Abnormalities of regional brain function in Parkinson's disease: a meta-analysis of resting state functional magnetic resonance imaging studies

PingLei Pan, Yang Zhang, Yi Liu, He Zhang, DeNing Guan, Yun Xu, PingLei Pan, Yang Zhang, Yi Liu, He Zhang, DeNing Guan, Yun Xu

Abstract

There is convincing evidence that abnormalities of regional brain function exist in Parkinson's disease (PD). However, many resting-state functional magnetic resonance imaging (rs-fMRI) studies using amplitude of low-frequency fluctuations (ALFF) have reported inconsistent results about regional spontaneous neuronal activity in PD. Therefore, we conducted a comprehensive meta-analysis using the Seed-based d Mapping and several complementary analyses. We searched PubMed, Embase, and Web of Science databases for eligible whole-brain rs-fMRI studies that measured ALFF differences between patients with PD and healthy controls published from January 1st, 2000 until June 24, 2016. Eleven studies reporting 14 comparisons, comparing 421 patients and 381 healthy controls, were included. The most consistent and replicable findings in patients with PD compared with healthy controls were identified, including the decreased ALFFs in the bilateral supplementary motor areas, left putamen, left premotor cortex, and left inferior parietal gyrus, and increased ALFFs in the right inferior parietal gyrus. The altered ALFFs in these brain regions are related to motor deficits and compensation in PD, which contribute to understanding its neurobiological underpinnings and could serve as specific regions of interest for further studies.

Figures

Figure 1. Flow diagram for inclusion/exclusion of…
Figure 1. Flow diagram for inclusion/exclusion of studies.
Key: PD, Parkinson’s disease; ALFF, amplitude of low-frequency fluctuations.
Figure 2. ALFF differences in patients with…
Figure 2. ALFF differences in patients with PD compared to healthy controls.
Key: Red and green colors indicate increased and decreased ALFFs in patients with PD compared to healthy controls, respectively. ALFF, amplitude of low-frequency fluctuations; (A), Right inferior temporal/middle temporal/fusiform/parahippocampal gyri; (B), Right inferior parietal gyrus; (C), Brainstem (pons and midbrain); (D), Right orbitofrontal cortex; (E), Left/Right cuneus cortices; (F), Left/Right supplementary motor areas; (G), Left putamen; (H), Left cuneus cortex; (I), Left inferior parietal gyrus; (J), Left lateral premotor cortex.

References

    1. Findley L. J. The economic impact of Parkinson’s disease. Parkinsonism & related disorders 13 Suppl, S8–S12, doi: 10.1016/j.parkreldis.2007.06.003 (2007).
    1. Pringsheim T., Jette N., Frolkis A. & Steeves T. D. The prevalence of Parkinson’s disease: a systematic review and meta-analysis. Movement disorders: official journal of the Movement Disorder Society 29, 1583–1590, doi: 10.1002/mds.25945 (2014).
    1. Kalia L. V. & Lang A. E. Parkinson’s disease. Lancet 386, 896–912, doi: 10.1016/S0140-6736(14)61393-3 (2015).
    1. Rana A. Q., Ahmed U. S., Chaudry Z. M. & Vasan S. Parkinson’s disease: a review of non-motor symptoms. Expert review of neurotherapeutics 15, 549–562, doi: 10.1586/14737175.2015.1038244 (2015).
    1. Dauer W. & Przedborski S. Parkinson’s disease: mechanisms and models. Neuron 39, 889–909 (2003).
    1. Weingarten C. P., Sundman M. H., Hickey P. & Chen N. K. Neuroimaging of Parkinson’s disease: Expanding views. Neurosci Biobehav Rev 59, 16–52, doi: 10.1016/j.neubiorev.2015.09.007 (2015).
    1. Prodoehl J., Burciu R. G. & Vaillancourt D. E. Resting state functional magnetic resonance imaging in Parkinson’s disease. Current neurology and neuroscience reports 14, 448, doi: 10.1007/s11910-014-0448-6 (2014).
    1. Zou Q. H. et al.. An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF. Journal of neuroscience methods 172, 137–141, doi: 10.1016/j.jneumeth.2008.04.012 (2008).
    1. Ren W. et al.. Anatomical and functional brain abnormalities in drug-naive first-episode schizophrenia. The American journal of psychiatry 170, 1308–1316, doi: 10.1176/appi.ajp.2013.12091148 (2013).
    1. Guo W. B. et al.. Alterations of the amplitude of low-frequency fluctuations in treatment-resistant and treatment-response depression: a resting-state fMRI study. Progress in neuro-psychopharmacology & biological psychiatry 37, 153–160, doi: 10.1016/j.pnpbp.2012.01.011 (2012).
    1. Liang P. et al.. Altered amplitude of low-frequency fluctuations in early and late mild cognitive impairment and Alzheimer’s disease. Current Alzheimer research 11, 389–398 (2014).
    1. Han Y. et al.. Frequency-dependent changes in the amplitude of low-frequency fluctuations in amnestic mild cognitive impairment: a resting-state fMRI study. NeuroImage 55, 287–295, doi: 10.1016/j.neuroimage.2010.11.059 (2011).
    1. Skidmore F. M. et al.. Reliability analysis of the resting state can sensitively and specifically identify the presence of Parkinson disease. Neuroimage 75, 249–261, doi: 10.1016/j.neuroimage.2011.06.056 (2013).
    1. Zhang Z. et al.. Pathological uncoupling between amplitude and connectivity of brain fluctuations in epilepsy. Human brain mapping 36, 2756–2766, doi: 10.1002/hbm.22805 (2015).
    1. Chen H. M. et al.. Different patterns of spontaneous brain activity between tremor-dominant and postural instability/gait difficulty subtypes of Parkinson’s disease: a resting-state fMRI study. CNS neuroscience & therapeutics 21, 855–866, doi: 10.1111/cns.12464 (2015).
    1. Skidmore F. M. et al.. Apathy, depression, and motor symptoms have distinct and separable resting activity patterns in idiopathic Parkinson disease. NeuroImage 81, 484–495, doi: 10.1016/j.neuroimage.2011.07.012 (2013).
    1. Hu X. F. et al.. Amplitude of low-frequency oscillations in Parkinson’s disease: a 2-year longitudinal resting-state functional magnetic resonance imaging study. Chinese medical journal 128, 593–601, doi: 10.4103/0366-6999.151652 (2015).
    1. Luo C. et al.. The trajectory of disturbed resting-state cerebral function in Parkinson’s disease at different Hoehn and Yahr stages. Human brain mapping 36, 3104–3116, doi: 10.1002/hbm.22831 (2015).
    1. Wen X., Wu X., Liu J., Li K. & Yao L. Abnormal baseline brain activity in non-depressed Parkinson’s disease and depressed Parkinson’s disease: a resting-state functional magnetic resonance imaging study. PLoS One 8, e63691, doi: 10.1371/journal.pone.0063691 (2013).
    1. Kim Y. et al.. Apolipoprotein E4 affects topographical changes in hippocampal and cortical atrophy in alzheimer’s disease dementia: A five-year longitudinal study. Neurodegenerative Diseases 15, 463 (2015).
    1. Luo C. et al.. Resting-state fMRI study on drug-naive patients with Parkinson’s disease and with depression. Journal of Neurology Neurosurgery and Psychiatry 85, 675–683, doi: 10.1136/jnnp-2013-306237 (2014).
    1. Yao N. et al.. Resting activity in visual and corticostriatal pathways in Parkinson’s disease with hallucinations. Parkinsonism & related disorders 21, 131–137, doi: 10.1016/j.parkreldis.2014.11.020 (2015).
    1. Possin K. L. et al.. Rivastigmine is associated with restoration of left frontal brain activity in Parkinson’s disease. Movement Disorders 28, 1384–1390 (2013).
    1. Zhang J. et al.. Specific frequency band of amplitude low-frequency fluctuation predicts Parkinson’s disease. Behavioural brain research 252, 18–23, doi: 10.1016/j.bbr.2013.05.039 (2013).
    1. Kwak Y. et al.. L-DOPA changes spontaneous low-frequency BOLD signal oscillations in Parkinson’s disease: a resting state fMRI study. Frontiers in systems neuroscience 6, 52, doi: 10.3389/fnsys.2012.00052 (2012).
    1. Hou Y., Wu X., Hallett M., Chan P. & Wu T. Frequency-dependent neural activity in Parkinson’s disease. Human brain mapping 35, 5815–5833, doi: 10.1002/hbm.22587 (2014).
    1. Xiang J. et al.. Altered Spontaneous Brain Activity in Cortical and Subcortical Regions in Parkinson’s Disease. Parkinson’s disease 2016, 5246021, doi: 10.1155/2016/5246021 (2016).
    1. Radua J. & Mataix-Cols D. Voxel-wise meta-analysis of grey matter changes in obsessive-compulsive disorder. Br J Psychiatry 195, 393–402, doi: 10.1192/bjp.bp.108.055046 (2009).
    1. Sheng L. et al.. Motor and extra-motor gray matter atrophy in amyotrophic lateral sclerosis: quantitative meta-analyses of voxel-based morphometry studies. Neurobiology of aging 36, 3288–3299, doi: 10.1016/j.neurobiolaging.2015.08.018 (2015).
    1. Iwabuchi S. J. et al.. Localized connectivity in depression: a meta-analysis of resting state functional imaging studies. Neurosci Biobehav Rev 51, 77–86, doi: 10.1016/j.neubiorev.2015.01.006 (2015).
    1. Radua J. et al.. Anisotropic kernels for coordinate-based meta-analyses of neuroimaging studies. Front Psychiatry 5, 13, doi: 10.3389/fpsyt.2014.00013 (2014).
    1. Radua J. et al.. A new meta-analytic method for neuroimaging studies that combines reported peak coordinates and statistical parametric maps. European psychiatry: the journal of the Association of European Psychiatrists 27, 605–611, doi: 10.1016/j.eurpsy.2011.04.001 (2012).
    1. Lim L., Radua J. & Rubia K. Gray matter abnormalities in childhood maltreatment: a voxel-wise meta-analysis. The American journal of psychiatry 171, 854–863, doi: 10.1176/appi.ajp.2014.13101427 (2014).
    1. Jacobs H. I., Radua J., Luckmann H. C. & Sack A. T. Meta-analysis of functional network alterations in Alzheimer’s disease: toward a network biomarker. Neuroscience and biobehavioral reviews 37, 753–765, doi: 10.1016/j.neubiorev.2013.03.009 (2013).
    1. Li J., Pan P., Huang R. & Shang H. A meta-analysis of voxel-based morphometry studies of white matter volume alterations in Alzheimer’s disease. Neuroscience and biobehavioral reviews 36, 757–763, doi: 10.1016/j.neubiorev.2011.12.001 (2012).
    1. Pan P. L., Song W. & Shang H. F. Voxel-wise meta-analysis of gray matter abnormalities in idiopathic Parkinson’s disease. European journal of neurology 19, 199–206, doi: 10.1111/j.1468-1331.2011.03474.x (2012).
    1. Welton T., Kent D., Constantinescu C. S., Auer D. P. & Dineen R. A. Functionally relevant white matter degradation in multiple sclerosis: a tract-based spatial meta-analysis. Radiology 275, 89–96, doi: 10.1148/radiol.14140925 (2015).
    1. Lansley J., Mataix-Cols D., Grau M., Radua J. & Sastre-Garriga J. Localized grey matter atrophy in multiple sclerosis: a meta-analysis of voxel-based morphometry studies and associations with functional disability. Neuroscience and biobehavioral reviews 37, 819–830, doi: 10.1016/j.neubiorev.2013.03.006 (2013).
    1. Li J. et al.. A meta-analysis of diffusion tensor imaging studies in amyotrophic lateral sclerosis. Neurobiology of aging 33, 1833–1838, doi: 10.1016/j.neurobiolaging.2011.04.007 (2012).
    1. Bora E., Fornito A., Pantelis C. & Yucel M. Gray matter abnormalities in Major Depressive Disorder: a meta-analysis of voxel based morphometry studies. Journal of affective disorders 138, 9–18, doi: 10.1016/j.jad.2011.03.049 (2012).
    1. Luo C., Song W., Guo X., Shang H. & Gong Q. The trajectory of disturbed resting-state cerebral function in Parkinson’s disease at different Hoehn & Yahr stages. Movement Disorders 30, S16–S17 (2015).
    1. Huang P. et al.. Abnormal amygdala function in Parkinson’s disease patients and its relationship to depression. Journal of affective disorders 183, 263–268, doi: 10.1016/j.jad.2015.05.029 (2015).
    1. Long D. et al.. Automatic classification of early Parkinson’s disease with multi-modal MR imaging. PLoS One 7, e47714, doi: 10.1371/journal.pone.0047714 (2012).
    1. Hu X. et al.. Altered Resting-State Brain Activity and Connectivity in Depressed Parkinson’s Disease. PloS one 10, e0131133, doi: 10.1371/journal.pone.0131133 (2015).
    1. Galvan A. & Wichmann T. Pathophysiology of parkinsonism. Clinical neurophysiology: official journal of the International Federation of Clinical Neurophysiology 119, 1459–1474, doi: 10.1016/j.clinph.2008.03.017 (2008).
    1. Lindenbach D. & Bishop C. Critical involvement of the motor cortex in the pathophysiology and treatment of Parkinson’s disease. Neurosci Biobehav Rev 37, 2737–2750, doi: 10.1016/j.neubiorev.2013.09.008 (2013).
    1. Otsuka M. et al.. Differences in the reduced 18F-Dopa uptakes of the caudate and the putamen in Parkinson’s disease: correlations with the three main symptoms. Journal of the neurological sciences 136, 169–173 (1996).
    1. Antonini A. et al.. Complementary positron emission tomographic studies of the striatal dopaminergic system in Parkinson’s disease. Archives of neurology 52, 1183–1190 (1995).
    1. Morrish P. K., Sawle G. V. & Brooks D. J. Regional changes in [18F]dopa metabolism in the striatum in Parkinson’s disease. Brain : a journal of neurology 119(Pt 6), 2097–2103 (1996).
    1. Xu J. et al.. Abnormal fronto-striatal functional connectivity in Parkinson’s disease. Neuroscience letters 613, 66–71, doi: 10.1016/j.neulet.2015.12.041 (2016).
    1. Yu H., Sternad D., Corcos D. M. & Vaillancourt D. E. Role of hyperactive cerebellum and motor cortex in Parkinson’s disease. NeuroImage 35, 222–233, doi: 10.1016/j.neuroimage.2006.11.047 (2007).
    1. Wu T. et al.. Regional homogeneity changes in patients with Parkinson’s disease. Human brain mapping 30, 1502–1510, doi: 10.1002/hbm.20622 (2009).
    1. Bruck A. et al.. Striatal subregional 6-[18F]fluoro-L-dopa uptake in early Parkinson’s disease: a two-year follow-up study. Movement disorders: official journal of the Movement Disorder Society 21, 958–963, doi: 10.1002/mds.20855 (2006).
    1. Kish S. J., Shannak K. & Hornykiewicz O. Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson’s disease. Pathophysiologic and clinical implications. N Engl J Med 318, 876–880, doi: 10.1056/NEJM198804073181402 (1988).
    1. Draganski B. et al.. Evidence for segregated and integrative connectivity patterns in the human Basal Ganglia. The Journal of neuroscience: the official journal of the Society for Neuroscience 28, 7143–7152, doi: 10.1523/JNEUROSCI.1486-08.2008 (2008).
    1. Postuma R. B. & Dagher A. Basal ganglia functional connectivity based on a meta-analysis of 126 positron emission tomography and functional magnetic resonance imaging publications. Cerebral cortex (New York, N.Y.: 1991) 16, 1508–1521, doi: 10.1093/cercor/bhj088 (2006).
    1. Lehericy S. et al.. Diffusion tensor fiber tracking shows distinct corticostriatal circuits in humans. Annals of neurology 55, 522–529, doi: 10.1002/ana.20030 (2004).
    1. Wu T. et al.. Changes of functional connectivity of the motor network in the resting state in Parkinson’s disease. Neuroscience letters 460, 6–10, doi: 10.1016/j.neulet.2009.05.046 (2009).
    1. Wu T. et al.. Effective connectivity of brain networks during self-initiated movement in Parkinson’s disease. NeuroImage 55, 204–215, doi: 10.1016/j.neuroimage.2010.11.074 (2011).
    1. Payoux P. et al.. Motor activation in multiple system atrophy and Parkinson disease: a PET study. Neurology 75, 1174–1180, doi: 10.1212/WNL.0b013e3181f4d78f (2010).
    1. Buhmann C. et al.. Pharmacologically modulated fMRI–cortical responsiveness to levodopa in drug-naive hemiparkinsonian patients. Brain: a journal of neurology 126, 451–461 (2003).
    1. Wu T., Wang L., Hallett M., Li K. & Chan P. Neural correlates of bimanual anti-phase and in-phase movements in Parkinson’s disease. Brain: a journal of neurology 133, 2394–2409, doi: 10.1093/brain/awq151 (2010).
    1. Haslinger B. et al.. Event-related functional magnetic resonance imaging in Parkinson’s disease before and after levodopa. Brain: a journal of neurology 124, 558–570 (2001).
    1. Ma Y., Tang C., Spetsieris P. G., Dhawan V. & Eidelberg D. Abnormal metabolic network activity in Parkinson’s disease: test-retest reproducibility. Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism 27, 597–605, doi: 10.1038/sj.jcbfm.9600358 (2007).
    1. Huang C. et al.. Metabolic brain networks associated with cognitive function in Parkinson’s disease. NeuroImage 34, 714–723, doi: 10.1016/j.neuroimage.2006.09.003 (2007).
    1. Sabatini U. et al.. Cortical motor reorganization in akinetic patients with Parkinson’s disease: a functional MRI study. Brain: a journal of neurology 123(Pt 2), 394–403 (2000).
    1. Herz D. M., Eickhoff S. B., Lokkegaard A. & Siebner H. R. Functional neuroimaging of motor control in Parkinson’s disease: a meta-analysis. Human brain mapping 35, 3227–3237, doi: 10.1002/hbm.22397 (2014).
    1. Lee K. M., Chang K. H. & Roh J. K. Subregions within the supplementary motor area activated at different stages of movement preparation and execution. NeuroImage 9, 117–123, doi: 10.1006/nimg.1998.0393 (1999).
    1. Samuel M. et al.. Evidence for lateral premotor and parietal overactivity in Parkinson’s disease during sequential and bimanual movements. A PET study. Brain: a journal of neurology 120(Pt 6), 963–976 (1997).
    1. Shirota Y. et al.. Supplementary motor area stimulation for Parkinson disease: a randomized controlled study. Neurology 80, 1400–1405, doi: 10.1212/WNL.0b013e31828c2f66 (2013).
    1. Hamada M., Ugawa Y. & Tsuji S. Effectiveness of rTms on Parkinson’s Disease Study Group, J. High-frequency rTMS over the supplementary motor area for treatment of Parkinson’s disease. Movement disorders: official journal of the Movement Disorder Society 23, 1524–1531, doi: 10.1002/mds.22168 (2008).
    1. Caspers S. et al.. Probabilistic fibre tract analysis of cytoarchitectonically defined human inferior parietal lobule areas reveals similarities to macaques. NeuroImage 58, 362–380, doi: 10.1016/j.neuroimage.2011.06.027 (2011).
    1. Caspers S. et al.. Organization of the human inferior parietal lobule based on receptor architectonics. Cerebral cortex (New York, N.Y.: 1991) 23, 615–628, doi: 10.1093/cercor/bhs048 (2013).
    1. Caspers S. et al.. The human inferior parietal lobule in stereotaxic space. Brain structure & function 212, 481–495, doi: 10.1007/s00429-008-0195-z (2008).
    1. Piccini P. et al.. Delayed recovery of movement-related cortical function in Parkinson’s disease after striatal dopaminergic grafts. Annals of neurology 48, 689–695 (2000).
    1. Helmich R. C. et al.. Spatial remapping of cortico-striatal connectivity in Parkinson’s disease. Cerebral cortex (New York, N.Y.: 1991) 20, 1175–1186, doi: 10.1093/cercor/bhp178 (2010).
    1. Andrews-Hanna J. R., Reidler J. S., Sepulcre J., Poulin R. & Buckner R. L. Functional-anatomic fractionation of the brain’s default network. Neuron 65, 550–562, doi: 10.1016/j.neuron.2010.02.005 (2010).
    1. Buckner R. L., Andrews-Hanna J. R. & Schacter D. L. The brain’s default network: anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences 1124, 1–38, doi: 10.1196/annals.1440.011 (2008).
    1. Tessitore A. et al.. Default-mode network connectivity in cognitively unimpaired patients with Parkinson disease. Neurology 79, 2226–2232, doi: 10.1212/WNL.0b013e31827689d6 (2012).
    1. Eickhoff S. B., Bzdok D., Laird A. R., Kurth F. & Fox P. T. Activation likelihood estimation meta-analysis revisited. NeuroImage 59, 2349–2361, doi: 10.1016/j.neuroimage.2011.09.017 (2012).
    1. Cacioppo S., Bianchi-Demicheli F., Frum C., Pfaus J. G. & Lewis J. W. The common neural bases between sexual desire and love: a multilevel kernel density fMRI analysis. The journal of sexual medicine 9, 1048–1054, doi: 10.1111/j.1743-6109.2012.02651.x (2012).
    1. Wager T. D., Lindquist M. A., Nichols T. E., Kober H. & Van Snellenberg J. X. Evaluating the consistency and specificity of neuroimaging data using meta-analysis. NeuroImage 45, S210–221, doi: 10.1016/j.neuroimage.2008.10.061 (2009).
    1. Radua J. & Mataix-Cols D. Meta-analytic methods for neuroimaging data explained. Biology of mood & anxiety disorders 2, 6, doi: 10.1186/2045-5380-2-6 (2012).
    1. Han Y. et al.. Anatomical and functional deficits in patients with amnestic mild cognitive impairment. PloS one 7, e28664, doi: 10.1371/journal.pone.0028664 (2012).
    1. Sui J., Huster R., Yu Q., Segall J. M. & Calhoun V. D. Function-structure associations of the brain: evidence from multimodal connectivity and covariance studies. NeuroImage 102Pt 1, 11–23, doi: 10.1016/j.neuroimage.2013.09.044 (2014).
    1. Stroup D. F. et al.. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. Jama 283, 2008–2012 (2000).
    1. Radua J. et al.. Multimodal voxel-based meta-analysis of white matter abnormalities in obsessive-compulsive disorder. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology 39, 1547–1557, doi: 10.1038/npp.2014.5 (2014).

Source: PubMed

3
S'abonner