Minimal Clinically Important Differences for the Modified Rodnan Skin Score: Results from the Scleroderma Lung Studies (SLS-I and SLS-II)

Dinesh Khanna, Philip J Clements, Elizabeth R Volkmann, Holly Wilhalme, Chi-Hong Tseng, Daniel E Furst, Michael D Roth, Oliver Distler, Donald P Tashkin, Dinesh Khanna, Philip J Clements, Elizabeth R Volkmann, Holly Wilhalme, Chi-Hong Tseng, Daniel E Furst, Michael D Roth, Oliver Distler, Donald P Tashkin

Abstract

Objective: This study aimed to assess the minimal clinically important differences (MCIDs) for the modified Rodnan skin score (mRSS) using combined data from the Scleroderma Lung Studies (I and II).

Methods: MCID estimates for the mRSS at 12 months were calculated using three anchors: change in scores on the Health Assessment Questionnaire- Disability Index from baseline to 12 months, change in scores on the Patient Global Assessment from baseline to 12 months, and answer at 12 month for the Short Form-36 health transition question "Compared to one year ago, how would you rate your health in general now?" We determined the mRSS MCID estimates for all participants and for those with diffuse cutaneous systemic sclerosis (dcSSc). We then assessed associations between MCID estimates of mRSS improvement and patient-reported outcomes, using Student's t test to compare the mean differences in patient outcomes between those who met the MCID improvement criteria versus those who did not meet the improvement criteria.

Results: The mean (SD) mRSS at baseline was 14.75 (10.72) for all participants and 20.93 (9.61) for those with dcSSc. The MCID estimate for mRSS improvement at 12 months ranged from 3 to 4 units for the overall group (improvement of 20-27% from baseline) and was 5 units for those with dcSSc (improvement of 24% from baseline). Those who met the mRSS MCID improvement criteria had statistically significant improvements in scores on the Short Form-36 Physical Component Summary, the Transition Dyspnea Index, and joint contractures at 12 months.

Conclusion: MCID estimates for the mRSS were 3-4 units for all participants and 5 units for those with dcSSc. These findings are consistent with previously reported MCID estimates for systemic sclerosis.

Trial registration: ClinicalTrials.gov NCT00004563 NCT00883129.

Keywords: Interstitial lung disease; Minimal clinically important difference; Modified Rodnan skin score; Scleroderma; Skin thickness; Systemic sclerosis.

Conflict of interest statement

Ethics approval and consent to participate

The study protocols for both SLS-I and II were approved by the local Institutional Review Boards, and written informed consent was obtained from all participants.

Consent for publication

Not applicable.

Competing interests

Boehringer Ingelheim was not involved in directing the content of the manuscript and was only given the opportunity to review the manuscript for factual accuracy.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

    1. Denton CP, Khanna D. Systemic sclerosis. Lancet. 2017;390(10103):1685-169.
    1. Khanna D, Furst DE, Clements PJ, Allanore Y, Baron M, Czirjak L, Distler O, Foeldvari I, Kuwana M, Matucci-Cerinic M, et al. Standardization of the modified Rodnan skin score for use in clinical trials of systemic sclerosis. J Scleroderma Relat Disord. 2017;2(1):11–18. doi: 10.5301/jsrd.5000231.
    1. Hays RD, Woolley JM. The concept of clinically meaningful difference in health-related quality-of-life research. How meaningful is it? Pharmacoeconomics. 2000;18(5):419–423. doi: 10.2165/00019053-200018050-00001.
    1. Revicki D, Hays RD, Cella D, Sloan J. Recommended methods for determining responsiveness and minimally important differences for patient-reported outcomes. J Clin Epidemiol. 2008;61(2):102–109. doi: 10.1016/j.jclinepi.2007.03.012.
    1. Khanna D, Furst DE, Hays RD, Park GS, Wong WK, Seibold JR, Mayes MD, White B, Wigley FF, Weisman M, et al. Minimally important difference in diffuse systemic sclerosis: results from the d-penicillamine study. Ann Rheum Dis. 2006;65(10):1325–1329. doi: 10.1136/ard.2005.050187.
    1. Tashkin DP, Elashoff R, Clements PJ, Goldin J, Roth MD, Furst DE, Arriola E, Silver R, Strange C, Bolster M, et al. Cyclophosphamide versus placebo in scleroderma lung disease. N Engl J Med. 2006;354(25):2655–2666. doi: 10.1056/NEJMoa055120.
    1. Tashkin DP, Roth MD, Clements PJ, Furst DE, Khanna D, Kleerup EC, Goldin J, Arriola E, Volkmann ER, Kafaja S, et al. Mycophenolate mofetil versus oral cyclophosphamide in scleroderma-related interstitial lung disease (SLS II): a randomised controlled, double-blind, parallel group trial. Lancet Respir Med. 2016;4(9):708–719. doi: 10.1016/S2213-2600(16)30152-7.
    1. Namas R, Tashkin DP, Furst DE, Wilhalme H, Tseng CH, Roth MD, Kafaja S, Volkmann E, Clements PJ, Khanna D, et al. Efficacy of mycophenolate mofetil and oral cyclophosphamide on skin thickness: post hoc analyses from two randomized placebo-controlled trials. Arthritis Care Res. 2018;70(3):439–444. doi: 10.1002/acr.23282.
    1. Khanna D, Yan X, Tashkin DP, Furst DE, Elashoff R, Roth MD, Silver R, Strange C, Bolster M, Seibold JR, et al. Impact of oral cyclophosphamide on health-related quality of life in patients with active scleroderma lung disease: results from the scleroderma lung study. Arthritis Rheum. 2007;56(5):1676–1684. doi: 10.1002/art.22580.
    1. Mahler DA, Weinberg DH, Wells CK, Feinstein AR. The measurement of dyspnea. Contents, interobserver agreement, and physiologic correlates of two new clinical indexes. Chest. 1984;85(6):751–758. doi: 10.1378/chest.85.6.751.
    1. Fries JF, Spitz P, Kraines RG, Holman HR. Measurement of patient outcome in arthritis. Arthritis Rheum. 1980;23(2):137–145. doi: 10.1002/art.1780230202.
    1. Clements PJ, Wong WK, Hurwitz EL, Furst DE, Mayes M, White B, Wigley F, Weisman M, Barr W, Moreland L, et al. Correlates of the disability index of the health assessment questionnaire: a measure of functional impairment in systemic sclerosis. Arthritis Rheum. 1999;42(11):2372–2380. doi: 10.1002/1529-0131(199911)42:11<2372::AID-ANR16>;2-J.
    1. Ware JE., Jr SF-36 health survey update. Spine (Phila Pa 1976) 2000;25(24):3130–3139. doi: 10.1097/00007632-200012150-00008.
    1. Khanna D, Furst DE, Clements PJ, Park GS, Hays RD, Yoon J, Korn JH, Merkel PA, Rothfield N, Wigley FM, et al. Responsiveness of the SF-36 and the Health Assessment Questionnaire Disability Index in a systemic sclerosis clinical trial. J Rheumatol. 2005;32(5):832–840.
    1. Wiese AB, Berrocal VJ, Furst DE, Seibold JR, Merkel PA, Mayes MD, Khanna D. Correlates and responsiveness to change of measures of skin and musculoskeletal disease in early diffuse systemic sclerosis. Arthritis Care Res. 2014;66(11):1731–1739. doi: 10.1002/acr.22339.
    1. Khanna D, Tseng CH, Furst DE, Clements PJ, Elashoff R, Roth M, Elashoff D, Tashkin DP, for Scleroderma Lung Study I Minimally important differences in the Mahler's Transition Dyspnoea Index in a large randomized controlled trial—results from the Scleroderma Lung Study. Rheumatology. 2009;48(12):1537–1540. doi: 10.1093/rheumatology/kep284.
    1. du Bois RM, Weycker D, Albera C, Bradford WZ, Costabel U, Kartashov A, King TE, Jr, Lancaster L, Noble PW, Sahn SA, et al. Forced vital capacity in patients with idiopathic pulmonary fibrosis: test properties and minimal clinically important difference. Am J Respir Crit Care Med. 2011;184(12):1382–1389. doi: 10.1164/rccm.201105-0840OC.
    1. Kafaja S, Clements P, Wilhalme H, Furst D, Tseng CH, Hyun K, Goldin J, Volkmann E, Roth M, Tashkin D et al: Reliability and minimal clinically important differences (MCID) of forced vital capacity: post-hoc analyses from the Scleroderma Lung Studies (SLS-I and II). The American College of Rheumatology Annual Meeting in Washington, DC (November 2016) (Oral Presentation, Abstract 971).
    1. Khanna D, Hays RD, Shreiner AB, Melmed GY, Chang L, Khanna PP, Bolus R, Whitman C, Paz SH, Hays T, et al. Responsiveness to change and minimally important differences of the Patient-Reported Outcomes Measurement Information System Gastrointestinal Symptoms scales. Dig Dis Sci. 2017;62(5):1186–1192. doi: 10.1007/s10620-017-4499-9.
    1. Khanna PP, Furst DE, Clements PJ, Maranian P, Indulkar L, Khanna D, Investigators DP. Tendon friction rubs in early diffuse systemic sclerosis: prevalence, characteristics and longitudinal changes in a randomized controlled trial. Rheumatology. 2010;49(5):955–959. doi: 10.1093/rheumatology/kep464.
    1. Gazi H, Pope JE, Clements P, Medsger TA, Martin RW, Merkel PA, Kahaleh B, Wollheim FA, Baron M, Csuka ME, et al. Outcome measurements in scleroderma: results from a delphi exercise. J Rheumatol. 2007;34(3):501–509.
    1. Maurer B, Graf N, Michel BA, Muller-Ladner U, Czirjak L, Denton CP, Tyndall A, Metzig C, Lanius V, Khanna D, et al. Prediction of worsening of skin fibrosis in patients with diffuse cutaneous systemic sclerosis using the EUSTAR database. Ann Rheum Dis. 2015;74(6):1124–1131. doi: 10.1136/annrheumdis-2014-205226.
    1. Fleming TR, Powers JH. Biomarkers and surrogate endpoints in clinical trials. Stat Med. 2012;31(25):2973–2984. doi: 10.1002/sim.5403.

Source: PubMed

3
S'abonner