Improving insulin sensitivity, liver steatosis and fibrosis in type 2 diabetes by a food-based digital education-assisted lifestyle intervention program: a feasibility study

Oana P Zaharia, Yuliya Kupriyanova, Yanislava Karusheva, Daniel F Markgraf, Konstantinos Kantartzis, Andreas L Birkenfeld, Michael Trenell, Aarti Sahasranaman, Chris Cheyette, Theresa Kössler, Kálmán Bódis, Volker Burkart, Jong-Hee Hwang, Michael Roden, Julia Szendroedi, Dominik H Pesta, Oana P Zaharia, Yuliya Kupriyanova, Yanislava Karusheva, Daniel F Markgraf, Konstantinos Kantartzis, Andreas L Birkenfeld, Michael Trenell, Aarti Sahasranaman, Chris Cheyette, Theresa Kössler, Kálmán Bódis, Volker Burkart, Jong-Hee Hwang, Michael Roden, Julia Szendroedi, Dominik H Pesta

Abstract

Purpose: Recent trials demonstrated remission of type 2 diabetes and non-alcoholic fatty liver disease (NAFLD) following formula diet-induced weight loss. To improve the outreach for populations in need, many mobile health apps targeting weight loss have been developed with limited scientific evaluation of these apps. The present feasibility study investigated the effects of a novel approach incorporating a regular 'whole food-based' low-calorie diet combined with app-based digital education and behavioral change program on glucose metabolism and disease management.

Methods: Twenty-four individuals with type 2 diabetes followed this approach supported by weekly coaching calls for 12 weeks. Phenotyping included bioimpedance analysis, mixed-meal tolerance test, magnetic resonance spectroscopy and transient elastography for assessing liver fat content and liver stiffness.

Results: Over 12 weeks, participants reduced their body weight by 9% (97 ± 13 to 88 ± 12 kg), body mass index (BMI; 33 ± 5 to 29 ± 4 kg/m2), total fat mass (31 ± 10 to 27 ± 10%) (all p < 0.01) and liver fat by 50% alongside with decreased liver stiffness. Target HbA1c (< 6.5%) was achieved by 38% and resolution of NAFLD (liver fat content < 5.6%) was observed in 30% of the participants.

Conclusion: This novel approach combining digital education with a low-calorie diet results in effective improvements of body weight, glycemic control and NAFLD and could complement existing care for patients with type 2 diabetes.

Trial registration: NCT04509245.

Keywords: Diabetes management; Digital education; Insulin sensitivity; Non-alcoholic fatty liver disease; Type 2 diabetes.

Conflict of interest statement

Michael Roden serves as investigator of studies supported by Boehringer-Ingelheim Pharma, Nutriticia / Danone and Sanofi and has served as advisor/consultant for Bristol-Myers Squibb, Eli Lilly, Gilead, Intercept Pharma, Novo Nordisk, Novartis, Poxel, Prosciento, Sanofi, Servier and TARGET NASH. Michael Trenell is co-founder of Changing Health Ltd, a spin-out company from Newcastle University and Newcastle upon Tyne NHS Hospitals Trust. Chris Cheyette authored the recipe book ‘Carbs & Cals’ and is managing director at Chello Publishing Limited.

© 2021. The Author(s).

Figures

Fig. 1
Fig. 1
Recruitment flow diagram
Fig. 2
Fig. 2
Metabolic parameters before and after the intervention. Glycemic control (a, b) and insulin sensitivity (c), cardiovascular parameters: blood pressure (d, e) and resting heart rate (f) and liver parameters: HCL (g), ALT (h) and stiffness (i). Black bars represent baseline data while post-intervention data are shown as grey bars. *p < 0.05; **p < 0.01. Significant differences as determined by paired samples t-test for pre-post comparison. ALT alanine aminotransferase, BP blood pressure, HbA1c glycated hemoglobin, OGIS oral glucose insulin sensitivity index
Fig. 3
Fig. 3
Metabolic response to mixed-meal tolerance test before and after intervention. Metabolic parameters during the mixed-meal test before and after the intervention: glycemia (a), insulin secretion (b), free fatty acids (c) and triglycerides (d). Black dots and respective error bars represent baseline data while post-intervention data are shown as white dots and respective error bars. *p < 0.05. Significant differences as determined by paired samples t-test for pre-post comparison

References

    1. European Association for the Study of the L EASL-EASD-EASO clinical practice guidelines for the management of non-alcoholic fatty liver disease. Obes Facts. 2016;9(2):65–90. doi: 10.1159/000443344.
    1. Roden M, Shulman GI. The integrative biology of type 2 diabetes. Nature. 2019;576(7785):51–60. doi: 10.1038/s41586-019-1797-8.
    1. Hernandez EA, Kahl S, Seelig A, Begovatz P, Irmler M, Kupriyanova Y, Nowotny B, Nowotny P, Herder C, Barosa C, Carvalho F, Rozman J, Neschen S, Jones JG, Beckers J, de Angelis MH, Roden M. Acute dietary fat intake initiates alterations in energy metabolism and insulin resistance. J Clin Investig. 2017;127(2):695–708. doi: 10.1172/jci89444.
    1. Zaharia OP, Strassburger K, Strom A, Bonhof GJ, Karusheva Y, Antoniou S, Bodis K, Markgraf DF, Burkart V, Mussig K, Hwang JH, Asplund O, Groop L, Ahlqvist E, Seissler J, Nawroth P, Kopf S, Schmid SM, Stumvoll M, Pfeiffer AFH, Kabisch S, Tselmin S, Haring HU, Ziegler D, Kuss O, Szendroedi J, Roden M, German Diabetes Study G (2019) Risk of diabetes-associated diseases in subgroups of patients with recent-onset diabetes: a 5-year follow-up study. Lancet Diabetes Endocrinol 7 (9):684-694. doi:10.1016/S2213-8587(19)30187-1
    1. Petersen KF, Dufour S, Befroy D, Lehrke M, Hendler RE, Shulman GI. Reversal of nonalcoholic hepatic steatosis, hepatic insulin resistance, and hyperglycemia by moderate weight reduction in patients with type 2 diabetes. Diabetes. 2005;54(3):603–608. doi: 10.2337/diabetes.54.3.603.
    1. El-Agroudy NN, Kurzbach A, Rodionov RN, O'Sullivan J, Roden M, Birkenfeld AL, Pesta DH. Are lifestyle therapies effective for NAFLD treatment? Trends Endocrinol Metab. 2019;30(10):701–709. doi: 10.1016/j.tem.2019.07.013.
    1. Evert AB, Dennison M, Gardner CD, Garvey WT, Lau KHK, MacLeod J, Mitri J, Pereira RF, Rawlings K, Robinson S, Saslow L, Uelmen S, Urbanski PB, Yancy WS., Jr Nutrition therapy for adults with diabetes or prediabetes: a consensus report. Diabetes Care. 2019;42(5):731–754. doi: 10.2337/dci19-0014.
    1. Obesity Management for the Treatment of Type 2 Diabetes: Standards of Medical Care in Diabetes-2021 (2021). Diabetes Care 44 (Suppl 1):S100-s110. doi: 10.2337/dc21-S008
    1. George ES, Forsyth A, Itsiopoulos C, Nicoll AJ, Ryan M, Sood S, Roberts Stuart K, Tierney AC. Practical dietary recommendations for the prevention and management of nonalcoholic fatty liver disease in adults. Adv Nutr. 2018;9(1):30–40. doi: 10.1093/advances/nmx007%JAdvancesinNutrition.
    1. Miller EF. Nutrition management strategies for nonalcoholic fatty liver disease: treatment and prevention. Clin Liv Dis. 2020;15(4):144–148. doi: 10.1002/cld.918.
    1. Romero-Gómez M, Zelber-Sagi S, Trenell M. Treatment of NAFLD with diet, physical activity and exercise. J Hepatol. 2017;67(4):829–846. doi: 10.1016/j.jhep.2017.05.016.
    1. Lean ME, Leslie WS, Barnes AC, Brosnahan N, Thom G, McCombie L, Peters C, Zhyzhneuskaya S, Al-Mrabeh A, Hollingsworth KG, Rodrigues AM, Rehackova L, Adamson AJ, Sniehotta FF, Mathers JC, Ross HM, McIlvenna Y, Stefanetti R, Trenell M, Welsh P, Kean S, Ford I, McConnachie A, Sattar N, Taylor R. Primary care-led weight management for remission of type 2 diabetes (DiRECT): an open-label, cluster-randomised trial. Lancet. 2018;391(10120):541–551. doi: 10.1016/s0140-6736(17)33102-1.
    1. Taylor R, Al-Mrabeh A, Zhyzhneuskaya S, Peters C, Barnes AC, Aribisala BS, Hollingsworth KG, Mathers JC, Sattar N, Lean MEJ (2018) Remission of human type 2 diabetes requires decrease in liver and pancreas fat content but is dependent upon capacity for beta cell recovery. Cell Metab 28 (4):547–556 e543. doi:10.1016/j.cmet.2018.07.003
    1. Wharton S, Lau DCW, Vallis M, Sharma AM, Biertho L, Campbell-Scherer D, Adamo K, Alberga A, Bell R, Boulé N, Boyling E, Brown J, Calam B, Clarke C, Crowshoe L, Divalentino D, Forhan M, Freedhoff Y, Gagner M, Glazer S, Grand C, Green M, Hahn M, Hawa R, Henderson R, Hong D, Hung P, Janssen I, Jacklin K, Johnson-Stoklossa C, Kemp A, Kirk S, Kuk J, Langlois MF, Lear S, McInnes A, Macklin D, Naji L, Manjoo P, Morin MP, Nerenberg K, Patton I, Pedersen S, Pereira L, Piccinini-Vallis H, Poddar M, Poirier P, Prud'homme D, Salas XR, Rueda-Clausen C, Russell-Mayhew S, Shiau J, Sherifali D, Sievenpiper J, Sockalingam S, Taylor V, Toth E, Twells L, Tytus R, Walji S, Walker L, Wicklum S (2020) Obesity in adults: a clinical practice guideline. CMAJ 192 (31):E875-e891. doi:10.1503/cmaj.191707
    1. Dounavi K, Tsoumani O. Mobile health applications in weight management: a systematic literature review. Am J Prev Med. 2019;56(6):894–903. doi: 10.1016/j.amepre.2018.12.005.
    1. Ghelani DP, Moran LJ, Johnson C, Mousa A, Naderpoor N. Mobile apps for weight management: a review of the latest evidence to inform practice. Front Endocrinol (Lausanne) 2020;11:412–412. doi: 10.3389/fendo.2020.00412.
    1. Holzmann SL, Holzapfel C. A scientific overview of smartphone applications and electronic devices for weight management in adults. J Pers Med. 2019;9(2):31. doi: 10.3390/jpm9020031.
    1. Szendroedi J, Saxena A, Weber KS, Strassburger K, Herder C, Burkart V, Nowotny B, Icks A, Kuss O, Ziegler D, Al-Hasani H, Mussig K, Roden M, Group GDS (2016) Cohort profile: the German diabetes study (GDS). Cardiovasc Diabetol 15:59. doi:10.1186/s12933-016-0374-9
    1. Cheyette C, Balolia Y, Francis V, Callaghan S, Turner F (2017) Carbs & cals very low calorie recipes & meal plans: lose weight, improve blood sugar levels and reverse type 2 diabetes. chello publishing
    1. Besser REJ, Shields BM, Casas R, Hattersley AT, Ludvigsson J. Lessons from the mixed-meal tolerance test: use of 90-min and fasting C-peptide in pediatric diabetes. Diabetes Care. 2013;36(2):195–201. doi: 10.2337/dc12-0836.
    1. Laufs A, Livingstone R, Nowotny B, Nowotny P, Wickrath F, Giani G, Bunke J, Roden M, Hwang JH. Quantitative liver 31P magnetic resonance spectroscopy at 3T on a clinical scanner. Magn Reson Med. 2014;71(5):1670–1675. doi: 10.1002/mrm.24835.
    1. Cassinotto C, Boursier J, de Lédinghen V, Lebigot J, Lapuyade B, Cales P, Hiriart J-B, Michalak S, Bail BL, Cartier V, Mouries A, Oberti F, Fouchard-Hubert I, Vergniol J, Aubé C. Liver stiffness in nonalcoholic fatty liver disease: a comparison of supersonic shear imaging, FibroScan, and ARFI with liver biopsy. Hepatology. 2016;63(6):1817–1827. doi: 10.1002/hep.28394.
    1. Zaharia OP, Strassburger K, Knebel B, Kupriyanova Y, Karusheva Y, Wolkersdorfer M, Bódis K, Markgraf DF, Burkart V, Hwang J-H, Kotzka J, Al-Hasani H, Szendroedi J, Roden M. Role of patatin-like phospholipase domain-containing 3 gene for hepatic lipid content and insulin resistance in diabetes. Diabetes Care. 2020;43(9):2161–2168. doi: 10.2337/dc20-0329.
    1. Obesity Management for the Treatment of Type 2 diabetes: standards of medical care in diabetes-2019 (2019). Diabetes care 42 (Suppl 1):S81-s89. doi:10.2337/dc19-S008
    1. Chavez S, Fedele D, Guo Y, Bernier A, Smith M, Warnick J, Modave F. Mobile apps for the management of diabetes. Diabetes Care. 2017;40(10):e145–e146. doi: 10.2337/dc17-0853.
    1. Pafili K, Roden M (2020) Nonalcoholic fatty liver disease (NAFLD) from pathogenesis to treatment concepts in humans. Mol Metab:101122. doi:10.1016/j.molmet.2020.101122
    1. Koopman KE, Caan MW, Nederveen AJ, Pels A, Ackermans MT, Fliers E, la Fleur SE, Serlie MJ. Hypercaloric diets with increased meal frequency, but not meal size, increase intrahepatic triglycerides: a randomized controlled trial. Hepatology. 2014;60(2):545–553. doi: 10.1002/hep.27149.
    1. Cotter TG, Rinella M. Nonalcoholic fatty liver disease 2020: the state of the disease. Gastroenterology. 2020;158(7):1851–1864. doi: 10.1053/j.gastro.2020.01.052.
    1. Dulai PS, Singh S, Patel J, Soni M, Prokop LJ, Younossi Z, Sebastiani G, Ekstedt M, Hagstrom H, Nasr P, Stal P, Wong VW, Kechagias S, Hultcrantz R, Loomba R. Increased risk of mortality by fibrosis stage in nonalcoholic fatty liver disease: Systematic review and meta-analysis. Hepatology. 2017;65(5):1557–1565. doi: 10.1002/hep.29085.
    1. Kupriyanova Y, Zaharia OP, Bobrov P, Karusheva Y, Burkart V, Szendroedi J, Hwang JH, Roden M. Early changes in hepatic energy metabolism and lipid content in recent-onset type 1 and 2 diabetes mellitus. J Hepatol. 2020 doi: 10.1016/j.jhep.2020.11.030.
    1. Aeberli I, Jung A, Murer SB, Wildhaber J, Wildhaber-Brooks J, Knopfli BH, Zimmermann MB. During rapid weight loss in obese children, reductions in TSH predict improvements in insulin sensitivity independent of changes in body weight or fat. J Clin Endocrinol Metab. 2010;95(12):5412–5418. doi: 10.1210/jc.2010-1169.
    1. Böhm M, Schumacher H, Teo KK, Lonn EM, Mahfoud F, Ukena C, Mann JFE, Mancia G, Redon J, Schmieder RE, Sliwa K, Marx N, Weber MA, Williams B, Yusuf S. Resting heart rate and cardiovascular outcomes in diabetic and non-diabetic individuals at high cardiovascular risk analysis from the ONTARGET/TRANSCEND trials. Eur Heart J. 2020;41(2):231–238. doi: 10.1093/eurheartj/ehy808.
    1. Tudor-Locke C, Bell RC, Myers AM, Harris SB, Ecclestone NA, Lauzon N, Rodger NW. Controlled outcome evaluation of the First Step Program: a daily physical activity intervention for individuals with type II diabetes. Int J Obes Relat Metab Disord. 2004;28(1):113–119. doi: 10.1038/sj.ijo.0802485.
    1. Huffman KM, Sun J-L, Thomas L, Bales CW, Califf RM, Yates T, Davies MJ, Holman RR, McMurray JJV, Bethel MA, Tuomilehto J, Haffner SM, Kraus WE (2014) Impact of baseline physical activity and diet behavior on metabolic syndrome in a pharmaceutical trial: results from NAVIGATOR. Metabolism: clinical and experimental 63 (4):554–561. doi:10.1016/j.metabol.2014.01.002

Source: PubMed

3
S'abonner