB J. 2022;36(2):e22137. 10.1096/fj.202100914R
    1. Qiu Y, Buffonge S, Ramnath R, et al. Endothelial glycocalyx is damaged in diabetic cardiomyopathy: angiopoietin 1 restores glycocalyx and improves diastolic function in mice. Diabetologia. 2022;65(5):879‐894. 10.1007/s00125-022-05650-4
    1. Qu J, Cheng Y, Wu W, Yuan L, Liu X. Glycocalyx impairment in vascular disease: focus on inflammation. Front Cell Dev Biol. 2021;9:730621. 10.3389/fcell.2021.730621
    1. du Preez HN, Aldous C, Hayden MR, Kruger HG, Lin J. Pathogenesis of COVID‐19 described through the lens of an undersulfated and degraded epithelial and endothelial glycocalyx. FASEB J. 2022;36(1):e22052. 10.1096/fj.202101100RR
    1. Jani VP, Munoz CJ, Govender K, Williams AT, Cabrales P. Implications of microvascular dysfunction and nitric oxide mediated inflammation in severe COVID‐19 infection. Am J Med Sci. 2022. 10.1016/j.amjms.2022.04.015
    1. Goligorsky MS. Vascular endothelium in diabetes. Am J Physiol–Renal Physiol. 2017;312(2):F266‐F275. 10.1152/ajprenal.00473.2016
    1. Shi Y, Vanhoutte PM. Macro‐ and microvascular endothelial dysfunction in diabetes. J Diabetes. 2017;9(5):434‐449. 10.1111/1753-0407.12521
    1. Takeda Y, Matoba K, Sekiguchi K, et al. Endothelial dysfunction in diabetes. Biomedicines. 2020;8(7):182. 10.3390/biomedicines8070182
    1. Pastore I, Bolla AM, Montefusco L, et al. The impact of diabetes mellitus on cardiovascular risk onset in children and adolescents. Int J Mol Sci. 2020;21(14):4928. 10.3390/ijms21144928
    1. Petrelli A, Di Fenza R, Carvello M, Gatti F, Secchi A, Fiorina P. Strategies to reverse endothelial progenitor cell dysfunction in diabetes. Exp Diabetes Res. 2012;2012:1‐9. 10.1155/2012/471823
    1. Folli F, Guzzi V, Perego L, et al. Proteomics reveals novel oxidative and glycolytic mechanisms in type 1 diabetic patients’ skin which are normalized by kidney‐pancreas transplantation. PLoS ONE. 2010;5(3):e9923. 10.1371/journal.pone.0009923
    1. King GL, Loeken MR. Hyperglycemia‐induced oxidative stress in diabetic complications. Histochem Cell Biol. 2004;122(4):333‐338. 10.1007/s00418-004-0678-9
    1. Venturini M, Fiorina P, Maffi P, et al. Early increase of retinal arterial and venous blood flow velocities at color Doppler imaging in brittle type 1 diabetes after islet transplant alone. Transplantation. 2006;81(9):1274‐1277. 10.1097/01.tp.0000208631.63235.6a
    1. Petrelli A, Maestroni A, Fadini GP, et al. Improved function of circulating angiogenic cells is evident in type 1 diabetic islet‐transplanted patients. Am J Transpl. 2010;10(12):2690‐2700. 10.1111/j.1600-6143.2010.03309.x
    1. Fiorina P, Folli F, Maffi P, et al. Islet transplantation improves vascular diabetic complications in patients with diabetes who underwent kidney transplantation: a comparison between kidney‐pancreas and kidney‐alone transplantation. Transplantation. 2003;75(8):1296‐1301. 10.1097/01.TP.0000061788.32639.D9
    1. Gürsoy M, Güzel E, Ertürküner P, et al. Electron microscopic comparison of radial artery grafts in non‐diabetic and diabetic coronary bypass patients. J Card Surg. 2016;31(7):410‐415. 10.1111/jocs.12761
    1. Bakuy V, Unal O, Gursoy M, et al. Electron microscopic evaluation of internal thoracic artery endothelial morphology in diabetic coronary bypass patients. Ann Thorac Surg. 2014;97(3):851‐857. 10.1016/j.athoracsur.2013.09.102
    1. Arnalich F, Hernanz A, López‐Maderuelo D, et al. Enhanced acute‐phase response and oxidative stress in older adults with type II diabetes. Horm Metab Res. 2000;32(10):407‐412. 10.1055/s-2007-978662
    1. Kado S, Nagase T, Nagata N. Circulating levels of interleukin‐6, its soluble receptor and interleukin‐6/interleukin‐6 receptor complexes in patients with type 2 diabetes mellitus. Acta Diabetol. 1999;36(1–2):67‐72. 10.1007/s005920050147
    1. Domingueti CP, Dusse LMS, das Graças Carvalho M, de Sousa LP, Gomes KB, Fernandes AP. Diabetes mellitus: the linkage between oxidative stress, inflammation, hypercoagulability and vascular complications. J Diabetes Complicat. 2016;30(4):738‐745. 10.1016/j.jdiacomp.2015.12.018
    1. Codo AC, Davanzo GG, de Brito Monteiro L, et al. Elevated glucose levels favor SARS‐CoV‐2 infection and monocyte response through a HIF‐1α/glycolysis‐dependent axis. Cell Metab. 2020;32(3):437‐446.e5. 10.1016/j.cmet.2020.07.007
    1. Thompson MG, Burgess JL, Naleway AL, et al. Prevention and attenuation of covid‐19 with the BNT162b2 and mRNA‐1273 vaccines. N Engl J Med. 2021;385(4):320‐329. 10.1056/NEJMoa2107058
    1. Alijotas‐Reig J, Esteve‐Valverde E, Belizna C, et al. Immunomodulatory therapy for the management of severe COVID‐19. Beyond the anti‐viral therapy: a comprehensive review. Autoimmun Rev. 2020;19(7):102569. 10.1016/j.autrev.2020.102569
    1. Rizk JG, Kalantar‐Zadeh K, Mehra MR, Lavie CJ, Rizk Y, Forthal DN. Pharmaco‐immunomodulatory therapy in COVID‐19. Drugs. 2020;80(13):1267‐1292. 10.1007/s40265-020-01367-z
    1. Guaraldi G, Meschiari M, Cozzi‐Lepri A, et al. Tocilizumab in patients with severe COVID‐19: a retrospective cohort study. Lancet Rheumatol. 2020;2(8):e474‐e484. 10.1016/S2665-9913(20)30173-9
    1. Ikonomidis I, Pavlidis G, Katsimbri P, et al. Tocilizumab improves oxidative stress and endothelial glycocalyx: a mechanism that may explain the effects of biological treatment on COVID‐19. Food Chem Toxicol. 2020;145:111694. 10.1016/j.fct.2020.111694
    1. Marfella R, Paolisso P, Sardu C, et al. Negative impact of hyperglycaemia on tocilizumab therapy in Covid‐19 patients. Diabetes & Metabol. 2020;46(5):403‐405. 10.1016/j.diabet.2020.05.005
    1. Stone JH, Frigault MJ, Serling‐Boyd NJ, et al. Efficacy of tocilizumab in patients hospitalized with covid‐19. N Engl J Med. 2020;383(24):2333‐2344. 10.1056/NEJMoa2028836
    1. Jeronimo CMP, Farias MEL, Val FFA, et al. Methylprednisolone as adjunctive therapy for patients hospitalized with COVID‐19 (metcovid): a randomised, double‐blind, phase IIb, placebo‐controlled trial. Clin Infect Dis. 2020;72(9):e373‐e381. 10.1093/cid/ciaa1177
    1. RECOVERY Collaborative Group , Horby P, Lim WS, et al. Dexamethasone in hospitalized patients with covid‐19. N Engl J Med. 2021;384(8):693‐704. 10.1056/NEJMoa2021436
    1. Huet T, Beaussier H, Voisin O, et al. Anakinra for severe forms of COVID‐19: a cohort study. Lancet Rheumatol. 2020;2(7):e393‐e400. 10.1016/S2665-9913(20)30164-8
    1. Bronte V, Ugel S, Tinazzi E, et al. Baricitinib restrains the immune dysregulation in severe COVID‐19 patients. J Clin Invest. 2020;130(12):6409‐6416. 10.1172/JCI141772
    1. Poulsen NN, von Brunn A, Hornum M, Blomberg Jensen M. Cyclosporine and COVID‐19: risk or favorable? Am J Transpl. 2020;20(11):2975‐2982. 10.1111/ajt.16250
    1. Molyvdas A, Matalon S. Cyclosporine: an old weapon in the fight against Coronaviruses. Eur Respir J. 2020;56(5). 10.1183/13993003.02484-2020
    1. Cavagna L, Seminari E, Zanframundo G, et al. Calcineurin inhibitor‐based immunosuppression and COVID‐19: results from a multidisciplinary cohort of patients in Northern Italy. Microorganisms. 2020;8(7):977. 10.3390/microorganisms8070977
    1. De Biasi S, Meschiari M, Gibellini L, et al. Marked T cell activation, senescence, exhaustion and skewing towards TH17 in patients with COVID‐19 pneumonia. Nat Commun. 2020;11(1):3434. 10.1038/s41467-020-17292-4
    1. Thachil J. The versatile heparin in COVID‐19. J Thromb Haemost. 2020;18(5):1020‐1022. 10.1111/jth.14821
    1. Tang N, Bai H, Chen X, Gong J, Li D, Sun Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thrombosis Haemostasis. 2020;18(5):1094‐1099. 10.1111/jth.14817
    1. Klok FA, Kruip MJHA, van der Meer NJM, et al. Incidence of thrombotic complications in critically ill ICU patients with COVID‐19. Thromb Res. 2020;191:145‐147. 10.1016/j.thromres.2020.04.013
    1. Al‐Samkari H, Karp Leaf RS, Dzik WH, et al. COVID‐19 and coagulation: bleeding and thrombotic manifestations of SARS‐CoV‐2 infection. Blood. 2020;136(4):489‐500. 10.1182/blood.2020006520
    1. Thachil J, Juffermans NP, Ranucci M, et al. ISTH DIC subcommittee communication on anticoagulation in COVID‐19. J Thromb Haemost. 2020;18(9):2138‐2144. 10.1111/jth.15004
    1. Bikdeli B, Madhavan MV, Jimenez D, et al. COVID‐19 and thrombotic or thromboembolic disease: implications for prevention, antithrombotic therapy, and follow‐up: JACC state‐of‐the‐art review. J Am Coll Cardiol. 2020;75(23):2950‐2973. 10.1016/j.jacc.2020.04.031
    1. Khodneva Y, Malla G, Clarkson S, et al. What is the association of renin‐angiotensin‐aldosterone system inhibitors with COVID‐19 outcomes: retrospective study of racially diverse patients? BMJ Open. 2022;12(4):e053961. 10.1136/bmjopen-2021-053961
    1. Sharma A, Elharram M, Afilalo J, et al. A randomized controlled trial of renin‐angiotensin‐aldosterone system inhibitor management in patients admitted in hospital with COVID‐19. Am Heart J. 2022;247:76‐89. 10.1016/j.ahj.2022.01.015
    1. Loader J, Lampa E, Gustafsson S, Cars T, Sundström J. Renin‐angiotensin aldosterone system inhibitors in primary prevention and COVID‐19. J Am Heart Assoc. 2021;10(15):e021154. 10.1161/JAHA.120.021154
    1. Sriram K, Insel PA. A hypothesis for pathobiology and treatment of COVID‐19: the centrality of ACE1/ACE2 imbalance. Br J Pharmacol. 2020;177(21):4825‐4844. 10.1111/bph.15082
    1. Aljada A, Saadeh R, Assian E, Ghanim H, Dandona P. Insulin inhibits the expression of intercellular adhesion molecule‐1 by human aortic endothelial cells through stimulation of nitric oxide. J Clin Endocrinol Metab. 2000;85(7):2572‐2575. 10.1210/jcem.85.7.6677
    1. Li J, Zhang H, Wu F, et al. Insulin inhibits tumor necrosis factor‐alpha induction in myocardial ischemia/reperfusion: role of Akt and endothelial nitric oxide synthase phosphorylation. Crit Care Med. 2008;36(5):1551‐1558. 10.1097/CCM.0b013e3181782335
    1. Bornstein SR, Rubino F, Khunti K, et al. Practical recommendations for the management of diabetes in patients with COVID‐19. Lancet Diabetes & Endocrinol. 2020;8(6):546‐550. 10.1016/S2213-8587(20)30152-2
    1. Ceriello A, Standl E, Catrinoiu D, et al. Issues of cardiovascular risk management in people with diabetes in the COVID‐19 era. Diabetes Care. 2020;43(7):1427‐1432. 10.2337/dc20-0941
    1. Strollo R, Pozzilli P. DPP4 inhibition: preventing SARS‐CoV‐2 infection and/or progression of COVID‐19? Diabetes Metab Res Rev. 2020;36(8):e3330. 10.1002/dmrr.3330
    1. Montefusco L, Ben Nasr M, D’Addio F, et al. Acute and long‐term disruption of glycometabolic control after SARS‐CoV‐2 infection. Nat Metab. 2021;3(6):774‐785. 10.1038/s42255-021-00407-6

Source: PubMed

3
S'abonner