An algorithm for the EEG frequency architecture of consciousness and brain body coupling

Wolfgang Klimesch, Wolfgang Klimesch

No abstract available

Keywords: EEG; brain body coupling; golden mean; harmonic oscillations; oscillations; scale free EEG algorithm.

Figures

Figure 1
Figure 1
Illustration of the doubling-halving algorithm as described by formula (2a). (A) The distribution of the frequency domains, together with their bandwidths is shown in the left panel for brain oscillations and in the middle panel for body oscillations. The frequency boundaries are calculated according to the “golden mean role”: The upper frequency boundary of domain i is that frequency which is maximally separated from domain i + 1 and the lower boundary is that frequency which is maximally separated from domain i − 1 (see the inset in the left panel for an example). The predicted frequency architecture for a mouse with a heart rate of 600 bpm (=10 Hz) is shown in the right panel. Note that the values for the center frequencies are the same as for humans but the relation to the index of a domain is changed. (B) Formula (2) can be used to predict the distribution of long-range white matter connectivity. The areas of the yellow rectangles in the left and middle panel represent the percentage of bundles for a frequency domain. Note that the area of each rectangle is constant and that the two sides of the rectangles change according to the doubling-halving algorithm of formula (2). The empirical distribution is shown in the right panel (data are from Hagmann et al. (2008), provided by Olaf Sporns).

References

    1. Bressler S., Menon V. (2010). Large-scale brain networks in cognition: emerging methods and principles. Trends Cogn. Sci. 14, 277–290 10.1016/j.tics.2010.04.004
    1. Buchman T. (2002). The community of the self. Nature 420, 246–251 10.1038/nature01260
    1. Buzsaki G. (2006). Rhythms of the Brain. New York, NY: Oxford University Press; 10.1093/acprof:oso/9780195301069.001.0001
    1. Chen X., Carp J., Wolpaw J. (1992). Constancy of motor axon conduction time during growth in rats. Exp. Brain Res. 90, 343–345 10.1007/BF00227247
    1. Dehaene S., Changeux J. P. (2011). Experimental and theoretical approaches to conscious processing. Neuron 70, 200–227 10.1016/j.neuron.2011.03.018
    1. Dirlich G., Dietl T., Vogl L., Strian F. (1998). Topography and morphology of heart action-related EEG potentials. Electroencephalogr. Clin. Neurophysiol. 108, 299–305 10.1016/S0168-5597(98)00003-3
    1. Goldman L., Albus J. S. (1968). Computation of impulse conduction in myelinated fibers; theoretical basis of the velocity-diameter relation. Biophys. J. 8, 596–607 10.1016/S0006-3495(68)86510-5
    1. Hagmann P., Cammoun L., Gigandet X., Meuli R., Honey C. J., Wedeen V. J., et al. (2008). Mapping the structural core of human cerebral cortex. PLoS Biol. 6:e159 10.1371/journal.pbio.0060159
    1. Hursh J. B. (1939). Conduction velocity and diameter of nerve fibers. Am. J. Physiol. 127, 131–139
    1. Klimesch W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Res. Rev. 29, 169–195 10.1016/S0165-0173(98)00056-3
    1. Klimesch W. (2012). Alpha-band oscillations, attention and controlled access to stored information. Trends Cogn. Sci. 16, 606–617 10.1016/j.tics.2012.10.007
    1. Klimesch W., Sauseng P., Hanslmayr S., Gruber W., Freunberger R. (2007). Event-related phase reorganization may explain evoked neural dynamics. Neurosci. Biobehav. Rev. 31, 1003–1016 10.1016/j.neubiorev.2007.03.005
    1. Köpruner V., Pfurtscheller G., Auer L. M. (1984). Quantitative EEG in normals and in patients with cerebral ischemia, in Brain Ischemia: Quantitative EEG and Imaging Techniques, Progress in Brain Research Vol. 62, eds Pfurtscheller G., Jonkman E. J., Lopes da Silva F. H. (Amsterdam: Elsevier Science Publishers, B.V.), 29–50 10.1016/S0079-6123(08)62168-8
    1. Miller R. (1991). Cortico-Hippocampal Interplay. Berlin: Springer; 10.1007/978-3-662-21732-0
    1. Nunez P. L. (2011). Implications of white matter correlates of EEG standing and traveling waves. Neuroimage 57, 1293–1299 10.1016/j.neuroimage.2010.03.087
    1. Nunez P. L., Reid L., Bickford R. G. (1978). The relationship of head size to alpha frequency with implications to a brain wave model. Electroencephalogr. Clin. Neurophysiol. 44, 344–352 10.1016/0013-4694(78)90309-7
    1. Palva M., Palva S., Kaila K. (2005). Phase synchrony among neuronal oscillations in the human cortex. J. Neurosci. 13, 3962–3972 10.1523/JNEUROSCI.4250-04.2005
    1. Pletzer B., Kerschbaum H., Klimesch W. (2010). When frequencies never synchronize: the golden mean and the resting EEG. Brain Res. 1335, 91–102 10.1016/j.brainres.2010.03.074
    1. Roopun A. K., Kramer M. A., Carracedo L. M., Kaiser M., Davies C. H., Traub R. D., et al. (2008). Temporal interaction between cortical rhythms. Front. Neurosci. 2, 145–154 10.3389/neuro.01.034.2008
    1. Rushton W. A. H. (1951). A theory of the effects of fibre size in medullated nerve. J. Physiol. 115, 101–122
    1. Sabah N. H. (2000). Aspects of nerve conduction. IEEE Eng. Med. Biol. Mag. 19, 111–118 10.1109/51.887254
    1. Salami M., Itami C., Tsumoto T., Kimura F. (2003). Change of conduction velocity by regional myelination yields constant latency irrespective of distance between thalamus and cortex. Proc. Natl. Acad. Sci. U.S.A. 100, 6174–6179 10.1073/pnas.0937380100
    1. Schomer D., Lopes da Silva F. (2011). Niedermeyer's Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, 6th Rev. Edn. Philadelphia, PA: Lippincott Williams and Wilkins
    1. Steriade M. (2006). Grouping of brain rhythms in corticothalamic systems. Neuroscience 137, 1087–1106 10.1016/j.neuroscience.2005.10.029
    1. Strogatz S. (2012). The Joy of X. Boston, MA: Houghton Mifflin Harcourt
    1. Valdés-Hernández P. A., Ojeda-González A., Martínez-Montes E., Lage-Castellanos A., Virués-Alba T., Valdés-Urrutia L., et al. (2010). White matter architecture rather than cortical surface area correlates with the EEG alpha rhythm. Neuroimage 49, 2328–2339 10.1016/j.neuroimage.2009.10.030
    1. Varela F., Lachaux J. P., Rodriguez E., Martinerie J. (2001). The Brainweb: phase synchronization and large-scale integration. Nat. Neurosci. 2, 229–238 10.1038/35067550
    1. Von Stein A., Sarnthein J. (2000). Different frequencies for different scales of cortical integration: from local gamma to long range alpha/thetha synchronization. Int. J. Psychophysiol. 38, 301–313 10.1016/S0167-8760(00)00172-0

Source: PubMed

3
S'abonner