Toxicity of pemetrexed during renal impairment explained-Implications for safe treatment

René J Boosman, Thomas P C Dorlo, Nikki de Rouw, Jacobus A Burgers, Anne-Marie C Dingemans, Michel M van den Heuvel, Lizza E L Hendriks, Bonne Biesma, Joachim G J V Aerts, Sander Croes, Ron H J Mathijssen, Alwin D R Huitema, Rob Ter Heine, René J Boosman, Thomas P C Dorlo, Nikki de Rouw, Jacobus A Burgers, Anne-Marie C Dingemans, Michel M van den Heuvel, Lizza E L Hendriks, Bonne Biesma, Joachim G J V Aerts, Sander Croes, Ron H J Mathijssen, Alwin D R Huitema, Rob Ter Heine

Abstract

Pemetrexed is an important component of first line treatment in patients with non-squamous non-small cell lung cancer. However, a limitation is the contraindication in patients with renal impairment due to hematological toxicity. Currently, it is unknown how to safely dose pemetrexed in these patients. The aim of our study was to elucidate the relationship between pemetrexed exposure and toxicity to support the development of a safe dosing regimen in patients with renal impairment. A population pharmacokinetic/pharmacodynamic analysis was performed based on phase II study results in three patients with renal dysfunction, supplemented with data from 106 patients in early clinical studies. Findings were externally validated with data of different pemetrexed dosing regimens. Alternative dosing regimens were evaluated using the developed model. We found that pemetrexed toxicity was driven by the time above a toxicity threshold concentration. The threshold for vitamin-supplemented patients was 0.110 mg/mL (95% CI: 0.092-0.146 mg/mL). It was observed that in patients with renal impairment (estimated glomerular filtration rate [eGFR]: <45 mL/min) the approved dose of 500 mg/m2 would yield a high probability of severe neutropenia in the range of 51.0% to 92.6%. A pemetrexed dose of 20 mg for patients (eGFR: 20 mL/min) is shown to be neutropenic-equivalent to the approved dose in patients with adequate renal function (eGFR: 90 mL/min), but would result in an approximately 13-fold lower area under the concentration-time curve. The pemetrexed exposure-toxicity relationship is explained by a toxicity threshold and substantially different from previously thought. Without prophylaxis for toxicity, it is unlikely that a therapeutic dose can be safely administered to patients with renal impairment.

Trial registration: ClinicalTrials.gov NCT03656549.

Keywords: estimated glomerular filtration rate; neutropenia; non-small cell lung cancer; pemetrexed; prophylactic strategies.

© 2021 UICC.

References

REFERENCES

    1. Plachard D, Popat S, Kerr K, et al. Metastatic non-small cell lung cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2018 (updated version 2020);29:iv192-iv237. .
    1. Baas P, Fennell D, Kerr KM, et al. Malignant pleural mesothelioma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2015;26:V31-V39. .
    1. Gbolahan OB, Porter RF, Salter JT, et al. A phase II study of pemetrexed in patients with recurrent thymoma and thymic carcinoma. J Thorax Oncol. 2018;13:1940-1948. .
    1. Ando Y, Hayashi T, Ujita M, et al. Effect of renal function on pemetrexed-induced haematotoxicity. Cancer Chemother Pharmacol. 2016;78(1):183-189. .
    1. Latz JE, Karlsson MO, Rusthoven JJ, Ghosh A, Johnson RD. A semimechanistic-physiologic population pharmacokinetic/pharmacodynamic model for neutropenia following pemetrexed therapy. Cancer Chemother Pharmacol. 2006;57(4):412-426. .
    1. Vogelzang NJ, Rusthoven JJ, Symanowski J, et al. Phase III study of pemetrexed in combination with cisplatin versus cisplatin alone in patients with malignant pleural mesothelioma. J Clin Oncol. 2003;21(14):2636-2644. .
    1. Mita AC, Sweeney CJ, Baker SD, et al. Phase I and pharmacokinetic study of pemetrexed administered every 3 weeks to advanced cancer patients with normal and impaired renal function. J Clin Oncol. 2006;24(4):552-562. .
    1. Launay-Vacher V, Etessami R, Janus N, et al. Lung cancer and renal insufficiency: prevalence and anticancer drug issues. Lung. 2009;187(1):69-74. .
    1. Ohara G, Kurishima K, Nakazawa K, et al. Age-dependent decline in renal function in patients with lung cancer. Oncol Lett. 2012;4(1):38-42. .
    1. Latz JE, Schneck KL, Nakagawa K, Miller MA, Takimoto CH. Population pharmacokinetic/pharmacodynamic analyses of pemetrexed and neutropenia: effect of vitamin supplementation and differences between Japanese and Western patients. Clin Cancer Res. 2009;15(1):346-354. .
    1. Latz JE, Rusthoven JJ, Karlsson MO, Ghosh A, Johnson RD. Clinical application of a semimechanistic-physiologic population PK/PD model for neutropenia following pemetrexed therapy. Cancer Chemother Pharmacol. 2006;57(4):427-435. .
    1. CSDR. Available from: . Accessed November 20, 2019.
    1. Latz JE, Chaudhary A, Ghosh A, Johnson RD. Population pharmacokinetic analysis of ten phase II clinical trials of pemetrexed in cancer patients. Cancer Chemother Pharmacol. 2006;57(4):401-411. .
    1. Levey A, Coresh J, Greene T, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604-612.
    1. Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nepron. 1976;16(1):1216-1224.
    1. McDonald AC, Vasey PA, Adams L, et al. A phase I and pharmacokinetic study of LY231514, the multitargeted antifolate. Clin Cancer Res. 1998;4(3):605-610.
    1. Rinaldi DA, Burris HA, Dorr FA, Woodworth JR, Kuhn JG, Eckardt JR. Initial phase I evaluation of the novel thymidylate synthase inhibitor, LY231514, using the modified continual reassessment method for dose escalation. J Clin Oncol. 1995;13(11):2842-2850. .
    1. Rinaldi DA, Kuhn JG, Burris HA, et al. A phase I evaluation of multitargeted antifolate (MTA, LY231514), administered every 21 days, utilizing the modified continual reassessment method for dose escalation. Cancer Chemother Pharmacol. 1999;44(5):372-380. .
    1. de Rouw N, Boosman RJ, Huitema ADR, et al. Rethinking the application of pemetrexed for patients with renal impairment: a pharmacokinetic viewpoint. Clin Pharmacokinet. 2021;60(5):649-654. .
    1. Friberg LE, Henningsson A, Maas H, Nguyen L, Karlsson MO. Model of chemotherapy-induced myelosupression with parameter consistency across drugs. J Clin Oncol. 2002;20(24):4713-4721. .
    1. National Cancer Institute Cancer Therapy Evaluation Program. Common Toxicity Criteria for Adverse Events v4.03 (CTCAE); 2009. . Accessed on 3 August 2020.
    1. Stoller RG, Hande KR, Jacobs SA, Rosenberg SA, Chabner BA. Use of plasma pharmacokinetics to predict and prevent methotrexate toxicity. N Engl J Med. 1977;297(12):630-634. .
    1. Kwok WC, Cheong TF, Chiang KY, et al. Haematological toxicity of pemetrexed in patients with metastatic non-squamous non-small cell carcinoma of lung with third-space fluid. Lung Cancer. 2020;152:15-20. .
    1. Shih C, Chen VJ, Gosesett LS, Gates SB, Mackellar WC, Habeck LL. LY231514, a pyrrolo[2,3-d]pyrimidine-based antifolate that inhibits multiple folate-requiring enzymes. Cancer Res. 1997;57(6):1116-1123.
    1. Taylor EC, Kuhnt D, Shih C, Rinzel SM, Grindey GB, Barredo J. A dideazatetrahydrofolate analoge lacking a chiral center at C-6: N-[4-[2-(2-amino-3,4-dihydro-4-oxo-7H-pyrrolo[2.3-d]pyrimidin-5yl)ethyl]benzoyl]-L-glutamic acid is an inhibitor of thymidylate synthase. J Med Chem. 1992;35(23):4450-4454. .
    1. Hazarika M, White RM, Johnson JR, Pazdur R. FDA drug approval summaries: Pemetrexed (Alimta®). Oncologist. 2004;9:482-488. .
    1. Worzalla JF, Shih C, Schultz RM. Role of folic acid in modulating the toxicity and efficacy of the multitargeted antifolate, LY231514. Anticancer Res. 1998;18(5A):3235-3239.
    1. Zazuli Z, Kos R, Veltman JD, et al. Comparison of myelotoxicity and nephrotoxicity between daily low-dose cisplatin with concurrent radiation and cyclic high-dose cisplatin in non-small cell lung cancer patients. Front Pharmacol. 2020;11(975) eCollection 2020; 1-12. .
    1. Joerger M, Huitema ADR, Krähenbühl S, et al. Methotrexate area under the curve is an important outcome predictor in patients with primary CNS lymphoma: a pharmacokinetic-pharmacodynamic analysis from the IELSG no. 20 trial. Br J Cancer. 2010;102(4):673-677.
    1. Chabner BA, Young RC. Threshold methotrexate concentration for in vivo inhibition of DNA synthesis in normal and tumorous target tissues. J Clin Invest. 1973;52(8):1804-1811. .
    1. Howard SC, McCormick J, Pui CH, Buddington RK, Harvey RD. Preventing and managing toxicities of high-dose methotrexate. Oncologist. 2016;21(12):1471-1482. .
    1. European Medicine Agency (EMA). Alimta: EPAR-Scientific Discussion; 2006.
    1. European Medicine Agency (EMA). Alimta: EPAR-Product information; 2009.
    1. European Medicine Agency (EMA). FILGRASTIM HEXAL-Product Information; 2019.
    1. Ellman MH, Telfer MC, Turner AF. Benefit of G-CSF for methotrexate-induced neutropenia in rheumatoid arthritis. Am J Med. 1992;92(3):337-338. .
    1. Rattu MA, Shah N, Lee JM, Pham AQ, Marzella N. Glucarpidase (voraxaze), a carboxypeptidase enzyme for methotrexate toxicity. P T. 2013;38(12):732-744.
    1. Auton T, Glover J, Melton R, Bastian G, Lovell E. In vitro demonstration that pemetrexed is a good substrate for glucarpidase. Cancer Res. 2007;67(4773).

Source: PubMed

3
S'abonner