Preconception Micronutrient Supplementation Reduced Circulating Branched Chain Amino Acids at 12 Weeks Gestation in an Open Trial of Guatemalan Women Who Are Overweight or Obese

Sarah J Borengasser, Peter R Baker 2nd, Mattie E Kerns, Leland V Miller, Alexandra P Palacios, Jennifer F Kemp, Jamie E Westcott, Seth D Morrison, Teri L Hernandez, Ana Garces, Lester Figueroa, Jacob E Friedman, K Michael Hambidge, Nancy F Krebs, Sarah J Borengasser, Peter R Baker 2nd, Mattie E Kerns, Leland V Miller, Alexandra P Palacios, Jennifer F Kemp, Jamie E Westcott, Seth D Morrison, Teri L Hernandez, Ana Garces, Lester Figueroa, Jacob E Friedman, K Michael Hambidge, Nancy F Krebs

Abstract

Elevated branched chain amino acids (BCAAs: valine, leucine, and isoleucine) are well-established biomarkers of obesity-associated insulin resistance (IR). Mounting evidence suggests that low- and middle-income countries are suffering from a "double burden" of both undernutrition (growth stunting) and overnutrition (obesity) as these countries undergo a "nutrition transition". The purpose of this study was to examine if pre-pregnancy body mass index (BMI, kg/m²) and a daily lipid-based micronutrient supplement (LNS, Nutriset) would lead to cross-sectional differences in circulating levels of branched chain amino acids (BCAAs) in Guatemalan women experiencing short stature during early pregnancy. Using data from an ongoing randomized controlled trial, Women First, we studied women who were normal weight (NW, BMI range for this cohort = 20.1⁻24.1 kg/m²) or overweight/obese (OW/OB, BMI range for this cohort = 25.6⁻31.9 kg/m²), and divided into two groups: those who received daily LNS ≥ 3 months prior to conception through 12 weeks gestation (+LNS), or no LNS (-LNS) (n = 9⁻10/group). BCAAs levels were obtained from dried blood spot card samples (DBS) assessed at 12 weeks gestation. DBS cards provide a stable, efficient, and reliable means of collecting, transporting, and storing blood samples in low resource or field settings. Circulating maternal leptin, adiponectin, and insulin were determined by immunoassays from serum samples collected at 12 weeks gestation. We found maternal pre-pregnancy body mass index (ppBMI) was associated with higher circulating BCAAs (r² = 0.433, p = 0.002) and higher leptin/adiponectin ratio (r = 0.466, p = 0.044) in -LNS mothers at 12 weeks gestation. +LNS mothers demonstrated no correlations between BCAAs or leptin/adiponectin ratio across ppBMI suggesting LNS may be effective at improving metabolic status in OW/OB mothers during early pregnancy.

Keywords: branched chain amino acids; dried blood spot cards; micronutrients; obesity; pregnancy.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Branched chained amino acids levels (A) leucine + isoleucine and (B) valine. Data are expressed as mean ± SEM. Statistical differences for branched chain amino acid levels were determined using two-way ANOVA to examine differences due to maternal lipid-based micronutrient supplementation (LNS) and pre-pregnancy BMI category. Tukey’s post hoc testing was performed for multiple comparisons. Statistical significance was set at p ≤ 0.05. Different letter superscripts denote significance.
Figure 2
Figure 2
Comparative regression analysis was used to assess associations between branched chain amino acid concentrations and maternal pre-pregnancy BMI for (A) total branched amino acids, (B) valine, and (C) isoleucine and leucine in mothers who consumed LNS (n = 19 mothers) or no consumption of LNS (n = 20 mothers) at 12 weeks gestation. Significance was set at p ≤ 0.05.

References

    1. Black R.E., Victora C.G., Walker S.P., Bhutta Z.A., Christian P., de Onis M., Ezzati M., Grantham-McGregor S., Katz J., Martorell R., et al. Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet. 2013;382:427–451. doi: 10.1016/S0140-6736(13)60937-X.
    1. Victora C.G., Rivera J.A. Optimal child growth and the double burden of malnutrition: research and programmatic implications. Am. J. Clin. Nutr. 2014;100:1611S–1612S. doi: 10.3945/ajcn.114.084475.
    1. Norris S.A., Osmond C., Gigante D., Kuzawa C.W., Ramakrishnan L., Lee N.R., Ramirez-Zea M., Richter L.M., Stein A.D., Tandon N., et al. Size at birth, weight gain in infancy and childhood, and adult diabetes risk in five low- or middle-income country birth cohorts. Diabetes Care. 2012;35:72–79. doi: 10.2337/dc11-0456.
    1. Ashwal E., Hadar E., Hod M. Diabetes in low-resourced countries. Best Pract. Res. Clin. Obstet. Gynaecol. 2015;29:91–101. doi: 10.1016/j.bpobgyn.2014.05.009.
    1. Prentice A.M. The double burden of malnutrition in countries passing through the economic transition. Ann. Nutr. Metab. 2018;72(Suppl. 3):47–54. doi: 10.1159/000487383.
    1. Popkin B.M., Reardon T. Obesity and the food system transformation in Latin America. Obes. Rev. 2018 doi: 10.1111/obr.12694.
    1. Black R.E., Allen L.H., Bhutta Z.A., Caulfield L.E., de Onis M., Ezzati M., Mathers C., Rivera J., Maternal and Child Undernutrition Study Group Maternal and child undernutrition: global and regional exposures and health consequences. Lancet. 2008;371:243–260. doi: 10.1016/S0140-6736(07)61690-0.
    1. Bhutta Z.A., Ahmed T., Black R.E., Cousens S., Dewey K., Giugliani E., Haider B.A., Kirkwood B., Morris S.S., Sachdev H.P., et al. What works? Interventions for maternal and child undernutrition and survival. Lancet. 2008;371:417–440. doi: 10.1016/S0140-6736(07)61693-6.
    1. Victora C.G., Adair L., Fall C., Hallal P.C., Martorell R., Richter L., Sachdev H.S., Maternal and Child Undernutrition Study Group Maternal and child undernutrition: Consequences for adult health and human capital. Lancet. 2008;371:340–357. doi: 10.1016/S0140-6736(07)61692-4.
    1. Dominguez-Salas P., Moore S.E., Baker M.S., Bergen A.W., Cox S.E., Dyer R.A., Fulford A.J., Guan Y., Laritsky E., Silver M.J., et al. Maternal nutrition at conception modulates DNA methylation of human metastable epialleles. Nat. Commun. 2014;5:3746. doi: 10.1038/ncomms4746.
    1. Barker D.J. Fetal origins of coronary heart disease. BMJ. 1995;311:171–174. doi: 10.1136/bmj.311.6998.171.
    1. Catalano P.M. The impact of gestational diabetes and maternal obesity on the mother and her offspring. J. Dev. Orig. Health Dis. 2010;1:208–215. doi: 10.1017/S2040174410000115.
    1. Sharp G.C., Lawlor D.A., Richmond R.C., Fraser A., Simpkin A., Suderman M., Shihab H.A., Lyttleton O., McArdle W., Ring S.M., et al. Maternal pre-pregnancy BMI and gestational weight gain, offspring DNA methylation and later offspring adiposity: findings from the Avon Longitudinal Study of Parents and Children. Int. J. Epidemiol. 2015;44:1288–1304. doi: 10.1093/ije/dyv042.
    1. Berngard S.C., Berngard J.B., Krebs N.F., Garces A., Miller L.V., Westcott J., Wright L.L., Kindem M., Hambidge K.M. Newborn length predicts early infant linear growth retardation and disproportionately high weight gain in a low-income population. Early Hum. Dev. 2013;89:967–972. doi: 10.1016/j.earlhumdev.2013.09.008.
    1. Mook-Kanamori D.O., Steegers E.A., Eilers P.H., Raat H., Hofman A., Jaddoe V.W. Risk factors and outcomes associated with first-trimester fetal growth restriction. JAMA. 2010;303:527–534. doi: 10.1001/jama.2010.78.
    1. Hambidge K.M., Mazariegos M., Kindem M., Wright L.L., Cristobal-Perez C., Juarez-Garcia L., Westcott J.E., Goco N., Krebs N.F. Infant stunting is associated with short maternal stature. J. Pediatr. Gastroenterol. Nutr. 2012;54:117–119. doi: 10.1097/MPG.0b013e3182331748.
    1. Ahmed T., Hossain M., Sanin K.I. Global burden of maternal and child undernutrition and micronutrient deficiencies. Ann. Nutr. Metab. 2012;61(Suppl. 1):8–17. doi: 10.1159/000345165.
    1. Rao K.R., Padmavathi I.J., Raghunath M. Maternal micronutrient restriction programs the body adiposity, adipocyte function and lipid metabolism in offspring: A review. Rev. Endocr. Metab. Disord. 2012;13:103–108. doi: 10.1007/s11154-012-9211-y.
    1. Stewart C.P., Christian P., Schulze K.J., Leclerq S.C., West K.P., Jr., Khatry S.K. Antenatal micronutrient supplementation reduces metabolic syndrome in 6- to 8-year-old children in rural Nepal. J. Nutr. 2009;139:1575–1581. doi: 10.3945/jn.109.106666.
    1. Carlin J., George R., Reyes T.M. Methyl donor supplementation blocks the adverse effects of maternal high fat diet on offspring physiology. PLoS ONE. 2013;8:e63549. doi: 10.1371/journal.pone.0063549.
    1. Dahlhoff C., Worsch S., Sailer M., Hummel B.A., Fiamoncini J., Uebel K., Obeid R., Scherling C., Geisel J., Bader B.L., et al. Methyl-donor supplementation in obese mice prevents the progression of NAFLD, activates AMPK and decreases acyl-carnitine levels. Mol. Metab. 2014;3:565–580. doi: 10.1016/j.molmet.2014.04.010.
    1. Waterland R.A., Travisano M., Tahiliani K.G., Rached M.T., Mirza S. Methyl donor supplementation prevents transgenerational amplification of obesity. Int. J. Obes. (Lond.) 2008;32:1373–1379. doi: 10.1038/ijo.2008.100.
    1. Newgard C.B., An J., Bain J.R., Muehlbauer M.J., Stevens R.D., Lien L.F., Haqq A.M., Shah S.H., Arlotto M., Slentz C.A., et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 2009;9:311–326. doi: 10.1016/j.cmet.2009.02.002.
    1. Newgard C.B. Interplay between lipids and branched-chain amino acids in development of insulin resistance. Cell Metab. 2012;15:606–614. doi: 10.1016/j.cmet.2012.01.024.
    1. Lynch C.J., Adams S.H. Branched-chain amino acids in metabolic signalling and insulin resistance. Nat. Rev. Endocrinol. 2014;10:723–736. doi: 10.1038/nrendo.2014.171.
    1. Jacob S., Nodzenski M., Reisetter A.C., Bain J.R., Muehlbauer M.J., Stevens R.D., Ilkayeva O.R., Lowe L.P., Metzger B.E., Newgard C.B., et al. Targeted metabolomics demonstrates distinct and overlapping maternal metabolites associated with bmi, glucose, and insulin sensitivity during pregnancy across four ancestry groups. Diabetes Care. 2017;40:911–919. doi: 10.2337/dc16-2453.
    1. Moretti F., Birarelli M., Carducci C., Pontecorvi A., Antonozzi I. Simultaneous high-performance liquid chromatographic determination of amino acids in a dried blood spot as a neonatal screening test. J. Chromatogr. 1990;511:131–136. doi: 10.1016/S0021-9673(01)93278-9.
    1. Wagner M., Tonoli D., Varesio E., Hopfgartner G. The use of mass spectrometry to analyze dried blood spots. Mass Spectrom. Rev. 2016;35:361–438. doi: 10.1002/mas.21441.
    1. Hambidge K.M., Krebs N.F., Westcott J.E., Garces A., Goudar S.S., Kodkany B.S., Pasha O., Tshefu A., Bose C.L., Figueroa L., et al. Preconception maternal nutrition: A multi-site randomized controlled trial. BMC Pregnancy Childbirth. 2014;14:111. doi: 10.1186/1471-2393-14-111.
    1. Arimond M., Zeilani M., Jungjohann S., Brown K.H., Ashorn P., Allen L.H., Dewey K.G. Considerations in developing lipid-based nutrient supplements for prevention of undernutrition: Experience from the International Lipid-Based Nutrient Supplements (iLiNS) project. Matern. Child Nutr. 2015;11(Suppl. 4):31–61. doi: 10.1111/mcn.12049.
    1. Ashorn P., Alho L., Ashorn U., Cheung Y.B., Dewey K.G., Harjunmaa U., Lartey A., Nkhoma M., Phiri N., Phuka J., et al. The impact of lipid-based nutrient supplement provision to pregnant women on newborn size in rural Malawi: A randomized controlled trial. Am. J. Clin. Nutr. 2015;101:387–397. doi: 10.3945/ajcn.114.088617.
    1. Chace D.H., DiPerna J.C., Mitchell B.L., Sgroi B., Hofman L.F., Naylor E.W. Electrospray tandem mass spectrometry for analysis of acylcarnitines in dried postmortem blood specimens collected at autopsy from infants with unexplained cause of death. Clin. Chem. 2001;47:1166–1182.
    1. Chace D.H., Kalas T.A., Naylor E.W. Use of tandem mass spectrometry for multianalyte screening of dried blood specimens from newborns. Clin. Chem. 2003;49:1797–1817. doi: 10.1373/clinchem.2003.022178.
    1. Chace D.H., Adam B.W., Smith S.J., Alexander J.R., Hillman S.L., Hannon W.H. Validation of accuracy-based amino acid reference materials in dried-blood spots by tandem mass spectrometry for newborn screening assays. Clin. Chem. 1999;45:1269–1277.
    1. Hochberg Y., Benjamini Y. More powerful procedures for multiple significance testing. Stat. Med. 1990;9:811–818. doi: 10.1002/sim.4780090710.
    1. R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2017.
    1. Fitch W.L., King J.C. Plasma amino acid, glucose, and insulin responses to moderate-protein and high-protein test meals in pregnant, nonpregnant, and gestational diabetic women. Am. J. Clin. Nutr. 1987;46:243–249. doi: 10.1093/ajcn/46.2.243.
    1. Ghadimi H., Pecora P. Free amino acids of cord plasma as compared with maternal plasma during pregnancy. Pediatrics. 1964;33:500–506.
    1. Metzger B.E., Phelps R.L., Freinkel N., Navickas I.A. Effects of gestational diabetes on diurnal profiles of plasma glucose, lipids, and individual amino acids. Diabetes Care. 1980;3:402–409. doi: 10.2337/diacare.3.3.402.
    1. Potter J.M., Green A., Cullen D.R., Milner R.D. Amino acid profiles in early diabetic and non-diabetic pregnancy. Diabetes Res. Clin. Pract. 1986;2:123–126. doi: 10.1016/S0168-8227(86)80012-2.
    1. Persson B., Pschera H., Lunell N.O., Barley J., Gumaa K.A. Amino acid concentrations in maternal plasma and amniotic fluid in relation to fetal insulin secretion during the last trimester of pregnancy in gestational and type I diabetic women and women with small-for-gestational-age infants. Am. J. Perinatol. 1986;3:98–103. doi: 10.1055/s-2007-999842.
    1. Zimmer D.M., Golichowski A.M., Karn C.A., Brechtel G., Baron A.D., Denne S.C. Glucose and amino acid turnover in untreated gestational diabetes. Diabetes Care. 1996;19:591–596. doi: 10.2337/diacare.19.6.591.
    1. Bentley-Lewis R., Huynh J., Xiong G., Lee H., Wenger J., Clish C., Nathan D., Thadhani R., Gerszten R. Metabolomic profiling in the prediction of gestational diabetes mellitus. Diabetologia. 2015;58:1329–1332. doi: 10.1007/s00125-015-3553-4.
    1. Kalkhoff R.K., Kandaraki E., Morrow P.G., Mitchell T.H., Kelber S., Borkowf H.I. Relationship between neonatal birth weight and maternal plasma amino acid profiles in lean and obese nondiabetic women and in type I diabetic pregnant women. Metabolism. 1988;37:234–239. doi: 10.1016/0026-0495(88)90101-1.
    1. Park S., Park J.Y., Lee J.H., Kim S.H. Plasma levels of lysine, tyrosine, and valine during pregnancy are independent risk factors of insulin resistance and gestational diabetes. Metab. Syndr. Relat. Disord. 2015;13:64–70. doi: 10.1089/met.2014.0113.
    1. Sandler V., Reisetter A.C., Bain J.R., Muehlbauer M.J., Nodzenski M., Stevens R.D., Ilkayeva O., Lowe L.P., Metzger B.E., Newgard C.B., et al. Associations of maternal BMI and insulin resistance with the maternal metabolome and newborn outcomes. Diabetologia. 2017;60:518–530. doi: 10.1007/s00125-016-4182-2.
    1. Lowe W.L., Jr., Bain J.R., Nodzenski M., Reisetter A.C., Muehlbauer M.J., Stevens R.D., Ilkayeva O.R., Lowe L.P., Metzger B.E., Newgard C.B., et al. Maternal BMI and glycemia impact the fetal metabolome. Diabetes Care. 2017;40:902–910. doi: 10.2337/dc16-2452.
    1. Perng W., Gillman M.W., Fleisch A.F., Michalek R.D., Watkins S.M., Isganaitis E., Patti M.E., Oken E. Metabolomic profiles and childhood obesity. Obesity. 2014;22:2570–2578. doi: 10.1002/oby.20901.
    1. She P., Van H.C., Reid T., Hutson S.M., Cooney R.N., Lynch C.J. Obesity-related elevations in plasma leucine are associated with alterations in enzymes involved in branched-chain amino acid metabolism. Am. J. Physiol. Endocrinol. Metab. 2007;293:E1552–E1563. doi: 10.1152/ajpendo.00134.2007.
    1. Lackey D.E., Lynch C.J., Olson K.C., Mostaedi R., Ali M., Smith W.H., Karpe F., Humphreys S., Bedinger D.H., Dunn T.N., et al. Regulation of adipose branched-chain amino acid catabolism enzyme expression and cross-adipose amino acid flux in human obesity. Am. J. Physiol. Endocrinol. Metab. 2013;304:E1175–E1187. doi: 10.1152/ajpendo.00630.2012.
    1. Goffredo M., Santoro N., Trico D., Giannini C., D’Adamo E., Zhao H., Peng G., Yu X., Lam T.T., Pierpont B., et al. A branched-chain amino acid-related metabolic signature characterizes obese adolescents with non-alcoholic fatty liver disease. Nutrients. 2017;9:E642. doi: 10.3390/nu9070642.
    1. McCormack S.E., Shaham O., McCarthy M.A., Deik A.A., Wang T.J., Gerszten R.E., Clish C.B., Mootha V.K., Grinspoon S.K., Fleischman A. Circulating branched-chain amino acid concentrations are associated with obesity and future insulin resistance in children and adolescents. Pediatr. Obes. 2013;8:52–61. doi: 10.1111/j.2047-6310.2012.00087.x.
    1. Connelly M.A., Wolak-Dinsmore J., Dullaart R.P.F. Branched chain amino acids are associated with insulin resistance independent of leptin and adiponectin in subjects with varying degrees of glucose tolerance. Metab. Syndr. Relat. Disord. 2017;15:183–186. doi: 10.1089/met.2016.0145.
    1. Adams S.H. Emerging perspectives on essential amino acid metabolism in obesity and the insulin-resistant state. Adv. Nutr. 2011;2:445–456. doi: 10.3945/an.111.000737.
    1. Butte N.F., Liu Y., Zakeri I.F., Mohney R.P., Mehta N., Voruganti V.S., Goring H., Cole S.A., Comuzzie A.G. Global metabolomic profiling targeting childhood obesity in the Hispanic population. Am. J. Clin. Nutr. 2015;102:256–267. doi: 10.3945/ajcn.115.111872.
    1. Zhao X., Han Q., Liu Y., Sun C., Gang X., Wang G. The relationship between branched-chain amino acid related metabolomic signature and insulin resistance: A systematic review. J. Diabetes Res. 2016;2016:2794591. doi: 10.1155/2016/2794591.
    1. Trico D., Prinsen H., Giannini C., de Graff R., Juchem C., Li F., Caprio S., Santoro N., Herzog R.I. Elevated alpha-hydroxybutyrate and BCAA levels predict deterioration of glycemic control in adolescents. J. Clin. Endocrinol. Metab. 2017;102:2473–2481. doi: 10.1210/jc.2017-00475.
    1. Shah S.H., Crosslin D.R., Haynes C.S., Nelson S., Turer C.B., Stevens R.D., Muehlbauer M.J., Wenner B.R., Bain J.R., Laferrere B., et al. Branched-chain amino acid levels are associated with improvement in insulin resistance with weight loss. Diabetologia. 2012;55:321–330. doi: 10.1007/s00125-011-2356-5.
    1. Tan H.C., Khoo C.M., Tan M.Z., Kovalik J.P., Ng A.C., Eng A.K., Lai O.F., Ching J.H., Tham K.W., Pasupathy S. The effects of sleeve gastrectomy and gastric bypass on branched-chain amino acid metabolism 1 year after bariatric surgery. Obes. Surg. 2016;26:1830–1835. doi: 10.1007/s11695-015-2023-x.
    1. Lips M.A., Van Klinken J.B., van Harmelen V., Dharuri H.K., Ac’t Hoen P., Laros J.F., van Ommen G.J., Janssen I.M., Van Ramshorst B., Van Wagensveld B.A., et al. Roux-en-Y gastric bypass surgery, but not calorie restriction, reduces plasma branched-chain amino acids in obese women independent of weight loss or the presence of type 2 diabetes. Diabetes Care. 2014;37:3150–3156. doi: 10.2337/dc14-0195.
    1. Magkos F., Bradley D., Schweitzer G.G., Finck B.N., Eagon J.C., Ilkayeva O., Newgard C.B., Klein S. Effect of Roux-en-Y gastric bypass and laparoscopic adjustable gastric banding on branched-chain amino acid metabolism. Diabetes. 2013;62:2757–2761. doi: 10.2337/db13-0185.
    1. Barcelo A., Bauca J.M., Pena-Zarza J.A., Morell-Garcia D., Yanez A., Perez G., Pierola J., Toledo N., de la Pena M. Circulating branched-chain amino acids in children with obstructive sleep apnea. Pediatr. Pulmonol. 2017;52:1085–1091. doi: 10.1002/ppul.23753.
    1. Barcelo A., Morell-Garcia D., Salord N., Esquinas C., Perez G., Perez A., Monasterio C., Gasa M., Fortuna A.M., Montserrat J.M., et al. A randomized controlled trial: branched-chain amino acid levels and glucose metabolism in patients with obesity and sleep apnea. J. Sleep Res. 2017;26:773–781. doi: 10.1111/jsr.12551.
    1. Reece E.A., Coustan D.R., Sherwin R.S., Tuck S., Bates S., O’Connor T., Tamborlane W.V. Does intensive glycemic control in diabetic pregnancies result in normalization of other metabolic fuels? Am. J. Obstet. Gynecol. 1991;165:126–130. doi: 10.1016/0002-9378(91)90240-R.

Source: PubMed

3
S'abonner