Design considerations for a theory-driven exergame-based rehabilitation program to improve walking of persons with stroke

Seline Wüest, Rolf van de Langenberg, Eling D de Bruin, Seline Wüest, Rolf van de Langenberg, Eling D de Bruin

Abstract

Virtual rehabilitation approaches for promoting motor recovery has attracted considerable attention in recent years. It appears to be a useful tool to provide beneficial and motivational rehabilitation conditions. Following a stroke, hemiparesis is one of the most disabling impairments and, therefore, many affected people often show substantial deficits in walking abilities. Hence, one of the major goals of stroke rehabilitation is to improve patients' gait characteristics and hence to regain their highest possible level of walking ability. Because previous studies indicate a relationship between walking and balance ability, this article proposes a stroke rehabilitation program that targets balance impairments to improve walking in stroke survivors. Most currently, available stroke rehabilitation programs lack a theory-driven, feasible template consistent with widely accepted motor learning principles and theories in rehabilitation. To address this hiatus, we explore the potential of a set of virtual reality games specifically developed for stroke rehabilitation and ordered according to an established two-dimensional motor skill classification taxonomy. We argue that the ensuing "exergame"-based rehabilitation program warrants individually tailored balance progression in a learning environment that allows variable practice and hence optimizes the recovery of walking ability.

Keywords: Exergames; Gentile's taxonomy; Motor learning; Stroke rehabilitation; Virtual reality.

References

    1. Adamovich SV, Merians AS, Boian R, Lewis JA, Tremaine M, Burdea GS, Recce M, Poizner H. A virtual reality-based exercise system for hand rehabilitation post-stroke. Presence-Teleop Virt. 2005;14(2):161–174. doi: 10.1162/1054746053966996.
    1. Alahakone AU, Senanayake SA. A real-time system with assistive feedback for postural control in rehabilitation. Mechatronics, IEEE/ASME Trans. 2010;15(2):226–233. doi: 10.1109/TMECH.2010.2041030.
    1. Askim T, Indredavik B, Engen A, Roos K, Aas T, Morkved S. Physiotherapy after stroke: to what extent is task-oriented practice a part of conventional treatment after hospital discharge? Physiother Theory Pract. 2012
    1. Bastien JMC. Usability testing: a review of some methodological and technical aspects of the method. Int J Med Inform. 2010;79(4):E18–E23. doi: 10.1016/j.ijmedinf.2008.12.004.
    1. Borghese NA, Pirovano M, Lanzi PL, Wüest S, de Bruin ED. Computational intelligence and game design for effective at-home stroke rehabilitation. Games Health J. 2013;2(2):81–88. doi: 10.1089/g4h.2012.0073.
    1. Burke JW, McNeill MDJ, Charles DK, Morrow PJ, Crosbie JH, McDonough SM. Optimising engagement for stroke rehabilitation using serious games. Visual Comput. 2009;25(12):1085–1099. doi: 10.1007/s00371-009-0387-4.
    1. Cameirao MS, Badia SB, Oller ED, Verschure PF. Neurorehabilitation using the virtual reality based Rehabilitation Gaming System: methodology, design, psychometrics, usability and validation. J Neuroeng Rehabil. 2010;7:48. doi: 10.1186/1743-0003-7-48.
    1. Campbell M, Fitzpatrick R, Haines A, Kinmonth AL, Sandercock P, Spiegelhalter D, Tyrer P. Framework for design and evaluation of complex interventions to improve health. Br Med J. 2000;321(7262):694–696. doi: 10.1136/bmj.321.7262.694.
    1. Carty CP, Cronin NJ, Lichtwark GA, Mills PM, Barrett RS. Mechanisms of adaptation from a multiple to a single step recovery strategy following repeated exposure to forward loss of balance in older adults. PLoS ONE. 2012;7(3):e33591. doi: 10.1371/journal.pone.0033591.
    1. Cohen J. Statistical power analysis for the behavioral sciences. New York: Routledge; 1988.
    1. de Bruin ED, Reve EV, Murer K. A randomized controlled pilot study assessing the feasibility of combined motor-cognitive training and its effect on gait characteristics in the elderly. Clin Rehabil. 2013;27(3):215–225. doi: 10.1177/0269215512453352.
    1. de Bruin ED, Schoene D, Pichierri G, Smith ST. Use of virtual reality technique for the training of motor control in the elderly. Some theoretical considerations. Z Gerontol Geriatr. 2010;43(4):229–234. doi: 10.1007/s00391-010-0124-7.
    1. Dean CM, Richards CL, Malouin F. Task-related circuit training improves performance of locomotor tasks in chronic stroke: a randomized, controlled pilot trial. Arch Phys Med Rehab. 2000;81(4):409–417. doi: 10.1053/mr.2000.3839.
    1. DeJong G, Horn SD, Conroy B, Nichols D, Healton EB. Opening the black box of poststroke rehabilitation: stroke rehabilitation patients, processes, and outcomes. Arch Phys Med Rehab. 2005;86(12):S1–S7. doi: 10.1016/j.apmr.2005.09.003.
    1. Dickstein R, Dunsky A, Marcovitz E. Motor imagery for gait rehabilitation in post-stroke hemiparesis. Phys Ther. 2004;84(12):1167–1177.
    1. Dombovy ML, Sandok BA, Basford JR. Rehabilitation for stroke—a review. Stroke. 1986;17(3):363–369. doi: 10.1161/01.STR.17.3.363.
    1. Eliasson AC, Krumlinde-sundholm L, Shaw K, Wang C. Effects of constraint-induced movement therapy in young children with hemiplegic cerebral palsy: an adapted model. Dev Med Child Neurol. 2005;47(4):266–275. doi: 10.1017/S0012162205000502.
    1. Eng JJ, Tang PF. Gait training strategies to optimize walking ability in people with stroke: a synthesis of the evidence. Expert Rev Neurother. 2007;7(10):1417–1436. doi: 10.1586/14737175.7.10.1417.
    1. Fell DW. Progressing therapeutic intervention in patients with neuromuscular disorders: a framework to assist clinical decision making. J Neurol Phys Ther. 2004;28(1):35. doi: 10.1097/01.NPT.0000284776.32802.1b.
    1. Geijtenbeek T, Steenbrink F, Otten B, Even-Zohar O (2011) D-flow: immersive virtual reality and real-time feedback for rehabilitation. In: Proceedings of the 10th International Conference on Virtual Reality Continuum and Its Applications in Industry, Hong Kong. ACM, pp 201–208. doi:10.1145/2087756.2087785
    1. Gentile A. Skill acquisition: action, movement, and neuromotor processes. Mov Sci Found Phys Ther Rehabil. 2000;2:111–187.
    1. Guadagnoli MA, Lee TD. Challenge point: a framework for conceptualizing the effects of various practice conditions in motor learning. J Mot Behav. 2004;36(2):212–224. doi: 10.3200/JMBR.36.2.212-224.
    1. Hall KG, Magill RA. Variability of practice and contextual interference in motor skill learning. J Mot Behav. 1995;27(4):299–309. doi: 10.1080/00222895.1995.9941719.
    1. Harley L, Robertson S, Gandy M, Harbert S, Britton D. The design of an interactive stroke rehabilitation gaming system. Human-Comput Interact Users Appl Pt Iv. 2011;6764:167–173.
    1. Hatzitaki V, Voudouris D, Nikodelis T, Amiridis I. Visual feedback training improves postural adjustments associated with moving obstacle avoidance in elderly women. Gait Posture. 2009;29(2):296–299. doi: 10.1016/j.gaitpost.2008.09.011.
    1. Hornby TG, Straube DS, Kinnaird CR, Holleran CL, Echauz AJ, Rodriguez KS, Wagner EJ, Narducci EA. Importance of specificity, amount, and intensity of locomotor training to improve ambulatory function in patients poststroke. Top Stroke Rehabil. 2011;18(4):293–307. doi: 10.1310/tsr1804-293.
    1. Hsu AL, Tang PF, Jan MH. Analysis of impairments influencing gait velocity and asymmetry of hemiplegic patients after mild to moderate stroke. Arch Phys Med Rehabil. 2003;84(8):1185–1193. doi: 10.1016/S0003-9993(03)00030-3.
    1. Jack D, Boian R, Merians AS, Tremaine M, Burdea GC, Adamovich SV, Recce M, Poizner H. Virtual reality-enhanced stroke rehabilitation. Ieee T Neur Sys Reh. 2001;9(3):308–318. doi: 10.1109/7333.948460.
    1. Kennedy MW, Schmiedeler JP, Crowell CR, Villano M, Striegel AD, Kuitse J (2011) Enhanced feedback in balance rehabilitation using the Nintendo Wii Balance Board. In: e-Health Networking Applications and Services (Healthcom), 2011 13th IEEE International Conference on. IEEE, pp 162–168
    1. Kinect for Windows. . Accessed 12 Oct 2013
    1. Krakauer JW. Motor learning: its relevance to stroke recovery and neurorehabilitation. Curr Opin Neurol. 2006;19(1):84–90. doi: 10.1097/.
    1. Laguna PL. Task complexity and sources of task-related information during the observational learning process. J Sport Sci. 2008;26(10):1097–1113. doi: 10.1080/02640410801956569.
    1. Lange B, Flynn S, Rizzo A. Initial usability assessment of off-the-shelf video game consoles for clinical game-based motor rehabilitation. Phys Ther Rev. 2009;14(5):355–363. doi: 10.1179/108331909X12488667117258.
    1. Macko RF, Haeuber E, Shaughnessy M, Coleman KL, Boone DA, Smith GV, Silver KH. Microprocessor-based ambulatory activity monitoring in stroke patients. Med Sci Sport Exer. 2002;34(3):394–399. doi: 10.1097/00005768-200203000-00002.
    1. Magill RA. Motor learning and control: concepts and applications. 7. Boston: McGraw-Hill; 2004.
    1. Merians AS, Jack D, Boiau R, Tremaine M, Burdea GC, Adamovich SV, Recce M, Poizner H. Virtual reality-augmented rehabilitation for patients following stroke. Phys Ther. 2002;82(9):898–915.
    1. Mulder T. A process-oriented model of human motor behavior—toward a theory-based rehabilitation approach. Phys Ther. 1991;71(2):157–164.
    1. Muratori LM, Lamberg EM, Quinn L, Duff SV. Applying principles of motor learning and control to upper extremity rehabilitation. J Hand Ther Off J Am Soc Hand Ther. 2013;26(2):94–102. doi: 10.1016/j.jht.2012.12.007.
    1. Muratori LM, Lamberg EM, Quinn L, Duff SV. Applying principles of motor learning and control to upper extremity rehabilitation. J Hand Ther. 2013;26(2):94–103. doi: 10.1016/j.jht.2012.12.007.
    1. Nichols DS. Balance retraining after stroke using force platform biofeedback. Phys Ther. 1997;77(5):553–558.
    1. Nnodim JO, Strasburg D, Nabozny M, Nyquist L, Galecki A, Chen S, Alexander NB. Dynamic balance and stepping versus Tai Chi training to improve balance and stepping in at risk older adults. J Am Geriatr Soc. 2006;54(12):1825–1831. doi: 10.1111/j.1532-5415.2006.00971.x.
    1. O'Dell MW, Lin CCD, Harrison V. Stroke rehabilitation: strategies to enhance motor recovery. Annu Rev Med. 2009;60:55–68. doi: 10.1146/annurev.med.60.042707.104248.
    1. Papangelis A, Mouchakis G, Texas AB, Kosmopoulos D, Karkaletsis V, Makedon F (2012) A game system for remote rehabilitation of cerebral palsy patients. In: Proceedings of the 5th International Conference on Pervasive Technologies Related to Assistive Environments. ACM, p 19
    1. Pirovano M, Mainetti R, Baud-Bovy G, Lanzi PL, Borghese NA (2012) Self-adaptive games for rehabilitation at home. In: Computational Intelligence and Games (CIG), 2012 I.E. Conference on IEEE. pp 179–186
    1. Puh U, Baer G. A comparison of treadmill walking and overground walking in independently ambulant stroke patients: a pilot study. Disabil Rehabil. 2009;31(3):202–210. doi: 10.1080/09638280801903039.
    1. REWIRE—Rehabilitative Wayout in Responsive Home Environments. . Accessed 22 Feb 2013
    1. Richards CL, Malouin F, Wooddauphinee S, Williams JI, Bouchard JP, Brunet D. Task-specific physical therapy for optimization of gait recovery in acute stroke patients. Arch Phys Med Rehab. 1993;74(6):612–620. doi: 10.1016/0003-9993(93)90159-8.
    1. Rizzo A, Kim GJ. A SWOT analysis of the field of virtual reality rehabilitation and therapy. Presence-Teleoperators Virtual Environ. 2005;14(2):119–146. doi: 10.1162/1054746053967094.
    1. Salbach NM, Mayo NE, Wood-Dauphinee S, Hanley JA, Richards CL, Cote R. A task-orientated intervention enhances walking distance and speed in the first year post stroke: a randomized controlled trial. Clin Rehabil. 2004;18(5):509–519. doi: 10.1191/0269215504cr763oa.
    1. Schultheis MT, Rizzo AA. The application of virtual reality technology in rehabilitation. Rehabil Psychol. 2001;46(3):296–311. doi: 10.1037/0090-5550.46.3.296.
    1. Shaughnessy M, Michael KM, Sorkin JD, Macko RF. Steps after stroke—capturing ambulatory recovery. Stroke. 2005;36(6):1305–1307. doi: 10.1161/01.STR.0000166202.00669.d2.
    1. Shea CH, Kohl RM. Specificity and variability of practice. Res Q Exerc Sport. 1990;61(2):169–177. doi: 10.1080/02701367.1990.10608671.
    1. Srivastava A, Taly AB, Gupta A, Kumar S, Murali T. Post-stroke balance training: role of force platform with visual feedback technique. J Neurol Sci. 2009;287(1):89–93. doi: 10.1016/j.jns.2009.08.051.
    1. Teixeira-Salmela LF, Olney SJ, Nadeau S, Brouwer B. Muscle strengthening and physical conditioning to reduce impairment and disability in chronic stroke survivors. Arch Phys Med Rehab. 1999;80(10):1211–1218. doi: 10.1016/S0003-9993(99)90018-7.
    1. Thabane L, Ma J, Chu R, Cheng J, Ismaila A, Rios LP, Robson R, Thabane M, Giangregorio L, Goldsmith CH. A tutorial on pilot studies: the what, why and how. BMC Med Res Methodol. 2010;10:1. doi: 10.1186/1471-2288-10-1.
    1. Tilson JK, Settle SM, Sullivan KJ. Application of evidence-based practice strategies: current trends in walking recovery interventions poststroke. Top Stroke Rehabil. 2008;15(3):227–246. doi: 10.1310/tsr1503-227.
    1. Tudor-Locke CE, Myers AM, Rodger NW. Development of a theory-based daily activity intervention for individuals with type 2 diabetes. Diabetes Educ. 2001;27(1):85–93. doi: 10.1177/014572170102700110.
    1. Tyromotion. . Accessed 12 Oct 2013
    1. Uzor S, Baillie L (2013) Exploring & designing tools to enhance falls rehabilitation in the home. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 2013. ACM, pp 1233–1242
    1. Vincent C, Deaudelin I, Robichaud L, Rousseau J, Viscogliosi C, Talbot LR, Desrosiers J. Rehabilitation needs for older adults with stroke living at home: perceptions of four populations. BMC Geriatr. 2007;7:20. doi: 10.1186/1471-2318-7-20.
    1. Vonschroeder HP, Coutts RD, Lyden PD, Billings E, Nickel VL. Gait parameters following stroke—a practical assessment. J Rehabil Res Dev. 1995;32(1):25–31.
    1. Yavuzer G, Eser F, Karakus D, Karaoglan B, Stam HJ. The effects of balance training on gait late after stroke: a randomized controlled trial. Clin Rehabil. 2006;20(11):960–969. doi: 10.1177/0269215506070315.
    1. Zyda M. From visual simulation to virtual reality to games. Computer. 2005;38(9):25–32. doi: 10.1109/MC.2005.297.

Source: PubMed

3
S'abonner