Phase I pharmacokinetic study of single agent trametinib in patients with advanced cancer and hepatic dysfunction

Pei Jye Voon, Eric X Chen, Helen X Chen, Albert C Lockhart, Solmaz Sahebjam, Karen Kelly, Ulka N Vaishampayan, Vivek Subbiah, Albiruni R Razak, Daniel J Renouf, Sebastien J Hotte, Arti Singh, Philippe L Bedard, Aaron R Hansen, S Percy Ivy, Lisa Wang, Lee-Anne Stayner, Lillian L Siu, Anna Spreafico, Pei Jye Voon, Eric X Chen, Helen X Chen, Albert C Lockhart, Solmaz Sahebjam, Karen Kelly, Ulka N Vaishampayan, Vivek Subbiah, Albiruni R Razak, Daniel J Renouf, Sebastien J Hotte, Arti Singh, Philippe L Bedard, Aaron R Hansen, S Percy Ivy, Lisa Wang, Lee-Anne Stayner, Lillian L Siu, Anna Spreafico

Abstract

Background: Trametinib is an oral MEK 1/2 inhibitor, with a single agent recommended phase 2 dose (RP2D) of 2 mg daily (QD). This study was designed to evaluate RP2D, maximum tolerated dose (MTD), and pharmacokinetic (PK) profile of trametinib in patients with advanced solid tumors who had various degrees of hepatic dysfunction (HD).

Methods: Advanced cancer patients were stratified into 4 HD groups based on Organ Dysfunction Working Group hepatic function stratification criteria: normal (Norm), mild (Mild), moderate (Mod), severe (Sev). Dose escalation was based on "3 + 3" design within each HD group. PK samples were collected at cycle 1 days 15-16.

Results: Forty-six patients were enrolled with 44 evaluable for safety [Norm=17, Mild=7, Mod (1.5 mg)=4, Mod (2 mg)=5, Sev (1 mg)=9, Sev (1.5 mg)=2] and 22 for PK analysis. Treatment related adverse events were consistent with prior trametinib studies. No treatment related deaths occurred. Dose limiting toxicities (DLTs) were evaluable in 15 patients (Mild=6, Mod (1.5 mg)=3, Mod (2 mg)=2, Sev (1 mg)=3 and Sev (1.5 mg)=1). One DLT (grade 3 acneiform rash) was observed in a Sev patient (1.5 mg). Dose interruptions or reductions due to treatment related adverse events occurred in 15 patients (34%) [Norm=9, 53%; Mild=2, 29%; Mod (1.5 mg)=1, 33%; Mod (2 mg)=2, 33%; Sev (1 mg)=1, 11%; Sev (1.5 mg)=1; 50%]. There were no significant differences across HD groups for all PK parameters when trametinib was normalized to 2 mg. However, only limited PK data were available for the Mod (n = 3) and Sev (n = 3) groups compared to Norm (n = 10) and Mild (n = 6) groups. Trametinib is heavily protein bound, with no correlation between serum albumin level and unbound trametinib fraction (p = 0.26).

Conclusions: RP2D for trametinib in Mild HD patients is 2 mg QD. There are insufficient number of evaluable patients due to difficulty of patient accrual to declare RP2D and MTD for Mod and Sev HD groups. DLTs were not observed in the highest dose cohorts that reached three evaluable patients - 1.5 mg QD in Mod group, and 1 mg QD in Sev group.

Trial registration: This study was registered in the ClinicalTrials.gov website ( NCT02070549 ) on February 25, 2014. .

Keywords: Dose escalation; Hepatic dysfunction; Pharmacokinetics; Phase I trial; Trametinib.

Conflict of interest statement

PJV: None.

EXC: Honoraria from Taiho, Bayer, and Eisai; institution funding for clinical trials from AZ, BMS, Merck, Zymeworks, and Novartis.

HXC: None.

ACL: Consulting role for Novartis.

KK: Clinical trial support from Novartis for upcoming capmatinib study.

UNV: Research funding from Merck and Bristol Myers Squibb. Consulting fees and Honoraria from Merck, Bayer, BMS, AAA, Pfizer, Exelixis Inc.

SS: Research funding from Merck, Bristol Myers Squibb and Brooklyn ImmunoTherapeutics; Advisory Board: Merck and Boehringer Ingelheim.

VS: Grants or research support from Novartis, AbbVie, Agensys, Alfasigma, Altum, Amgen, Bayer, Berghealth, Blueprint Medicines, Boston Biomedical, Boston Pharmaceuticals, D3 Pharma, Dragonfly Therapeutics, Exelixis, Fujifilm, Idera Pharmaceuticals, Incyte, Inhibrx, Loxo Oncology, MedImmune, MultiVir, National Comprehensive Cancer Network, NCI-Cancer Therapy Evaluation Program, Novartis, Pfizer, PharmaMar, Takeda, The University of Texas MD Anderson Cancer Center, and Turning Point Therapeutics and advisory/board member role in Eli Lilly, Helsinn, Incyte, Relay Therapeutics, Loxo Oncology, MedImmune, Novartis, QED Therapeutics, and R-Pharma US.

DJR: Research funding and honoraria from Bayer and Roche, and travel funding and honoraria from Servier, Celgene, Taiho, Ipsen, and Astra Zeneca.

ARR: Consulting/advisory roles for Eli-Lilly, Medison, GSK, Merck, Bayer, and Adaptimmune; institutional research funding from Boerhinger-Ingelheim, Eli-Lilly, Boston Biomedicals, Deciphera, Karyopharm Therapeutics, Pfizer, Roche/Genentech, BMS, Medimmune, Amgen, GSK, Blueprint Medicines, Symphogen, Merck, AbbVie, Adaptimmune, and Iterion Therapeutics.

SPI: None.

SJH: None.

AS (Singh): None.

PLB: Consulting/advisory arrangements (uncompensated) with BristolMyersSquibb, Sanofi, Pfizer, Genentech/Roche, Amgen, Lilly, SeaGen, Merck, and Gilead; and institution receives clinical trials supports from Novartis, BristolMyersSquibb, Sanofi, Genentech/Roche, GlaxoSmithKline, Nektar Therapeutics, Merck, Lilly, Servier, PTC Therapeutics, SeaGen, Sanofi, Mersana, Amgen, Zymeworks, VelosBio, Bicara Therapeutics, AstraZeneca, and Pfizer.

ARH: Research and Consulting: Genentech Inc., Hoffmann La Roche Inc., Merck Serono S.A., GlaxoSmithKline Inc., Bristol-Myers Squibb Company, Novartis Pharmaceuticals Canada Inc., Boehringer Ingelheim International GmbH, AstraZeneca Pharmaceuticals LP, MedImmune LL and Pfizer Inc.

LW: None.

LAS: None.

LLS: Consulting/advisory arrangements with Merck, Pfizer, Celgene, AstraZeneca, Morphosys, Roche, Oncorus, Symphogen, Seattle Genetics, GlaxoSmithKline, Voronoi, Arvinas, Tessa, Navire, Relay, Rubius, Janpix, Daiichi Sanyko; stock ownership of Agios (spouse); leadership position in Treadwell Therapeutics (spouse); and institution receives clinical trials support from Novartis, Bristol-Myers Squibb, Pfizer, Boerhinger-Ingelheim, GlaxoSmithKline, Roche/Genentech, Karyopharm, AstraZeneca, Merck, Celgene, Astellas, Bayer, Abbvie, Amgen, Symphogen, Intensity Therapeutics, Mirati Therapeutics, Shattucks, Avid.

AS: Consulting/advisory arrangements within the last 5 years include: Merck, Bristol-Myers Squibb, Oncorus, Janssen. The institution receives clinical trial funding support from Novartis, Bristol-Myers Squibb, Symphogen AstraZeneca/Medimmune, Merck, Bayer, Surface Oncology, Northern Biologics, Janssen Oncology/Johnson & Johnson, Roche, Regeneron, Alkermes, Array Biopharma/Pfizer, GSK, Treadwell.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Study patients disposition based on hepatic function
Fig. 2
Fig. 2
a. Trametinib concentration-time by hepatic dysfunction group (dose standardized to 2 mg) (n = 22). (A) Individual concentration (B) Mean concentration. b. Unbound trametinib fractions (n = 24). (A) by liver function group and time (B) Linear Regression of Unbound Trametinib Fraction vs. Serum Albumin for Protein Binding Analysis Population (p = 0.26)

References

    1. Yamaguchi T, Yoshida T, Kurachi R, Kakegawa J, Hori Y, Nanayama T, et al. Identification of JTP-70902, a p15(INK4b)-inductive compound, as a novel MEK1/2 inhibitor. Cancer Sci. 2007;98(11):1809–16. doi: 10.1111/j.1349-7006.2007.00604.x.
    1. Abe H, Kikuchi S, Hayakawa K, Iida T, Nagahashi N, Maeda K, et al. Discovery of a Highly Potent and Selective MEK Inhibitor: GSK1120212 (JTP-74057 DMSO Solvate) ACS Med Chem Lett. 2011;2(4):320–4. doi: 10.1021/ml200004g.
    1. National Cancer Institute. FDA Approvals–Cancer Currents Blog [accessed 2020 December 31]. Available from: .
    1. Chung C, Reilly S. Trametinib: a novel signal transduction inhibitor for the treatment of metastatic cutaneous melanoma. Am J Health Syst Pharm. 2015;72(2):101–10. doi: 10.2146/ajhp140045.
    1. Infante JR, Fecher LA, Falchook GS, Nallapareddy S, Gordon MS, Becerra C, et al. Safety, pharmacokinetic, pharmacodynamic, and efficacy data for the oral MEK inhibitor trametinib: a phase 1 dose-escalation trial. Lancet Oncol. 2012;13(8):773–81. doi: 10.1016/S1470-2045(12)70270-X.
    1. Ouellet D, Kassir N, Chiu J, Mouksassi MS, Leonowens C, Cox D, et al. Population pharmacokinetics and exposure-response of trametinib, a MEK inhibitor, in patients with BRAF V600 mutation-positive melanoma. Cancer Chemother Pharmacol. 2016;77(4):807–17. doi: 10.1007/s00280-016-2993-y.
    1. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1) Eur J Cancer. 2009;45(2):228–47. doi: 10.1016/j.ejca.2008.10.026.
    1. Gilmartin AG, Bleam MR, Groy A, Moss KG, Minthorn EA, Kulkarni SG, et al. GSK1120212 (JTP-74057) is an inhibitor of MEK activity and activation with favorable pharmacokinetic properties for sustained in vivo pathway inhibition. Clin Cancer Res. 2011;17(5):989–1000. doi: 10.1158/1078-0432.CCR-10-2200.
    1. Jing J, Greshock J, Holbrook JD, Gilmartin A, Zhang X, McNeil E, et al. Comprehensive predictive biomarker analysis for MEK inhibitor GSK1120212. Mol Cancer Ther. 2012;11(3):720–9. doi: 10.1158/1535-7163.MCT-11-0505.
    1. Sausville EA. Promises from trametinib in RAF active tumors. N Engl J Med. 2012;367(2):171–2. doi: 10.1056/NEJMe1205654.
    1. Flaherty KT, Robert C, Hersey P, Nathan P, Garbe C, Milhem M, et al. Improved survival with MEK inhibition in BRAF-mutated melanoma. N Engl J Med. 2012;367(2):107–14. doi: 10.1056/NEJMoa1203421.
    1. Flaherty KT, Puzanov I, Kim KB, Ribas A, McArthur GA, Sosman JA, et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med. 2010;363(9):809–19. doi: 10.1056/NEJMoa1002011.
    1. Cheeti S, Deng Y, Chang I, Georgescu I, Templeton I, Choong N, et al. Effect of Hepatic Impairment on Cobimetinib Pharmacokinetics: The Complex Interplay Between Physiological Changes and Drug Characteristics. Clin Pharmacol Drug Dev. 2021;10(2):144–52. doi: 10.1002/cpdd.847.
    1. Takebe N, Beumer JH, Kummar S, Kiesel BF, Dowlati A, O’Sullivan Coyne G, et al. A phase I pharmacokinetic study of belinostat in patients with advanced cancers and varying degrees of liver dysfunction. Br J Clin Pharmacol. 2019;85(11):2499–511. doi: 10.1111/bcp.14054.
    1. Connolly RM, Laille E, Vaishampayan U, Chung V, Kelly K, Dowlati A, et al. Phase I and Pharmacokinetic Study of Romidepsin in Patients with Cancer and Hepatic Dysfunction: A National Cancer Institute Organ Dysfunction Working Group Study. Clin Cancer Res. 2020;26(20):5329–37.
    1. Twelves C, Glynne-Jones R, Cassidy J, Schuller J, Goggin T, Roos B, et al. Effect of hepatic dysfunction due to liver metastases on the pharmacokinetics of capecitabine and its metabolites. Clin Cancer Res. 1999;5(7):1696–702.
    1. Paraiso KH, Fedorenko IV, Cantini LP, Munko AC, Hall M, Sondak VK, et al. Recovery of phospho-ERK activity allows melanoma cells to escape from BRAF inhibitor therapy. Br J Cancer. 2010;102(12):1724–30. doi: 10.1038/sj.bjc.6605714.
    1. Menzies AM, Kefford RF, Long GV. Paradoxical oncogenesis: are all BRAF inhibitors equal? Pigment Cell Melanoma Res. 2013;26(5):611–5. doi: 10.1111/pcmr.12132.
    1. Subbiah V, Lassen U, Élez E, Italiano A, Curigliano G, Javle M, et al. Dabrafenib plus trametinib in patients with BRAF(V600E)-mutated biliary tract cancer (ROAR): a phase 2, open-label, single-arm, multicentre basket trial. Lancet Oncol. 2020;21(9):1234–43. doi: 10.1016/S1470-2045(20)30321-1.
    1. Long GV, Stroyakovskiy D, Gogas H, Levchenko E, de Braud F, Larkin J, et al. Dabrafenib and trametinib versus dabrafenib and placebo for Val600 BRAF-mutant melanoma: a multicentre, double-blind, phase 3 randomised controlled trial. Lancet. 2015;386(9992):444–51. doi: 10.1016/S0140-6736(15)60898-4.
    1. Long GV, Flaherty KT, Stroyakovskiy D, Gogas H, Levchenko E, de Braud F, et al. Dabrafenib plus trametinib versus dabrafenib monotherapy in patients with metastatic BRAF V600E/K-mutant melanoma: long-term survival and safety analysis of a phase 3 study. Ann Oncol. 2017;28(7):1631–9. doi: 10.1093/annonc/mdx176.
    1. Robert C, Karaszewska B, Schachter J, Rutkowski P, Mackiewicz A, Stroiakovski D, et al. Improved overall survival in melanoma with combined dabrafenib and trametinib. N Engl J Med. 2015;372(1):30–9. doi: 10.1056/NEJMoa1412690.

Source: PubMed

3
S'abonner