The Role of Body Adiposity Index in Determining Body Fat Percentage in Colombian Adults with Overweight or Obesity

Robinson Ramírez-Vélez, Jorge Enrique Correa-Bautista, Katherine González-Ruíz, Alejandra Tordecilla-Sanders, Antonio García-Hermoso, Jacqueline Schmidt-RioValle, Emilio González-Jiménez, Robinson Ramírez-Vélez, Jorge Enrique Correa-Bautista, Katherine González-Ruíz, Alejandra Tordecilla-Sanders, Antonio García-Hermoso, Jacqueline Schmidt-RioValle, Emilio González-Jiménez

Abstract

The aim of this study is to investigate the accuracy of body adiposity index (BAI) as a convenient tool for assessing body fat percentage (BF%) in a sample of adults with overweight/obesity using bioelectrical impedance analysis (BIA). The study population was composed of 96 volunteers (60% female, mean age 40.6 ± 7.5 years old). Anthropometric characteristics (body mass index, height, waist-to-height ratio, hip and waist circumference), socioeconomic status, and diet were assessed, and BF% was measured by BIA-BF% and by BAI-BF%. Pearson's correlation coefficient was used to evaluate the correlation between BAI-BF% and BF% assessed by BIA-BF%, while controlling for potential confounders. The concordance between the BF% measured by both methods was obtained with a paired sample t-test, Lin's concordance correlation coefficient, and Bland-Altman plot analysis. Overall, the correlation between BF% obtained by BIA-BF% and estimated by BAI-BF% was r = 0.885, p < 0.001, after adjusting for potential confounders (age, socioeconomic status, and diet). Lin's concordance correlation coefficient was moderate in both sexes. In the men, the paired t-test showed a significant mean difference in BF% between the methods (-5.6 (95%CI -6.4 to -4.8); p < 0.001). In the women, these differences were (-3.6 (95%CI -4.7 to -2.5); p < 0.001). Overall, the bias of the BAI-BF% was -4.8 ± 3.2 BF%; p < 0.001), indicating that the BAI-BF% method significantly underestimated the BF% in comparison with the reference method. In adults with overweight/obesity, the BAI presents low agreement with BF% measured by BIA-BF%; therefore, we conclude that BIA-BF% is not accurate in either sex when body fat percentage levels are low or high. Further studies are necessary to confirm our findings in different ethnic groups.

Trial registration: ClinicalTrials.gov NCT02715063.

Keywords: adults; body composition; obesity; prediction; validity.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Bland-Altman plots with mean bias (central line) and 95% limits of agreement for comparing BAI-BF% and BIA-BF% among women (A), and men (C). Panels (B,D) represent residual values for Bland-Altman linear regression. The central line represents the systematic bias between BAI-BF% and BIA-BF%; the outer lines represent 95% limits. Solid lines represent the regression line and dashed lines indicate ± 1.96 SD. SD: standard deviation.

References

    1. Bhupathiraju S.N., Hu F.B. Epidemiology of obesity and diabetes and their cardiovascular complications. Circ. Res. 2016;118:1723–1735. doi: 10.1161/CIRCRESAHA.115.306825.
    1. Booth A., Magnuson A., Fouts J., Foster M.T. Adipose tissue: An endocrine organ playing a role in metabolic regulation. Horm. Mol. Biol Clin. Investig. 2016;26:25–42. doi: 10.1515/hmbci-2015-0073.
    1. Smitka K., Marešová D. Adipose tissue as an endocrine organ: An update on pro-inflammatory and anti-inflammatory microenvironment. Prague Med. Rep. 2015;116:87–111. doi: 10.14712/23362936.2015.49.
    1. Maddaloni E., Cavallari I., De Pascalis M., Keenan H., Park K., Manfrini S., Buzzetti R., Patti G., Di Sciascio G., Pozzilli P. Relation of body circumferences to cardiometabolic disease in overweight-obese subjects. Am. J. Cardiol. 2016;118:822–827. doi: 10.1016/j.amjcard.2016.06.044.
    1. Guh D.P., Zhang W., Bansback N., Amarsi Z., Birmingham C.L., Anis A.H. The incidence of co-morbidities related to obesity and overweight: A systematic review and meta-analysis. BMC Public Health. 2009;9:88. doi: 10.1186/1471-2458-9-88.
    1. Lee S.Y., Gallagher D. Assessment methods in human body composition. Curr. Opin. Clin. Nutr. Metab. Care. 2008;11:566–572. doi: 10.1097/MCO.0b013e32830b5f23.
    1. Ramírez-Vélez R., Correa-Bautista J.E., González-Ruíz K., Vivas A., García-Hermoso A., Triana-Reina H.R. Predictive validity of the body adiposity index in overweight and obese adults using dual-energy X-ray absorptiometry. Nutrients. 2016;8:737. doi: 10.3390/nu8120737.
    1. Amato M.C., Guarnotta V., Giordano C. Body composition assessment for the definition of cardiometabolic risk. J. Endocrinol. Investg. 2013;36:537–543.
    1. Bergman R.N., Stefanovski D., Buchanan T.A., Sumner A.E., Reynolds J.C., Sebring N.G., Xiang A.H., Watanabe R.M. A better index of body adiposity. Obesity. 2011;19:1083–1089. doi: 10.1038/oby.2011.38.
    1. Geliebter A., Atalayer D., Flancbaum L., Gibson C.D. Comparison of body adiposity index (BAI) and BMI with estimations of % body fat in clinically severe obese women. Obesity. 2013;21:493–498. doi: 10.1002/oby.20264.
    1. Bernhard A.B., Scabim V.M., Serafim M.P., Gadducci A.V., Santo M.A., de Cleva R. Modified body adiposity index for body fat estimation in severe obesity. J. Hum. Nutr. Diet. 2017;30:177–184. doi: 10.1111/jhn.12404.
    1. Ezeukwu A.O., Ezeoranu C.G., Egwuonwu A.V., Ugwoke U.M., Ekechukwu N.E., Nwankwo M.J. Comparison of body fat percentages in Nigerian obese females using field methods. J. Health Sci. 2015;5:18–23.
    1. Silva M.I., Vale B.S., Lemos C.C., Torres M.R., Bregman R. Body adiposity index assesses body fat with high accuracy in nondialyzed chronic kidney disease patients. Obesity. 2013;21:546–552. doi: 10.1002/oby.20261.
    1. García A.I., Niño-Silva L.A., González-Ruíz K., Ramírez-Vélez R. Body adiposity index as marker of obesity and cardiovascular risk in adults from Bogotá, Colombia. Endocrinol. Nutr. 2015;62:130–137. doi: 10.1016/j.endonu.2014.11.007.
    1. Fuente-Martín E., Argente-Arizón P., Ros P., Argente J., Chowen J.A. Sex differences in adipose tissue: It is not only a question of quantity and distribution. Adipocyte. 2013;2:128–134. doi: 10.4161/adip.24075.
    1. Gallagher D., Visser M., Sepúlveda D., Pierson R.N., Harris T., Heymsfield S.B. How useful is body mass index for comparison of body fatness across age, sex, and ethnic groups? Am. J. Epidemiol. 1996;143:228–239. doi: 10.1093/oxfordjournals.aje.a008733.
    1. Sato S., Demura S., Kitabayashi T., Noguchi T. Segmental body composition assessment for obese Japanese adults by single-frequency bioelectrical impedance analysis with 8-point contact electrodes. J. Physiol. Anthropol. 2007;26:533–540. doi: 10.2114/jpa2.26.533.
    1. Ramírez-Vélez R., Correa-Bautista J.E., González-Ruíz K., Vivas A., Triana-Reina H.R., Martínez-Torres J., Prieto-Benavides D.H., Carrillo H.A., Ramos-Sepúlveda J.A., Villa-González E. Body Adiposity Index performance in estimating body fat percentage in Colombian college students: Findings from the FUPRECOL-Adults Study. Nutrients. 2017;9:40. doi: 10.3390/nu9010040.
    1. Segheto W., Coelho F.A., Guimarães da Silva C.D., Hallal P.C., Marins J.C., Ribeiro A.Q., Pessoa M.C., Morais S.H., Longo G.Z. Validity of body adiposity index in predicting body fat in Brazilian adults. Obesity. 2017;29 doi: 10.1002/ajhb.22901.
    1. Lopez-Jaramillo P., Lahera V., Lopez-Lopez J. Epidemic of cardiometabolic diseases: A Latin American point of view. Ther. Adv. Cardiovasc. Dis. 2011;5:119–131. doi: 10.1177/1753944711403189.
    1. Parra D.C., Iannotti L., Gomez L.F., Pachón H., Haire-Joshu D., Sarmiento O.L., Kuhlmann A.S., Brownson R.C. The nutrition transition in Colombia over a decade: A novel household classification system of anthropometric measures. Arch. Public Health. 2015;73:12. doi: 10.1186/s13690-014-0057-5.
    1. Cetin D., Lessig B.A., Nasr E. Comprehensive evaluation for obesity: Beyond Body Mass Index. J. Am. Osteopath. Assoc. 2016;116:376–382. doi: 10.7556/jaoa.2016.078.
    1. Kahn H.S., Bullard K.M. Beyond Body Mass Index: Advantages of abdominal measurements for recognizing cardiometabolic disorders. Am. J. Med. 2016;129:74–81. doi: 10.1016/j.amjmed.2015.08.010.
    1. Johnson Stoklossa C.A., Forhan M., Padwal R.S., Gonzalez M.C., Prado C.M. Practical considerations for body composition assessment of adults with class II/III obesity using bioelectrical impedance analysis or dual-energy X-ray absorptiometry. Curr. Obes. Rep. 2016;5:389–396. doi: 10.1007/s13679-016-0228-5.
    1. González-Ruíz K., Correa-Bautista J.E., Ramírez-Vélez R. Evaluation of the body adiposity index in predicting percentage body fat among Colombian adults. Nutr. Hosp. 2015;32:55–60.
    1. Ramírez-Vélez R., Hernandez A., Castro K., Tordecilla-Sanders A., González-Ruíz K., Correa-Bautista J.E., Izquierdo M., García-Hermoso A. High intensity interval- vs. resistance or combined-training for improving cardiometabolic health in overweight adults (Cardiometabolic HIIT-RT Study): Study protocol for a randomised controlled trial. Trials. 2016;17:298. doi: 10.1186/s13063-016-1422-1.
    1. Marfell-Jones M., Olds T., Stewart A. International Standards for Anthropometric Assessment. ISAK; Potchefstroom, South Africa: 2006.
    1. World Health Organization Obesity: Preventing and managing the global epidemic; Proceedings of the Report of a WHO Consultation on Obesity; Geneva, Switzerland. 3–5 June 1997; Geneva, Switzerland: WHO; 1997.
    1. Sandercock G.R., Lobelo F., Correa-Bautista J.E., Tovar G., Cohen D.D., Knies G., Ramírez-Vélez R. The relationship between socioeconomic status, family income, and measures of muscular and cardiorespiratory fitness in Colombian schoolchildren. J. Pediatr. 2017;185 doi: 10.1016/j.jpeds.2016.12.058.
    1. Hoffman R., Gerber M. Evaluating and adapting the Mediterranean diet for non-Mediterranean populations: A critical appraisal. Nutr. Rev. 2013;71:573–584. doi: 10.1111/nure.12040.
    1. Zaki M.E., Kamal S., Reyad H., Yousef W., Hassan N., Helwa I., Kholoussi S. The validity of body adiposity indices in predicting metabolic syndrome and its components among Egyptian women. Open Access Maced. J. Med. Sci. 2016;4:25–30. doi: 10.3889/oamjms.2016.036.
    1. Freedman D.S., Thornton J.C., Pi-Sunyer F.X., Heymsfield S.B., Wang J., Pierson R.N., Jr., Blanck H.M., Gallagher D. The body adiposity index (hip circumference ÷ height(1.5)) is not a more accurate measure of adiposity than is BMI, waist circumference, or hip circumference. Obesity. 2012;20:2438–2444. doi: 10.1038/oby.2012.81.
    1. Johnson W., Chumlea W.C., Czerwinski S.A., Demerath E.W. Concordance of the recently published body adiposity index with measured body fat percent in European-American adults. Obesity. 2012;20:900–903. doi: 10.1038/oby.2011.346.
    1. Appelhans B.M., Kazlauskaite R., Karavolos K., Janssen I., Kravitz H.M., Dugan S., Powell L.H. How well does the body adiposity index capture adiposity change in midlife women? The SWAN fat patterning study. Am. J. Hum. Biol. 2012;24:866–869. doi: 10.1002/ajhb.22330.
    1. Verdich C., Barbe P., Petersen M., Grau K., Ward L., Macdonald I., Sørensen T.I., Oppert J.M. Changes in body composition during weight loss in obese subjects in the NUGENOB study: Comparison of bioelectrical impedance vs. dual-energy X-ray absorptiometry. Diabetes Metab. 2011;37:222–229. doi: 10.1016/j.diabet.2010.10.007.
    1. Aslam M., Eckhauser A.W., Dorminy C.A., Dosset C.M., Choi L., Buchowski M.S. Assessing body fat changes during moderate weight loss with anthropometry and bioelectrical impedance. Obes. Res. Clin. Pract. 2009;3:209–219. doi: 10.1016/j.orcp.2009.03.005.
    1. Beeson W.L., Batech M., Schultz E., Salto L., Firek A., Deleon M., Balcazar H., Cordero-Macintyre Z. Comparison of body composition by bioelectrical impedance analysis and dual-energy X-ray absorptiometry in Hispanic diabetics. Int. J. Body Compos. Res. 2010;8:45–50.
    1. Lohman T.G. Advances in Body Composition Assessment. Human Kinetics Publisher; Champaign, IL, USA: 1992.
    1. Kuhn P.C., Vieira-Filho J.P., Franco L., Dal Fabbro A., Franco L.J., Moises R.S. Evaluation of body adiposity index (BAI) to estimate percent body fat in an indigenous population. Clin. Nutr. 2014;33:287–290. doi: 10.1016/j.clnu.2013.04.021.
    1. Bennasar-Veny M., Lopez-Gonzalez A.A., Tauler P., Cespedes M.L., Vicente-Herrero T., Yanez A., Aguilo A. Body adiposity index and cardiovascular health risk factors in Caucasians: A comparison with the body mass index and others. PLoS ONE. 2013;8:e63999. doi: 10.1371/journal.pone.0063999.
    1. McRae M.P. Male and female differences in variability with estimating body fat composition using skinfold calipers. J. Chiropr. Med. 2010;9:157–161. doi: 10.1016/j.jcm.2010.07.002.

Source: PubMed

3
S'abonner